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ABSTRACT 
In this paper an efficient numerical scheme to approximate the 

solutions of fifth-order boundary value problems in a finite 

domain with two different types of boundary conditions has 

been prsented, by taking basis functions with quartic B-

splines and weight functions with quintic B-splines in Petrov-

Galerkin method. In this method, the quartic B-splines and 

quintic B-splines are redefined into new sets of functions 

which contain the equal number of functions. The analysis is 

accompanied by numerical examples. The obtained results 

demonstrate the reliability and efficiency of the proposed 

scheme. 
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1. INTRODUCTION 
Consider a general linear boundary value problem of fifth 

order 

(5) (4)
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(1)        

subject to the boundary conditions  
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              ( or ) 
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     (2b)           

where A0, C0, A1, C1, A2, σ1 and σ2 are  real constants and 

p0(t), p1(t), p2(t), p3(t), p4(t), p5(t) and q(t)  are  continuous 

functions defined in [a, b]. 

Fifth order boundary value problems generally arise in the 

mathematical modelling of viscoelastic flows [1, 2]. 

Theorems which list the conditions for the existence and 

uniqueness of solutions of such problems are contained in a 

comprehensive survey in a book by Agarwal [3],though no 

numerical methods are contained therein for solving boundary 

value problems of higher order. Wazwaz  [4] developed the 

solution of special type of fifth order boundary value 

problems by using the modified Adomain decomposition 

method and he provided the solution in the form of a rapidly 

convergent series. Siddiqi et al. [5] presented the solution of a 

special case of linear fifth order boundary value problems by 

using quartic spline functions. Rashidinia et al. [6] presented 

the solution of a special case of linear fifth order boundary 

value problem by using non-polynomial spline functions 

technique. Noor and Sayed [7] applied the Homotopy 

perturbation method for solving fifth order boundary value 

problems. Caglar and Caglar [8] presented the Local 

polynomial regression method to solve the special case of 

fifth order boundary value problems. Gamel [9] presented the 

solution of fifth order boundary value problems by Sinc-

Galerkin method. Syam and Ahili [10] presented combination 

of Adomain decomposition method and the Homotopy 

method to solve a fifth order singularly perturbed boundary 

value problem arising in viscoelastic flows. Zhao [11] 

developed the solution of fifth order boundary value problems 

by variational iteration method, Lamnii et al. [12] developed 

the sextic spline collocation method to solve special case of 

fifth order boundary value problems. Kasi Viswanadham and 

Sreenivasulu [13] developed the quartic B-spline Galerkin 

method to a general  fifth order boundary value problem. 

Petrov Galerkin method with cubic B-splines as basis 

functions and Quintic B-splines as weight functions [14] have 

been used to solve a general 5th order boundary value 

problem. So far, fifth order boundary value problems have not 

been solved by using Petrov-Galerkin method with quartic B-

splines as basis functions and quintic B-splines as weight 

functions. This motivated us to solve a fifth order boundary 

value problem by Petrov-Galerkin method with quartic B-

splines as basis functions and quintic B-splines as weight 

functions. The present work is motivated by the desire to 

obtain numerical solutions to higher order boundary value 

problems with a better accuracy. 

Section 2 deals with the justification of using Petrov-Galerkin 

method. A description of the proposed method with the types 

of boundary conditions (2) is dealt in section 3. The procedure 

of solving the nodal parameters is described in section 4. The 

application of the proposed method on solving several 

examples of linear and nonlinear boundary value problems 

has been presented in section 5. By using quasilinearization 

technique [15], a nonlinear problem can be converted into a 

sequence of linear problems and the limit of solutions of these 

generated linear problems is the solution of the nonlinear 

problem. The conclusions are presented in the last section. 

2. JUSTIFICATION OF USING 

PROPOSED METHOD 
The approximate solution in Finite Element Method (FEM) 

can be obtained as a linear combination of basis functions 
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which constitute a basis for the approximation space under 

consideration. Petrov-Galerkin method is one of the 

variational methods involved in FEM. The residual of 

approximation is made orthogonal to the weight functions in 

Petrov-Galerkin method. Regardless of properties of the 

differential operator defined in the given differential equation, 

a weak form of approximation solution for the differential 

equation exists and is unique under appropriate conditions 

[16, 17]. Further, if we pay sufficient attention to the 

boundary conditions [18], the weak solution tends to an exact 

solution of the differential equation. This means that the basis 

functions should become zero on the boundary where the 

essential (Dirichlet) type boundary conditions are defined. 

Also in the Petrov-Galerkin method, the basis functions and 

the weight functions are equal in number. 

3. DESCRIPTION OF THE PROPOSED 

METHOD 

3.1 Quartic B-splines and quintic B-splines: 
The quartic B-splines and quintic B-splines are described in 

[19-21]. Space variable domain [a, b] is divided into spaced 

knots (which need not be spaced evenly) given by the 

partition
0 1 1... n na t t t t b      . Eight additional 

knots t-4, t-3, t-2, t-1, tn+1, tn+2, tn+3 and tn+4 are introduced which 

satisfy the relation   

t-4<t-3<t-2<t-1<t0  and  tn<tn+1<tn+2<tn+3<tn+4 . 

Now the quartic B-splines ( ) 'iS t s  are defined by 
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where {S-2(t), S-1(t), S0(t), S1(t),…, Sn-1(t), Sn(t), Sn+1(t)} forms 

a basis for the space
4 ( )S   of quartic polynomial splines. 

Schoenberg [21] has shown that quartic B-splines are the 

unique nonzero splines of smallest compact support with the 

knots at t-4 <t-3<t-2<t-1<t0<t1<…<tn-1<tn<tn+1<tn+2<tn+3<tn+4. 

In the same way, the quintic B-splines Ri(t)'s are defined by 
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where {R-2(t),R-1(t),R0(t),R1(t),…,Rn-1(t),Rn(t),Rn+1(t),Rn+2(t)} 

forms a basis for the space
5( )S   of quintic polynomial 

splines by introducing two more additional knots t-5, tn+5 to 

the already existing knots t-4 to tn+4 . Schoenberg [21] has 

shown that quintic B-splines are the unique nonzero splines of 

smallest compact support with the knots at   

t-5<t-4<t-3<t-2<t-1<t0<t1<…<tn-1<tn<tn+1<tn+2<tn+3<tn+4<tn+5. 

The approximation for v(t) is defined as 

1

2

( ) ( )
n

j j

j

v t S t




                 (3) 

where ,

j s  are the nodal parameters to be determined and 

( ) 'jS t s are the quartic B-spline basis functions. In Petrov-

Galerkin method, the basis functions should be zero on the 

boundary where the essential type of boundary conditions are 

prescribed. In the set of quartic B-splines {S-2(t), S-1(t), S0(t), 

S1(t),…, Sn-1(t), Sn(t), Sn+1(t)}, the basis functions S-2(t), S-1(t), 

S0(t),S1(t) do not become zero on the left boundary and  Sn-2(t), 

Sn-1(t), Sn(t)  and Sn+1(t) do not become zero on the right 

boundary. So, it is necessary to redefine the basis functions 

into a new set of basis functions which become zero on the 

boundary where the essential type boundary conditions are 

specified. When the chosen approximation satisfies the 

prescribed boundary conditions or most of the boundary 

conditions, it gives better approximation results. In view of 

this, the basis functions are redefined into a new set of basis 

functions which vanish on the boundary where the Dirichlet, 

the Neumann or mixed boundary condition at the left 

boundary are prescribed. 

3.2 Redefinition of basis functions with 

boundary conditions (2a) 

Applying the essential boundary conditions of (2), the 

approximate solution v(t) at the boundary points can be taken 

as     

0 0 2 2 0 1 1 0

0 0 0 1 1 0
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 
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 
         (5)                                                 

Eliminating α-2  and αn+1from the equations (3), (4) and (5), 

we get 
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Using the left Neumann boundary conditions of (2a) to the 

approximate solution v (t) in (6), we get 

1 0 1 0 1 1 0 0 0 0

1 1 0

( ) ( ) ( ) ( ) ( )

( )

A v a v t w t P t P t

P t

 



 
       



          (9) 

Eliminating α-1 from the equations (6) and (9), we get the 

approximation for v (t) as  

0
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3.3 Redefinition of basis functions with 

boundary conditions (2b) 
Using the left mixed boundary conditions of (2b) to the 

approximate solution v(t) in (6), we get   

1 1 0 1 0 1 0 1 1 0

0 0 0 1 1 0 1 1 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

A v a v a v t v t w t P t

P t P t w t

  

  

 
        

   
(13) 

Eliminating α-1 from the equations (13) and (6), we get 

approximation for v(t) as   

0
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and   ( )jB t ’s are as defined in (12). 

{ ( ), 0,1,..., }jB t j n  is the new set of basis functions for the 

approximation v(t). Here w(t) takes care of given set of 

essential and left Neumann or mixed type of  boundary 

conditions and ( )jB t 's are vanishing at the boundary and their 

first derivative vanish at left boundary. In the proposed 

method, the new set of basis functions and weight functions 

should be equal in number. Here the number of basis 

functions in the approximation for v(t) in (6) is n + 1 and the 

number of weight functions is n+5. So, it is necessary to 

redefine the weight functions into a new set of weight 

functions which are equal in number of the basis functions.    

Assume that the approximation for u(t) as 

2
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n
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j
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where ( ) 'jR t s are the quintic B-splines. 

 

 

3.4 Method with boundary conditions (2a) 
Assume that approximation u(t), given by (16), satisfies the 

conditions 

( ) 0, ( ) 0, ( ) 0, ( ) 0u a u b u a u b                  (17) 

Using (16) and (17), we get the approximate solution for u(t) 

at the boundary points as  
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Eliminating β-2, β-1, βn+1 and βn+2 from the equations (16) and 

(18) to (21), we get the approximation for u(t) as  
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Now the new set of weight functions for the approximation 

u(t) is{ ( ), 0,1,..., }jT t j n . Here 

 
0 0( ) ( ) ( ) ( ) 0j j n j j nT t T t T t T t     for all j. 

Applying the proposed method to (1) with the new set of basis 

functions { ( ), 0,1,..., }jB t j n  defined in (12) and with the 

new set of weight functions { ( ), 0,1,..., }jT t j n  defined in 

(23), we get 
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    for  i = 0,1,2,…,n.  

Integrating by parts the first two terms on the left hand side of 

(25) and after applying the boundary conditions mentioned in 

(2a), we get 
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Using (26), (27) and (10) in (25) and after rearrangement, we 

get a system of equations in the matrix form as 
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  for    i = 0,1,2,…,n; j = 0,1,2,…,n  
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   for    i = 0,1,2,…,n              (30) 
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3.5 Method with boundary conditions (2b) 
Here also assume that approximation u(t), given by (16), 

satisfies the conditions defined in (17).    

Proceeding as in section 3.4, we get { ( ), 0,1,..., }jT t j n  

defined in (23), are the weight functions for the approximation 

u(t). 

Applying the proposed method to (1) with the set of basis 

functions { ( ), 0,1,..., }jB t j n  defined in (12) and with the 

set of weight functions { ( ), 0,1,..., }jT t j n  defined in (23), 

we get 

0

0

0 1 2 3

(5) (4)

54

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

[

]

n

n

t

t

t

t

i i

p t v t p t v t p t v t p t v t

t v t p t v t T t dt b t T tp dt

   

  





        (31) 

    for  i = 0,1,2,…,n 

Integrating by parts the first two terms on the left hand side of 

(31) and after applying the boundary conditions mentioned in 

(2b), we get 

 

     

   

0

0

0

0

2
(5)

0 02

2 3

0 2 0 1 2 02 3

3

0 1

4

1 03

04

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )[ ]

n

n

n

n

i i nt

i it t

t

t

t

i

t

i t

d
t T t v t dt p t T t v t

dt

d d
p t T t A p t T t C C

dt dt

d
p t T t A A

dt

d
p t T t v t dt

d

p

t







  

 







    (32) 

0 0

2
(4)

1 12
( ) ( ) ( ) ( ) ( ) ( )[ ]

n nt t

i i

t t

d
p t T t v t dt p t T t v t dt

dt
           (33) 

Using (32), (33) and (14) in (31) and after rearrangement, we 

get a system of equations in the matrix form as 

  Kα = f                (34) 

where K = [kij]; 

 

 

0

4

0 44

2

1 32

2 5

2

02

{ ( ) ( ) ( ) ( ) ( )

[ ( ) ( )] ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )}

( ) ( ) ( )

n

n

t

ij i i j

t

i i j

i j i j

i j nt

d
k p t T t P t T t B t

dt

d
p t T t p t T t B t

dt

p t T t B t p t T t B t dt

d
p t T t B t

dt

 
  

 

 
  

 

 



 



 



             (35) 

  for    i = 0,1,2,…,n; j = 0,1,2,…,n  

f = [fi ]; 
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 

   

 

0

0

4

0 44

2

1 32

2 5

2 2

0 0 22 2

3

0 13

{ ( ) ( ) ( ) ( ) ( ) ( ) ( )

[ ( ) ( )] ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )}

( ) ( ) ( ) ( ) ( )

( ) ( )

n

n

n

t

i i i i
t

i i

i i

i n it t

i t

d
f q t T t p t T t P t T t w t

dt

d
p t T t p t T t w t

dt

p t T t w t p t T t w t dt

d d
p t T t w t p t T t A

dt dt

d
p t T t C

dt


 
   

 

 
  

 

 

 

 



     
0

3

2 0 0 1 1 03
( ) ( )i t

d
C p t T t A A

dt
 

     

   for    i = 0,1,2,…,n              (36) 

and 
0 1[ .]T

n      

4. PROCEDURE OF SOLVING THE 

NODAL PARAMETERS 
A general element in the matrix K is given by 

1

0

n

m

m

I




 , where

1

( ) ( ) ( )
m

m

t

m i j
t

I tu r t M t dt


  , ( )jr t  are the quartic B-spline 

basis functions or their derivatives and ( )iu t  are the quintic 

B-spline weight functions or their derivatives. Here 0mI   if 

2 3 3 3 1( , ) ( , ) ( , )j j i i m mt t t t t t       . For the evaluation 

of each mI , we have used 5-point Gauss-Legendre quadrature 

formula. Due to this, the stiffness matrix K is a ten diagonal 

band matrix. Solving the system Kα = f  by using the band 

matrix solution package, we get the nodal parameter vector α. 

We have used the FORTRAN-90 code to solve the boundary 

value problems (1) - (2) by the proposed method. 

5. NUMERICAL EXAMPLES  
To test the accuracy and efficiency of the developed method, 

we solved five linear and two nonlinear fifth order boundary 

value problems. The obtained numerical results for each 

problem are presented in tabular forms. 

Example 1: Consider the following linear boundary value 

problem 

(5) (15 10 ) , 10tv v t e t                    (37)          

subject to       (0) (1) 0v v  , (0) 1,v 

(1) , (0) 0v e v    .                                                                                                                 

The exact solution for the above problem is  

(1 )tv te t  . 

Dividing the domain [0, 1] into 10 equal subintervals, the 

numerical results obtained for this problem are presented in 

Table 1.  

Table 1: Numerical results for Example 1 

t Absolute error by 

proposed method 

0.1 

0.2 

0.3 

1.788139E-07 

5.811453E-07 

4.172325E-07 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.341105E-06 

2.413988E-06 

3.010035E-06 

2.324581E-06 

1.400709E-06 

4.917383E-07 

 

Example 2: Consider the following linear boundary value 

problem  

 
(5) 3

2

19 cos 2 cos 41sin

2 sin 1 1,

v tv t t t t t

t t t





 






                 (38)    

subject to      ( 1) (1) cos1,v v  

( 1) (1) 4cos1 sin1,   ( 1) 3cos1 8sin1.v v v            

The exact solution for the above problem is 

2(2 1)cos .v t t    

Dividing the domain [-1, 1] into 10 equal subintervals, the 

numerical results obtained for this problem are presented in 

Table 2. 

Table 2: Numerical results for Example 2 

t Absolute error by 

proposed method 

-0.8 

-0.6 

-0.4 

-0.2 

0.0 

0.2 

0.4 

0.6 

0.8 

1.132488E-06 

4.470348E-08 

7.450581E-06 

1.561642E-05 

2.050400E-05 

2.127886E-05 

1.770258E-05 

9.968877E-06 

2.905726E-06 

 

Example 3: Consider the following linear boundary value 

problem 

(5) (4)   (2 7),         0 1tv v e t t                        (39)                   

subject to   

   
(0) 0, (1) 0, (0) (0) 1,

(1) (1) , (0) 0.

v v v v

v v e v

   

    
 

The exact solution for the above problem is (1 )tv te t  . 

Dividing the domain [0, 1] into 10 equal subintervals, the 

numerical results obtained for this problem are presented in 

Table 3. 

Table 3: Numerical results for Example 3 

t Absolute error by 

proposed method 

0.1 

0.2 

0.3 

0.4 

0.5 

2.011657E-07 

6.854534E-07 

6.854534E-07 

1.758337E-06 

2.950430E-06 



International Journal of Computer Applications (0975 – 8887) 

Volume 161 – No 10, March 2017 

24 

0.6 

0.7 

0.8 

0.9 

3.486872E-06 

2.592802E-06 

1.460314E-06 

5.066395E-07 
 

Example 4: Consider the following linear boundary value 

problem 

(5) (4) 2 2

2

[ 4 ( 3 )cos

         {1 4 (5 2 )sin }], 0 1

t t t

t

v v e v e e t t

t e t t t

      

     

          (40) 

subject to  

     
(0) 0, (1) 0, (0) 1,

(1) sin1, (0) 0.

v v v

v e v

   

  
 

The exact solution for the above problem is 

( 1)sintv e t t  .  

Dividing the domain [0, 1] into 10 equal subintervals, the 

numerical results obtained for this problem are presented in 

Table 4. 

Table 4: Numerical results for Example 4 

t Absolute error by 

proposed method 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.639128E-07 

3.725290E-07 

2.980232E-08 

3.576279E-07 

9.536743E-07 

1.221895E-06 

7.152557E-07 

2.384186E-07 

2.235174E-07 

Example 5: Consider the following linear boundary value 

problem 

(5) (4) 2

2 2 4 3

2

2 ( 2 1)

(2 4 ) 2 4 cos 2 4

6 4 2,     

( 2)

1  0  

t

v v v t t v

t t v t v e

t

t

t t t

t t

    

     

  

 

 

            (41)  

subject to     

 
(0) 0, (1) 1 2 sin1, (0) 2,

(1) 2 (cos1 sin1) 2, (0) 6.

v v e v

v e v

   

    
                     

The exact solution for the above problem is 

2 2 sintv t e t  .  

Dividing the domain [0, 1] into 10 equal subintervals, the 

numerical results obtained for this problem are presented in 

Table 5. 

Table 5: Numerical results for Example 5 

t Absolute error by 

proposed method 

0.1 

0.2 

4.768372E-07 

6.556511E-07 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

2.384186E-06 

2.264977E-06 

1.192093E-06 

5.960464E-06 

5.245209E-06 

3.576279E-06 

7.152557E-06 

Example 6: Consider the following nonlinear boundary value 

problem 

 
2 2 24

2

2(5) 4 (

32 , 1

)

0

v tv

t

v v e e vv e

e t





   








                            (42)              (42) 

subject to  

v(0) = 1, v(1) = e-2, vʹ(0) – v(0)=-3, 

vʹ(1) - v(1) = -3e-2, v'' (0) = 4.     

The exact solution for the above problem is v = e-2t. 

By using quasilinearization technique [15], the nonlinear 

boundary value problem (42) is converted into a sequence of 

linear boundary value problems as 

( )

( ) ( ) ( )

( ) ( )

( )

(5) 2 2

( 1) ( 1) ( ) ( 1)

4 42

( ) ( 1) ( ) ( ) ( 1)

42 2 2 2

( ) ( ) ( ) ( )

42 2

( )

(

)

)

(

[2 ] 4[ ]

2 [4[ ] 8

[ ] 4 (1 ) [ ]

32 (4[ ] 8

]

n

n n n

n n

n

n

vt

n n n n

v v v

n n n n n

v vt

n n n n

v vt

n n

v ve v e

v e v e v e

e v v e v v e

e

v v

v

v e v e

v



  



 





 

 

  

  

     





   ( )

( )) ,n

nv

  (43) 

    n = 0,1,2,… 

subject to   
2

( 1) ( 1) ( 1) ( 1)

2

( 1) ( 1) ( 1)

(0) 1, (1) , (0) (0) 3,

(1) (1) 3 , (0) 4.

n n n n

n n n

v v

v

v

e v

e v

v



   



  

    

   
 

Here v(n+1) is the (n+1)th approximation for v. The domain 

[0, 1] is divided into 10 equal subintervals and the proposed 

method is applied to the sequence of linear problems (43). 

The obtained numerical results for this problem are presented 

in Table 6. 

Table 6: Numerical results for Example 6 

t Absolute error by 

proposed method 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.966953E-06 

1.072884E-05 

2.568960E-05 

4.595518E-05 

6.499887E-05 

7.620454E-05 

7.419288E-05 

5.659461E-05 

2.484024E-05 

 

Example 7:  Consider the following nonlinear boundary value 

problem 

(5) (4) 2 2 2 1, 0 1ttv vv e e t                 (44)       
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subject to       

(0) 1, (1) , (0) 1, (1) , (0) 1.v vv vv e e      

The exact solution for the above problem is .tv e  

By using quasilinearization technique [15], the nonlinear 

boundary value problem (44) is converted into a sequence of 

linear boundary value problems as 

(5) (4) 2

( 1) ( 1) ( ) ( 1)

2 2

( )

2

2 1, 0,1,2,...

t

n n n n

t

n

t

v v v

v

v e

e e n



  



 

   
            (45)  

subject to 

    
( 1) ( 1) ( 1)

( 1) ( 1)

(0) 1, (1) , (0) 1,

(1) , (0) 1.

n n n

n n

v e v

v

v

e v

  

 

  

  
 

Here ( 1)nv   is the thn )1(   approximation for v. The 

domain [0, 1] is divided into 10 equal subintervals and the 

proposed method is applied to the sequence of linear problems 

(45). The obtained numerical results for this problem are 

presented in Table 7.  

Table 7: Numerical results for Example 7 

t Absolute error by 

proposed method 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.072884E-06 

3.814697E-06 

3.814697E-06 

7.748604E-06 

1.323223E-05 

1.680851E-05 

1.430511E-05 

8.821487E-06 

4.053116E-06 

6. CONCLUSIONS 
In this paper, we have solved a general fifth order two point 

boundary value problem with two different cases of boundary 

conditions by the proposed method with quartic B-splines as 

basis functions and quintic B-splines as weight functions. The 

quartic B-splines and quintic B-splines are redefined into new 

sets of functions which contain the equal number of functions. 

To test the accuracy and efficiency of the developed method, 

it has been tested on five linear and two nonlinear fifth order 

boundary value problems.  It is found that the obtained results 

are giving a little error. The strength of the developed method 

lies in the easiness of its application, accuracy and efficiency. 
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