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ABSTRACT 
Deterioration of goods and learning is a realistic phenomenon 

in daily life. Therefore maintaining the stock of decaying 

items becomes an important factor for decision makers. In  

this  study  deterioration  rate  follows  the  Weibull  

distribution  and  holding cost is gradually decreases, therefore 

learning effect is incorporated on holding cost. Many 

researchers generally assumed that the shortages are either 

completely backlogged or lost. But in this paper shortage is 

allowed and partial backlogged. The backlogging rate is taken 

as exponential function of time. Numerical examples are 

provided to further illustrate the model. Sensitivity analysis 

has been carried out to analyze the impact of change in 

various parameters. The aim of this model is to minimize the 

total cost. 
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1. INTRODUCTION 
In  most of the  inventory  models  for  deteriorating  items,  it  

is  assumed  that deterioration starts as soon as the retailer 

receives the inventory. During that period, there is no 

occurrence of deterioration. This phenomenon is commonly 

referred as non-instantaneous deterioration. 

Ghare and Schrader [1963] addressed an EOQ model with 

constant rate of deterioration. Covert and Philip [1973] 

extended this model by considering variable rate of 

deterioration. The  related works  are  found  in  (Nahmias  

[1982], Raafat  [1991], Hariga [1996], Goyal  and  Giri  

[2001],). A non-instantaneous  deteriorating  items  inventory  

model  with  stock dependent demand  was  developed  by Wu  

et  al. [2006]. Mishra et al. [2011] formulated the model for 

deterministic perishable items with variable type demand rate 

under infinite time horizon and constant deterioration. The 

effect of preservation technology investment on a non-

instantaneous deteriorating inventory model was developed by 

Dye [2013]. Jaggi [2014] established a non-instantaneous 

deteriorating Items inventory model with price dependent 

demand and time-varying holding cost. 

Many times customers would like to wait for backlogging 

during the shortage period but the others would not. Chang 

and Dye [1999] considered an EOQ model for deteriorating 

items with time varying demand and partial backlogging. 

They  were  the  first  to  give  a  definition  for  time  

dependent partial backlogging rate. Chern et al. [2008] 

developed an inventory model with inflation by assuming that 

the demand function is fluctuating.  Sana [2010] developed lot 

size inventory model with time varying deterioration and 

partial backlogging. Widyadana et al. [2011] presented an 

economic order quantity model for deteriorating items and 

planned backorder level. An EOQ inventory model with time 

dependent demand and shortages was proposed by Singh et al. 

[2010], Agarwal and Singh [2013]. Shukla et al. [2013], 

Khanra et al. [2013] , Sarkar and Moon [2014] , Anchal et al. 

[2016] have studied the inventory model with partially 

backlogged shortages.  

The learning phenomena introduced by Wright [1936] who 

suggested the power function, known as the learning curve 

(LC).Jordan [1958] analyzed that how to use the learning 

curve. The effect of learning on optimal lot determination, 

single product case was discussed by Adler and Nanda [1974]. 

Yelle [1979] analyzed the learning curve: historical review 

and comprehensive survey. The production lot sizing under 

learning effect was proposed by Fisk and Ballou [1985]. 

Balkhi [2003] enhanced the effect of learning on the optimal 

production lot size for deteriorating and partially backordered 

items with time varying demand and deterioration rate. Kumar 

et al. [2013] established a learning effect on an inventory 

model with two-level storage and partial backlogging under 

inflation. Jaber et al. [2008] examined an economic 

production quantity model for items with imperfect quality 

subject to learning effects. Yadav et al. [2013] enhanced an 

inventory model with learning effect and imprecise market 

demand under screening error. Singh et al. [2013] created an 

imperfect quality items with learning and inflation under two 

limited storage capacity. The cost of inventory model engaged 

in repetitive operations decrease due to the learning effect. 

Sangal et al. [2014] elaborated  a fuzzy environment inventory 

model with partial backlogging under learning effect. 

In this paper, the focus will be on commodities like fruits, 

medicines, electronic components etc. which either deteriorate 

or obsolete over a period of time. This is one of the factors 

that conclude the overall holding cost. An unfulfilled demand 

is an important factor in inventory theory. Therefore we 

developed a decaying inventory model with time dependent 

demand, learning effects under partial backlogging by which 

due to learning process we will get that our total cost of the 

model has reduced. 
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2. ASSUMPTIONS AND 

NOMENCLATURES 

2.1 Assumptions 
We need the following assumptions for developing 

mathematical model 

1. Demand rate is time dependent. 

2. Shortages of goods are partially lost sale. The 

backlogging rate is
( )

( )
T t

t e



 

 , where   is 

the backlogging parameter 

3. The time to the deterioration of the product is distributed 

as Weibull. 

4.  Holding cost follows the learning curve. 

5. There is no replenishment or repair of deteriorated items 

takes place in a given cycle. 

2.2 Notation 
The following notation is used to develop the mathematical 

model 

• 
1( )t t   : two parameter Weibull deterioration 

• D(t)=
 

2( ),a bt ct  : quadratic demand rate where 

,a b a c> >  

• 
1

0
( ) ( )

h
H n h

n


  :  learning coefficient holding 

cost  

• C0 :   ordering cost   

• DC : deterioration cost 

• SC :  shortage cost  

• LC :  lost sales cost 

•   :  backlogging parameter 

• 1( , )TC t T :  total cost of the inventory  system 

3. DESCRIPTION OF 

MATHEMATICAL MODEL  
As  the  deterioration  of  product  is  life time,  so initially,  

the  units  do  not  spoilage for  some  period  and after that the 

deterioration starts. In the period (0, dt ) the inventory level 

gradually depletes due to demand only but during the interval 

( dt , 1t ) the inventory stock further decreases due to combined 

effect of demand and deterioration. At 1t  the inventory level 

dropping zero & shortage are allowed in the duration 1( , )t T , 

which is partially backlogged. As depict above, the inventory 

levels are governed by the following differential equations: 

21( )
( ),

dI t
a bt ct

dt
     0 dt t   (3.1) 

1 22 ( )
( ) ( ),

dI t
t I t a bt ct

dt

       1dt t t   (3.2) 

23 ( ) ( )
( ),

dI t T t
e a bt ct

dt

 
   

 
1t t T   (3.3) 

With boundary conditions  

1 2 3 1. . 1(0) , ( ) 0 & ( ) 0ma xI I I t I t    
  

(3.4) 

Solutions of these equations are  

2 3

1 max .( ) ( )
2 3

bt ct
I t I at

 
    
 

                    (3.5) 
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                                  (3.6) 
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                 (3.7)

 

Considering the continuity at dt t  it follows from 

equation (3.5) & (3.6) such that 
1 2
( ) ( )d dI t I t

 

We get 

 2 3 1 1

max . 1 1 1 1 1( 1)
2 3 1 2(

d d

b c a b
I at t t t t t t   

 
 

 
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3(

d d d d

c
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   

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           (3.8) 

Using equation (3.8) in equation (3.5) we get 

     2 2 3 3 1 1

1 1 1 1 1 1( ) ( ( 1)
2 3 1

d d

b c a
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 
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 
           
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1 1 1 12 2 (3 ( )
2( 3(

d d d d
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t t t t t t t t      

   
 
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                         (3.9) 

Based on the assumptions of the model consider the following 

elements: 
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3.1 Ordering Cost 

 OC= C0 (3.10) 

3.2 Deterioration Cost  
1

2( ) ( )
d

t

D
t

DC C t I t dt   (3.11) 

3.3 Holding Cost  

1

1 2
0

1
0 ( ) ( )( )

d

d

t t

t
I t dt I t dt

h
HC h

n
 
  

   

 

 

(3.12) 

3.4Shortage Cost 

1
3 ( )

T

S
t

SC C I t dt   (3.13) 

3.5 Lost Sales Cost  

1

( ) 2(1 )( )
T

T t

L
t

LSC C e a bt ct dt      
(3.14) 

3.6 Total average cost of the system 

1

1
( , ) [ ]TC t T OC DC HC SC LSC

T
      

(3.15) 

4. OPTIMALITY  

The total values of t1 and T which minimize the total cost can 

be solved by differentiating equation (3.15) with respect to t1 

and T and equate to zero

 

1 1

1

( , ) ( , )
0, 0

TC t T TC t T

t T

 
 

   
(3.16) 

The sufficient conditions for minimizing 1( , )TC t T using 

the Hessian matrix H, which is the matrix of second order 

partial derivatives, are 

2 2
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
 


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1 1

2

11

2 2 2
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2

1
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( , ) ( , )

TC t T TC t T
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H

TC t T TC t T

t T T

 

 
 
 

  
   (3.17) 

Where 1H  and 2H  are the minors of the Hessian matrix H. 

Using these optimal values of 1t  and T, the minimum total 

cost can be obtained. 

5. NUMERICAL EXAMPLE AND 

SENSITIVITY ANALYSIS 

5.1 Numerical Example 
We have considered the following data given in appropriate 

units           

0 0 0.02,200, 0.8, 2.5, 2, 200, 0.04, dC h a t       

11.9, 0.6, 1, 5, 2, 0.1, 0.01, 1.5D S LC b n h C c C       

Then we get optimal values of 
1

0.223859t  , T = 

0.994437 and total cost 1( , )TC t T  = Rs. 337.497. 

5.2 Sensitivity Analysis  
We examined the sensitivity analysis of the optimal solution  

Table- (1): Effect of number of shipments (n) on optimal 

solution 

n 1t
 

T 1( , )TC t T
 

1 0.223859 0.994437 337.497 

2 0.233025 0.994249 335.738 

3 0.238428 0.994205 334.701 

4 0.242278 0.994204 333.962 

5 0.245271 0.994220 333.387 

6 0.247722 0.994244 332.917 

7 0.249797 0.994272 332.518 

8 0.251596 0.994302 332.173 

9 0.253185 0.994333 331.868 

10 0.254607 0.994364 331.594 

Table- (2): Effect of demand parameter (a) on optimal 

solution 

a 
1t  T 

1( , )TC t T  

210 0.217388 0.93771 344.006 

220 0.21115 0.886766 349.935 

230 0.205126 0.840516 355.304 

240 0.199301 0.798146 360.13 
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Table- (3): Effect of deterioration cost parameter ( DC ) on 

optimal solution 

DC  1t  T 
1( , )TC t T  

2 0.223834 0.99443 337.500 

2.1 0.223810 0.994422 337.503 

2.2 0.223786 0.994415 337.506 

2.3 0.223762 0.994408 337.509 

Table- (4): Effect of scale parameter ( ) on optimal 

solution 

  
1t  T 

1( , )TC t T  

0.05 0.223674 0.994367 337.518 

0.06 0.223490 0.994297 337.539 

0.07 0.223307 0.994228 337.560 

0.08 0.223125 0.994159 337.582 

 

 

Fig.-1: Sensitivity graph w.r.to number of shipments ‘n’ 

and total cost 

 

Fig.-2: Sensitivity graph w.r.to demand parameter ‘a’ and 

total cost 

 

Fig.-3: Sensitivity graph w.r.to deterioration cost ‘CD’ and 

total cost 

 

Fig.-4: Sensitivity graph w.r.to scale parameter ‘α’ and 

total cost 

6.  OBSERVATIONS 
• From table 1 / fig.1, as the number of shipments ‘n' 

increases then the total cost decreases respectively.  

• From table 2 / fig.2, if demand parameter ‘a’ increases 

then 1t  and T gradually decreases and the total cost 

increases respectively. 

• From table 3/ fig.3, it is seen that deterioration cost ‘ DC

’ increases then 1t  and T gradually reduces and the total 

cost slightly increases correspondingly. 

• From table 4 / fig .4, it is seen that the scale parameter ‘

 ’ increases then 1t  and T gradually decreases and the 

total cost slightly increases subsequently. 

7. CONCLUSION AND FUTURE 

RESEARCH 
Most of the researchers make assumptions that the 

deterioration starts from the instant of their arrival in the 

stock. But we developed a decaying inventory with non-

instantaneous deterioration. The demand rate is quadratic 

function of time. These days we see that everywhere in every 

field high competition is available here we are talking about 

business of any organizations, manufacturer, shopping outlets, 

markets etc; because of that buyer has many different options 

to buy the things in different qualities with cheaper price. 

However as we analysis about competition we must know 

328 

330 
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334 

336 

338 

1 2 3 4 5 6 7 8 9 10 

TC 

n 
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TC 

340 
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200 220 240 260 

TC 

a 
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TC 
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TC 

CD 
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TC 
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TC 

α 

Variation in scale parameter  

TC 
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what to look for. It's not just copying others ideas we need to 

look for different strategy to compete the market. So, in order 

to develop customer’s service and his revenue, organization 

concentrates to explore the opportunities in every direction. 

Manufacturers learn from each order quantity and lead time of 

buyer. Industry considers learning effect technique to cut 

down stock price and improve for higher profit in the 

business.  

Also organizer’s learning effect of holding cost for the 

different number of shipments as the number of shipments 

increases then total cost decreases. After arriving at the 

solution it becomes imperative to check the stability of the 

solution with respect to various system parameters. These 

parameters include different costs or the demand parameters. 

This model can be used in food related stuff, nuclear, 

chemical and pharmaceutical industries. These studies help to 

explore varying scenarios which ultimately aid in 

understanding and developing the inventory models. 

 

Fig.-5: Convexity of the proposed model with learning effect 
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9. APPENDIX 
Total cost of the function from equation no.(15) 
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