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ABSTRACT 

Dynamic Neural networks have been verified as identifiers 

due to its capability for manipulating processes in parallel and 

enduring noisy sorts of the input signals. They make them 

outstanding contenders for system identification applications. 

This paper presents a method for a black box system 

identification based on Elman neural network (ENN) for 

thermal process system to generate a prototype for the 

dynamical system of  the thermal process without any past 

information about the system dynamics. This identification 

approach is compared to its counterpart conventional 

feedforward neural network (CFFNN) based system 

identification. The comparative simulations show that the 

ERNN gives an excellent results and outperforms the CFFNN 

in terms of accuracy with little degradation in the speed of 

convergence which make this neural network a motivating 

candidate for adaptive and gain scheduling controllers. 
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Keywords 
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1. INTRODUCTION 
 The primary objective of system identification is to set up a 

sufficient dynamical model for the system with the end goal 

that the parameters, which give the best fit between the 

computed the model-produced values and input–output 

information, are estimated, the model parameters and 

structure might be identified [1]. It is the first step in the 

indirect neural control design. In this case, the controller itself 

may not be a neural network, but it is derived from a plant that 

is modeled by a neural network.  The idea is that for the 

identification process to produce a model of the dynamical 

system without any prior knowledge about the system’s 

dynamics.  This is referred to as black box or nonparametric 

system identification [2].  It is advantageous when the 

engineer is provided with the system’s impulse or step 

response.  

Thermal processes are those systems that include the 

exchange of heat from the individual body to another. When 

the temperatures of the body and its surroundings are not the 

same, heat transfer will begin, starting from the body with 

higher temperature toward the body of the lower temperature 

one, complying with the energy conservation law. Instances of 

temperature systems are refrigerators, radiators, ventilation 

systems, to mention just a few. [3]. 

 Artificial Neural Networks (ANNs) represent one of the most 

successful identification techniques used to model nonlinear 

dynamical systems. This is due to their ability to learn by 

examples associated with inherent robustness and nonlinear 

characteristics [4]. The ANN is a profoundly interconnected 

system of a huge number of managing units named neurons in 

a structure stimulated by the brain. An NN can be massively 

parallel and therefore is said to exhibit parallel distributing 

processing. There has been a huge writing on NNs in the most 

recent decades, whose start was maybe set apart by the main 

IEEE Worldwide Conference on Neural Systems in 1987. It 

has been perceived that NN presents various possible 

advantages for applications in the field of designing control 

systems, especially to model nonlinear processes. Some 

attractive characteristics of NN are its capability for “learning 

via examples.” They don’t need an earlier information. This 

features enabled NN to approximate well any nonlinear 

continuous functions [5]. But feedforward neural networks 

models suffer from slow convergence, local minimum, 

overfitting, have high computational cost and need a large 

number of iterations for its training due to the availability of 

hidden layer [6].  In black box system identification, however, 

the really important task is to build models for dynamic 

systems. In dynamic systems, the output at a given time 

instant depends not only on its current inputs but the previous 

behavior of the system. Dynamic systems are systems with 

memory. There are several ways to form dynamical NNs 

based on static neurons, nevertheless in all ways storage 

elements and/or apply feedback will be used. Both methods 

can produce several different dynamic NN architectures [7]. It 

is well known that the recurrent neural networks (RNNs) 

usually provide a smaller architecture (the exogenous noise 

signals have little influence on these kinds of networks) than 

most of the non-recursive NNs like multilayer perceptron, 

Radial basis function neural networks (RBFNN). Also, their 

feedback properties (they have dynamic memories) make 

them dynamic and more efficient to represent nonlinear 

systems precisely which are essential for nonlinear forecasting 

and time-series estimation. RNNs have correctly modeled 

many of the Autoregressive Moving Average (ARMA) 

processes for nonlinear dynamical system identification [6]. 

The first step in solving system identification problem is to 

select an appropriate class of model structure. The models can 

be characterized in many different ways, such as parametric 

(e.g. state space models) and nonparametric models (e.g. 

impulse response) [8]. 

There has been a lot of research done in the field of system 

identification using artificial neural networks. In [1, 6, 9] 

swarm optimizations algorithms like PSO, Differential 

evolution and Electromagnetism-like respectively have been 
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considered in the system identification of the thermal process 

and time series prediction. While a new class of nonlinear 

fractional models based on the Volterra series is proposed for 

modeling such nonlinear diffusive phenomena in [10]. A 

sparse Bayesian and its associated algorithm have been 

proposed in [11] to identify the system nonlinear functional 

forms and their associated parameters from a limited number 

of time-series data points. For this, Pan W. et al. cast this 

identification problem as a sparse linear regression problem 

and took a Bayesian viewpoint to solve it. The works in [8, 

12] have made use of spline techniques for the design of 

adaptive filters and used for linear and nonlinear system 

identification. Parametric and nonparametric methods using 

neural feedforward networks have been adopted for the 

system identification of an experimental turbojet engine in 

[13].  A parameter identification method is proposed in [14], 

which makes use of limited measurement information to 

estimate the parameters of a photovoltaic array model and a 

sequential quadratic programming method for the problem is 

introduced. NARX model together with Kalman filter 

extended Kalman filter, and unscented Kalman filter has been 

exploited in [15] for identification and estimation of 

temperature in nitration process. The researchers in [16] 

developed a fully automated recurrent neural network 

(FARNN) that is capable of self-structuring its network in a 

minimal representation of satisfactory performance for 

unknown dynamic system identification and control. 

Recurrent neural networks (RNN) have been utilized in 

system identification for both linear and nonlinear dynamical 

systems [17, 18]. A particular type of RNN is the Elman 

recurrent neural networks(ERNN) has been considered in 

system identification of highly nonlinear dynamical systems, 

like Twin rotor system [5] and motor rotor resistance [19]. 

Identification and control of time-delay systems using wavelet 

neural networks have been achieved in [20]. Finally, [21] 

presents a comparison study of four recurrent neural networks 

tuned with a genetic algorithm. 

This paper tries to present a method for system identification 

using Elman neural networks and the training algorithm for 

this type of neural networks. Also, the obtained results of the 

identification for thermal process systems using ERNN has 

been discussed. The data employed in the identification 

process are collected from the thermal process by firstly 

linearizing the mathematical model and obtaining the 

linearized state-space model. Then, the linearized state-space 

model is converted into constant coefficient difference 

equation. The validity of the proposed method for system 

identification using ERNN model is then verified by 

comparing it to conventional Feedforward Neural Networks 

(CFFNN) based system identification.  

The rest of the paper is classified as follows: Section II 

introduces a brief survey on recurrent neural networks with 

emphasis on Elman type, the training algorithm is also 

discussed. The mathematical model of the thermal process is 

explained in section III. The simulations results with 

discussions are presented in Section IV. Finally, the 

conclusions are given in section V. 

2. SYSTEM IDENTIFICATION DESIGN 
For processes for which experimental input–output data are 

available, system identification techniques have been shown 

to be quite effective in deriving a good dynamic 

representation for the system. The objective in nonparametric 

identification is to acquire an i/p-o/p interpretation for which 

the dynamics are earlier known to be time invariant and. The 

strategy is known as nonparametric since it does not include a 

parameter vector to be used in searching for the best dynamic 

model [22]. The nonparametric, time-domain method is useful 

when the designer has access to the step or impulse response 

of the system. 

The following figure (Fig. 1) illustrates the general issue of 

the dynamic system identification. The basic principle of the 

identification is to identify the coefficients of the model as it 

varies over time so that the error between the model o/p and 

the plant o/p has to be minimized [23]. 

 

Fig 1: System Identification model. 

The principle is for the system identification to deliver a 

model  of the dynamic system without any earlier information 

about the dynamics of the system, this is called black-box 

modeling [23]. In black box modeling the model structure 

does not reflect the structure of the physical system, thus the 

elements of the model structure have no physical meaning. 

Instead, such model structure has to be chosen that is flexible 

enough to represent a large class of systems [7].  

The most common measure of discrepancy is the  squared 

error between the model outputs and the observations, which 

is often called empirical risk [7]: 

𝑀𝑆𝐸 =
1

2
 (𝑌 𝑖 − 𝑦(𝑖) )2𝑁

𝑖=1                      (1) 

System identification based on black box modeling is similar 

to the general identification case,  except that there is no other 

knowledge about the system than the observations [7]: 

𝑍𝑃 = {𝑥𝑖 , 𝑌𝑖}𝑖=1
𝑃  

A black box model will give a relationship between the 

observed inputs and outputs. There are many possible 

techniques which can be applied successfully in system 

identification (nonlinear function approximation). For 

example, one can form polynomial functions, when the 

mapping of the system is approximated by a polynomial, or 

we complex exponentials can be used, which means, that the 

mapping of the system is approximated by a Fourier series. 

But Taylor expansion, wavelets or Volterra series can also be 

applied. Among the black box structures, dynamic neural 

networks play an important role [7].   

3. SYSTEM IDENTIFICATION USING 

ELMAN NEURAL NETWORKS 
There two kinds of structures of the neural-identification, i.e., 

serial-parallel and parallel Static neural systems are regularly 

utilized in serial-parallel structure, and their convergence and 

stability are effectively ensured [24].  Nonetheless, for the 

serial-parallel identification arrangement, the system engineer 

should know precisely what number of past i/p and o/p data of 

the system that must be provided in the neural system through 

a tapped delay line. This is unrealistic under specific 

conditions when no earlier data of the system to be identified 

can be acquired [25]. In this section,  a dynamic system 

identification of parallel structure will be setup which depends 

on the recurrent neural networks RNN. The identification 

configuration is illustrated in Fig 2. 
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Fig 2: Parallel scheme neural network identification [22]. 

The architectures of the  RNN spans the range from partially 

connected neural networks to fully interconnected ones, 

including multilayer perceptron neural networks with separate 

input and output layers. There are no distinctive layers of 

nodes for the inputs of Fully connected RNN, and every node 

has a contribution from every single node in the networks. 

There might be feedback from an individual node to itself. 

The nodes in the partially RNNs can be classified as a 

feedforward nodes, where they are part of the feedforward 

network structure, and context nodes which serve as a 

sequential context and receive feedback from other nodes. 

Weights that represents the connection between the context 

units and hidden layer node update in the same procedure of 

the o/p or i/p layer nodes, e.g., backpropagation training 

algorithm. The context layer nodes units accept a delayed 

version by one instant of time from the hidden layer nodes. 

Elman Recurrent Neural Network (ERNN) is  One of the 

well-known partially RNNs  [26]. In this kind of networks, the 

feedback starts from the hidden layer towards the context 

layer. This approach gives careful consideration to the 

succession of input information. Fig. 3 delineates the major  

Elman network which consists of three layers of nodes. 

 

Fig 3: Elman Neural Network structure.  

Two different groups of neurons at the starting layer of ERNN 

differentiate it from other kinds of neural networks.  These 

groups are the context nodes (internal input neurons) group 

and the exogenous i/p nodes group. The context nodes are 

otherwise called as memory nodes due to delay element in this 

section of the i/p layer which enables the context nodes to 

store the previous o/p of the hidden layer nodes. When the 

backpropagation (BP) training algorithm is used to train the 

ERNN weights, the values of the connection weights between 

the context units and the hidden layers units are set constant, 

and typically their values are fixed at 1.0 [22, 23, 25]. 

Supposedly an ERNN is capable of demonstrating any 

dynamic system of nth order [26]. For an arbitrary unit in a 

general recurrent network, the activation at a given time k is 

given as [22]: 

𝑜𝑖 𝑘 = 𝑓 𝑡𝑜𝑡𝑖 𝑘 − 1  = 𝑓  𝑤𝑖𝑗 𝑜𝑖 𝑘 − 1 + 𝑥𝑖(𝑘 − 1)𝑗      

               (2) 

In particular, oi(k) is the current output signal of node i, 

𝑡𝑜𝑡𝑖 𝑘 − 1  is the net signal input to node i at time “k - 1”, 

𝑜𝑖 𝑘 − 1  is the output signal of the node j at previous time 

sample, and wij is the connection weight between node i and 

node j. The computation of 𝑜𝑖  requires the knowledge of the 

activations of all units in the posterior set, which consists of 

nodes whose output was relayed to unit i. When computing 

errors, the errors of all units in the anterior set of nodes will 

have to be determined beforehand. The capability of storing 

and processing context information or input history allows 

them to solve problems that cannot be solved by feedforward 

networks. However, this comes at the expense of more 

complex learning and often longer training time [22]. This is 

discussed in the next section. 

The estimated future value of the output 𝑦𝑃(𝑘 + 1) in the 

parallel model is expressed as: 

𝑦𝑃(𝑘 + 1) = 𝑁𝑁𝐼(𝜓, ∅ 𝑘 )                              (3) 

where NNI stands for mapping provided by the neural 

network identifier,  𝜓 is the parameter vector which consists 

of all weights of the dynamic neural network, and ∅ 𝑘  

signifies the  regression vector. The regression vector can be 

formed as follows [22]: 

∅ 𝑘 = [𝑦𝑃 𝑘 , … , 𝑦𝑃 𝑘 − 𝑛 + 1 ; 𝑥 𝑘 , … , 𝑥 𝑘 − 𝑚 + 1 ]  

               (4) 

This model is illustrated in Figure 2. and uses the delayed 

recursions of the established output as some of its input. The 

corresponding structure is the Network Output Error (NOE) 

model. In an NOE model, there is feedback from model 

output to its input, so this is a recurrent network. Sometimes 

NOE model is called as a parallel model [21]. Because of its 

recurrent architecture, severe instability problem may arise, 

which cannot be easily handled. 

4.  TRAINING ELMAN RECURRENT 

NEURAL NETWORKS 
For dynamic training networks, some additional challenges 

must be solved. Dynamic networks are sequential networks, 

which means that they implement a nonlinear mapping 

between input and output data sequences [7]. So the training 

samples of input–output data pairs of static networks are 

replaced by input–output data sequences and the goal of the 

training is to reduce a squared error derived from the elements 

of the corresponding error sequences. If ε (k) = 𝑌 𝑖 − 𝑦(𝑖)  is 

the output error of a dynamic network at discrete time step k, 

the squared total error can be defined as [7, 25]: 

Y 

y 

y 

x 

x 

x 
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      𝐸𝑐𝑢𝑚 =
1

2
  (𝑌𝑖 𝑘 − 𝑦𝑖 𝑘 )2𝑁

𝑖=1
𝐾
𝑘=1                             (5) 

Where K is the length of the training sequence, N is the size of 

the o/p nodes, Y(i) is the plant output at time k, y(i) is the ENN 

output of the at time k. The following table describes the 

symbols used in this section. 

Table 1. Notations used in deriving the training formulas 

of the Elman Recurrent Neural Networks (ERNN)  

Symbol Description 

𝑤𝑖,𝑗
1  

The weight that links node i in the i/p layer to 

node j in the hidden layer 

𝑤𝑖,𝑗
2  

The weight that links node i in the hidden layer 

to node j in the o/p layer 

𝑤𝑖,𝑗
3  

The weight that links node i in the context nodes 

group  layer to node j in the hidden layer 

tothi 
the sum of all signals reaching at hidden layer 

node i   

outhi the o/p of  the hidden layer node i  

totci the sum of all signals reaching context unit i 

outci the o/p of the context node i  

f(x) 
Activation function of the nodes in the hidden 

layer with log-sigmoid c/c, i.e. 𝑓 𝑥 =
1

1+exp ⁡(−𝑥)
 

𝑓(𝑥 ) 
The derivative of the activation function 𝑓 𝑥  

and given as  𝑓(𝑥 ) = 𝑓 𝑥 (1 −  𝑓 𝑥 ) 

M The size of the i/p to Elman neural networks 

N Sixe of the o/p layer of the Elman neural network 

L Number  of the hidden layer node  of ERNN 

Z-1 Size one delay element 

  

It is necessary to mention that a linear activation functions 

have been used in the o/p layer nodes of the ERNN, which 

sums the signals fed to it. The i/p and o/p nodes interact with 

the outside environment, whereas the hidden layer and context 

nodes do not.  The context  nodes are used only to memorize 

the previous activations of the hidden nodes and can be 

considered as one step unit delay element (Z-1) [22, 25]. The 

weights of the  connection between the hidden layer nodes 

and context nodes are fixed, that is why ENN are sometimes 

called partially recurrent neural networks [27].  

Looking back at Fig. 3, one can write the following equations 

[25, 27], 

𝑜𝑢𝑡𝑐𝑖 𝑘 = 𝑡𝑜𝑡𝑐𝑖(𝑘)                                                    (6) 

𝑡𝑜𝑡𝑐𝑖 𝑘 = 𝑜𝑢𝑡𝑕𝑖(𝑘 − 1)                             (7) 

𝑡𝑜𝑡𝑕𝑗  𝑘 =  𝑤𝑖,𝑗
1 (𝑘 − 1)𝑀

𝑖=1  𝑥𝑖 𝑘 +

                             𝑤𝑖,𝑗
3 (𝑘 − 1)𝑜𝑢𝑡𝑐𝑖 𝑘 

𝐿
𝑖=1     (8) 

    𝑜𝑢𝑡𝑕𝑖 𝑘 = 𝑓(𝑡𝑜𝑡𝑕𝑖 𝑘 )                                (9) 

𝑦𝑗  𝑘 =  𝑤𝑖,𝑗
2 (𝑘 − 1)𝐿

𝑖=1  𝑜𝑢𝑡𝑕𝑖 𝑘               (10) 

Note that the o/p of the context node i at the kth iteration is the 

one-step delayed o/p of the corresponding  hidden node i.  It is 

the existence  of the context nodes and the weights connecting 

them with the hidden nodes that makes the ERNN  to be 

distinguished from other kinds of  feedforward neural 

networks [25]. 

Let 𝑌𝑖(𝑘)  be the o/p of the plant which is the desired o/p of 

the ERNN at the kth iteration. To update 𝑤𝑖,𝑗
1 , 𝑤𝑖,𝑗

2 , and 𝑤𝑖,𝑗
3  at 

every iteration step, the error 𝐸𝑐𝑢𝑚  given by (5) must be 

minimized, that is 

𝑤𝑖,𝑗
𝑆  𝑘 = 𝑤𝑖,𝑗

𝑆  𝑘 − 1 + 𝜇 ∆𝑤𝑖,𝑗
𝑆  𝑘 , 𝑆 = 1, 2, 3  (11) 

Where  𝜇 is the learning rate, ∆𝑤𝑖,𝑗
𝑆  𝑘  is given as 

      ∆𝑤𝑖,𝑗
𝑆  𝑘 = −

𝜕 𝐸𝑐𝑢𝑚  𝑘 

𝜕𝑤𝑖,𝑗
𝑆  𝑘−1 

 , 𝑆 = 1, 2, 3              (12) 

To update 𝑤𝑖,𝑗
2  at the kth iteration,  

𝜕 𝐸𝑐𝑢𝑚  𝑘 

𝜕𝑤𝑖,𝑗
2  𝑘−1 

=
𝜕 𝐸𝑐𝑢𝑚  𝑘 

𝜕𝑦𝑖 𝑘 
∙

𝜕𝑦𝑖 𝑘 

𝜕𝑡𝑜𝑡 𝑕𝑖 𝑘 
∙

𝜕𝑡𝑜𝑡 𝑕𝑖 𝑘 

𝜕𝑤𝑖,𝑗
2  𝑘−1 

       

    = − 𝑌𝑖 𝑘 − 𝑦𝑖 𝑘  ∗ 1 ∗ 𝑜𝑢𝑡𝑕𝑖 𝑘           (13) 

The update formula for 𝑤𝑖,𝑗
1  can be derived as follows, 

𝜕 𝐸𝑐𝑢𝑚  𝑘 

𝜕𝑤𝑖,𝑗
1  𝑘−1 

=
𝜕 𝐸𝑐𝑢𝑚  𝑘 

𝜕𝑦𝑖 𝑘 
∙

𝜕𝑦𝑖 𝑘 

𝜕𝑜𝑢𝑡 𝑕𝑖 𝑘 
∙

𝑜𝑢𝑡 𝑕𝑖 𝑘 

𝜕𝑡𝑜𝑡 𝑕𝑖 𝑘 
∙

𝜕𝑡𝑜𝑡 𝑕𝑖 𝑘 

𝜕𝑤𝑖,𝑗
1  𝑘−1 

          (14) 

=  −  𝑌𝑖 𝑘 − 𝑦𝑖 𝑘  
𝑁
𝑖=1 . 𝑤𝑖,𝑗

2  𝑘 − 1  . 𝑓( 𝑡𝑜𝑡𝑕𝑖 𝑘 ). 𝑥𝑖 𝑘 

                                 (15) 

Using the derivative chain of rules to derive the update 

formula for 𝑤𝑖,𝑗
3 , one gets  

𝜕 𝐸𝑐𝑢𝑚  𝑘 

𝜕𝑤𝑖,𝑗
3  𝑘−1 

=
𝜕 𝐸𝑐𝑢𝑚  𝑘 

𝜕𝑜𝑢𝑡 𝑕𝑗  𝑘 
∙
𝜕𝑜𝑢𝑡 𝑕𝑗  𝑘 

𝜕𝑤𝑖,𝑗
3  𝑘−1 

                          (16) 

At the kth iteration,  

𝜕 𝐸𝑐𝑢𝑚  𝑘 

𝜕𝑜𝑢𝑡𝑕𝑗  𝑘 
=

𝜕 𝐸𝑐𝑢𝑚  𝑘 

𝜕𝑦𝑖 𝑘 
∙

𝜕𝑦𝑖 𝑘 

𝜕𝑜𝑢𝑡𝑕𝑗  𝑘 
 

          = −  𝑌𝑖 𝑘 − 𝑦𝑖 𝑘  
𝑁
𝑖=1 . 𝑤𝑖,𝑗

2  𝑘 − 1  (17) 

𝜕𝑜𝑢𝑡𝑕𝑖 𝑘 

𝜕𝑤𝑖,𝑗
3  𝑘 − 1 

=
𝜕𝑜𝑢𝑡𝑕𝑗  𝑘 

𝜕𝑡𝑜𝑡𝑕𝑗  𝑘 
∙

𝜕𝑡𝑜𝑡𝑕𝑗  𝑘 

𝜕𝑤𝑖,𝑗
3  𝑘 − 1 

 

                 = 𝑓( 𝑡𝑜𝑡𝑕𝑗  𝑘 ). 𝑜𝑢𝑡𝑕𝑖(𝑘 − 1)            (18) 

The update formulas for the three sets of weights 𝑤𝑖,𝑗
1 , 𝑤𝑖,𝑗

2 , 

and 𝑤𝑖,𝑗
3  are given in tables II and III. 

Table 2. Online training for ERNN 

Online training 

𝑤𝑖 ,𝑗
𝑆  𝑘 = 𝑤𝑖 ,𝑗

𝑆  𝑘 − 1 + 𝜇 ∆𝑤𝑖,𝑗
𝑆  𝑘 , 𝑆 = 1, 2, 3 

∆𝑤𝑖,𝑗
1  𝑘 = 𝑜𝑢𝑡𝑕𝑖 𝑘 (1 − 𝑜𝑢𝑡𝑕𝑖 𝑘 )𝑥𝑖 𝑘  (𝑌𝑖 𝑘 − 𝑦𝑖 𝑘 )𝑤𝑖,𝑗

2  𝑘 − 1 

𝑁

𝑖=1

 

s∆𝑤𝑖,𝑗
2  𝑘 =  𝑌𝑖 𝑘 − 𝑦𝑖 𝑘    𝑜𝑢𝑡𝑕𝑖 𝑘  

∆𝑤𝑖,𝑗
3  𝑘 = 𝑓( 𝑡𝑜𝑡𝑕𝑗  𝑘 ). 𝑜𝑢𝑡𝑕𝑖(𝑘 − 1)  (𝑌𝑖 𝑘 − 𝑦𝑖 𝑘 )𝑤𝑖,𝑗

2  𝑘 − 1 

𝑁

𝑖=1
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Table 3. Offline training for ERNN 

Offline training 

𝑤𝑖,𝑗
𝑆  𝑘 = 𝑤𝑖,𝑗

𝑆  𝑘 − 1 + 𝜇 ∆𝑤𝑖,𝑗
𝑆  𝑘 , 𝑆 = 1, 2, 3 

∆𝑤𝑖,𝑗
1 =  𝑜𝑢𝑡𝑕𝑖 𝑘 (1 − 𝑜𝑢𝑡𝑕𝑖 𝑘 )𝑥𝑖 𝑘  (𝑌𝑖 𝑘 − 𝑦𝑖 𝑘 )𝑤𝑖,𝑗

2  𝑘 − 1 

𝑁

𝑖=1

𝐾

𝑘=1

 

∆𝑤𝑖,𝑗
2 =   𝑌𝑖 𝑘 − 𝑦𝑖 𝑘   𝑜𝑢𝑡𝑕𝑖 𝑘 

𝐾

𝑘=1

 

∆𝑤𝑖,𝑗
3 =  𝑓( 𝑡𝑜𝑡𝑕𝑗  𝑘 ). 𝑜𝑢𝑡𝑕𝑖(𝑘 − 1)  (𝑌𝑖 𝑘 − 𝑦𝑖 𝑘 )𝑤𝑖,𝑗

2  𝑘 − 1 

𝑁

𝑖=1

𝐾

𝑘=1

 

It is worthy to mentions that  𝑜𝑢𝑡𝑕𝑖(0)  (i = 1, 2,…., L) are the 

initial states of the ERNN. They should be specified by the 

designer of the neural network or may be  shortly  presume 

𝑜𝑢𝑡𝑕𝑖 0 = 0   (i = 1, 2,…., L). 

5. THERMAL PROCESS MODELING 
Thermal processes are those that incorporate the exchange of 

heat from one body to its surrounding or another body.  The 

energy conservation, heat resistance and capacitance, and heat 

capacitance which together shape the premise of thermal 

process modeling will be presented. There are three different 

means heat can transfer from one material to another one: 

conduction, convection, and radiation. The first two terms are 

considered in this paper since radiation heat exchange is 

significant only if the heat of the emitting body is very high in 

comparison with the receiving body [3, 28]. 

For conduction or convection heat transfer, 

 𝑞 = 𝑄 Δ𝑇                 (19) 

Where q is the heat flow rate, kcal/sec, Δ𝑇 temperature 

difference, Co, 𝑄 is a coefficient, kcal/(sec Co). the thermal 

resistance  R for heat transfer between two substances may be 

defined as follows, 

𝑅 =
𝑐𝑕𝑎𝑛𝑔𝑒  𝑖𝑛   𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ,   𝐶𝑜

𝑐𝑕𝑎𝑛𝑔𝑒  𝑖𝑛  𝑕𝑒𝑎𝑡  𝑓𝑙𝑜𝑤  𝑟𝑎𝑡𝑒 ,𝑘𝑐𝑎𝑙 /𝑠𝑒𝑐
=

𝑑(Δ𝑇)

𝑑𝑞
=

1

𝑄
        (20) 

For either convection or conduction, the thermal resistance is 

of constant value since the thermal coefficient Q is constant. 

On the other hand, the thermal capacitance is defined as, 

𝐶 =
𝑐𝑕𝑎𝑛𝑔𝑒  𝑖𝑛   𝑕𝑒𝑎𝑡  𝑠𝑡𝑜𝑟𝑒𝑑 ,   𝑘𝑐𝑎𝑙

𝑐𝑕𝑎𝑛𝑔𝑒  𝑖𝑛  𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  
= 𝑚𝑐                    (21) 

Where m is the mass of the substance considered, kg and c are 

the specific heat of a substance, kcal/(kg Co). 

Now consider a room with the heater as shown in Fig. 4,  

 

Fig 4: A room with heater [ 3]. 

 The room has a heater with heat flow rate input of qo. The 

thermal capacities of the heater and the room are C1 and C2, 

respectively. The thermal resistances of the heater-air 

interface and the room wall-ambient air interface are R1 and 

R2, respectively. The temperatures of the heater and the room 

air are T1 and T2. The temperature outside the room is To, 

which is assumed to be constant. Employing energy 

conservation  law  to the heating system [3, 28] 

𝑑𝑈

𝑑𝑡
= 𝑞𝑕𝑖 − 𝑞𝑕𝑜                        (22) 

Where U  is the internal thermal energy and can be expressed 

as, 

𝑑𝑈

𝑑𝑡
= 𝐶1

𝑑𝑇1

𝑑𝑡
 

𝑞𝑕𝑖 = 𝑞𝑜  

𝑞𝑕𝑜 =
𝑇1 − 𝑇2

𝑅1
 

Substituting these expressions in (22) gives 

 𝐶1
𝑑𝑇1

𝑑𝑡
+

1

𝑅1
𝑇1 −

1

𝑅1
𝑇2 = 𝑞𝑜                                 (23) 

Same  result can be obtained to the room air [3] 

𝐶2
𝑑𝑇2

𝑑𝑡
−

1

𝑅1
𝑇1 +  

1

𝑅1
+

1

𝑅2
 𝑇2 =

1

𝑅2
𝑇𝑜                  (24) 

The above set of differential equations can be rewritten in 

state-space of second-order as follows: 

 
𝐶1 0
0 𝐶2

  

𝑑𝑇1

𝑑𝑡
𝑑𝑇2

𝑑𝑡

 +  

1

𝑅1

1

𝑅1

−
1

𝑅1
 

1

𝑅1
+

1

𝑅2
 
 

 
 
 
 
 
𝑇1

𝑇2
 
 
 
 
 

=

 
 
 
 
 
 
𝑞𝑜

1

𝑅2
𝑇𝑜

 
 
 
 
 
 

            (25) 

Let 

𝑥 =  
𝑥1

𝑥2
 =  

𝑇1

𝑇2
  , 𝑢 =  𝑞𝑜   ,  𝑦 =  𝑇1  

Then, after little simplification to (25), one gets 

 
𝑥 1
𝑥 2

 =  
−

1

𝑅1𝐶1

1

𝑅1𝐶1

1

𝑅1𝐶2
− 

1

𝑅1𝐶1
+

1

𝑅2𝐶2
 
  

𝑥1

𝑥2
 +  

1

𝐶1
 𝑢        

                  (26) 

    𝑦 =  1 0  
𝑥1

𝑥2
 +  0  𝑢 

Which is a SISO linear state-space model for the room heater 

depicted in Fig.4. It is worthy to remember that the state 

vector 𝑥1 and 𝑥2 should not be confused with input of the 

ENN 𝑥𝑖 𝑘 . 

6. SIMULATIONS RESULTS 
 A thermal process linear system of Fig. 4 described by the 

(25)  is considered for the purpose of the simulations. The 

values of thermal capacities are 𝐶1 = 𝐶2 = 1/6, while thermal 

resistances are 𝑅1 = 𝑅2 = 2.5. Based on the above, the 

transfer fuction of the linear system is  

𝑌(𝑠)

𝑋(𝑠)
=

14.4

𝑠2 + 7.2𝑠 + 5.76
 

Discretizing the above transfer function with zero-order 

holder and sampling interval Ts  of   0.1, one gets the 

discretized model, 



International Journal of Computer Applications (0975 – 8887) 

Volume 161 – No 11, March 2017 

43 

𝑌(𝑧)

𝑋(𝑧)
=

0.05717 𝑍 +  0.04499

𝑍2  −  1.446 𝑍 +  0.4868
 

Upon rearranging the two sides of the above equation, the 

difference equation that governs the thermal process system is 

given as  

       Y(k) = 1.446Y(k-1)-0.4868 Y(k-2)+0.05717x(k-1)+0.04499 x(k-2) 

Which is of the form 

      Y (k) = f {Y (k), Y (k − 1), Y (k-2) ,x (k-1), x (k-2)} 

Our aim is to train the ERNN with a random i/p x(k) in the 

range of [-2,+2] so that the o/p of the ENN is similar to that of 

the dynamic thermal process system for the same i/p. 

Selecting a suitable length of 300 for the random i/p vector 

within the range of [-2,+2] and assuming zero initial 

conditions for the i/p and o/p, i.e. Y(-1) = Y(-2) = 0 and x(-1) = 

x(-2) = 0, one can train ENN with the following ENN data: a 

linear activation  functions at the i/p and o/p layers of the 

ERNN, log-sigmoid activation function in the hidden layer 

with linear ones has been used in the i/p and o/p layers, 

whereas the linear activation function acts as a buffers and as 

a summer at the o/p layers,  weights updating algorithm 

(trainlm) is Levenberg-Marquardt optimization, random 

initialization for all of the weights, maximum number of 

iterations is set to 700, performance goal = 0.0005, number of 

hidden layer neurons is taken as 25, 35. e The ERNN have 

been trained hoping that it will produce the requested 

response when the i/p data is imposed on it. The random i/p 

vector is applied to both the plant dynamics of the thermal 

process and the trained ERNN and the results are drawn in 

Fig. 5. The ERNN outperform the traditional CFFNN 

regarding the smoothness and the accuracy of the 

identification process. In Fig.6, the o/ps of the trained ENN, 

CFFNN, and thermal plant process are depicted with 25 

neurons in the hidden layer for ERNN and CFFNN.  

By generating a valid and deterministic i/p data to test the 

trained ERNN, the following mathematical nonlinear 

functions has been programmed and simulated in MATLAB 

to produce the realistic input vector necessary for testing the 

trained ERNN and CFFNN. 

1. 𝑓 𝑘 =  
cos⁡(0.02𝜋𝑘) 0 ≤ 𝑘 ≤ 150
sin⁡(0.1𝜋𝑘) 150 < 𝑘 ≤ 300

  

2. 𝑔 𝑘 = sin 0.1𝜋𝑘 ∗ exp −0.01𝑘 ,    0 < 𝑘 ≤ 300   

3. 𝑕 𝑘 =  
2 0 ≤ 𝑘 ≤ 150
−2 150 < 𝑘 ≤ 300

  

 

Fig 5: Trained ERNN  and Thermal Model o/ps for the 

same random i/p vector with 35 neurons in the hidden 

layer of the ERNN, solid line (blue) is the plant o/p and 

dotted line (red) is the ERNN o/p. 

 

(a)        

 

(b)  

Fig 6: Trained ENN  and Thermal Model o/ps for the 

same random i/p vector with 25 neurons in the hidden 

layer for both ERNN and CFFNN, (a) solid line (blue) is 

the plant o/p and dotted line (red) is the ERNN o/p, (b) 

solid line (blue) is the plant o/p and dotted line (red) is the 

CFFNN o/p. 

 

 (a) 
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 (b) 

 

(c) 

Fig 7: Applying benchmark functions to the trained 

ERNN and thermal plant, solid line (blue) is the plant o/p 

and dotted line (red) is the ENN o/p, (a) plant and ENN 

o/ps for f(k), (b) plant and ENN o/ps for g(k), (c) plant and 

ENN o/ps for h(k). 

 

(a) 

 

 (b) 

 

(c) 

Fig 8: Applying benchmark functions to the trained 

conventional Feedforward Neural Networks (CFFNN) and 

thermal plant, solid line (blue) is the plant o/p and dotted 

line (red) is the FFNN o/p, (a) plant and FFNN o/ps for 

f(k), (b) plant and FFNN o/ps for g(k), (c) plant and FFNN 

o/ps for h(k). 

The results of applying the above benchmark functions for the 

trained ERNN and CFFNN are illustrated in Fig.7 and Fig. 8. 

As can be seen from these Figures, the ENN produces a 

smooth o/p, nearly coincident on the thermal plant o/p. The 

reason is that ERNN better remembers the previous states of 

the system due to the context layer which works as a short 

memory that stores the last states of the thermal plant 

dynamics. It is worthy to mention that there are no sharp 

changes in the o/p responses of the ERNN as compared the 

o/p response of the CFFNN in Fig.7. 

7. CONCLUSIONS 
In this paper, system identification method based on ERNN 

has been proposed for thermal process assuming no prior 

knowledge of system dynamics, and another identification 

method based on CFFNN for the same plant model has been 

obtained. A black-box model has been adopted for both neural 

networks models.  With three nonlinear test functions plus a 

random i/p vector used to check the correctness of the trained 

models, it can be verified that the identified model using 

ERNN responds more smoothly and accurately than CFFNN 

to these test functions even with some discontinuities in the 

i/p test functions. Through simulations and results 
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demonstrations, ERNN produces better results due to the 

context layer which acts as memory stage to remember the 

last states of the system dynamics. The proposed method can 

be applied to different applications as well. The future work 

for this research paper is to handle the nonlinearity in the 

modeling of the thermal process system and applying a new 

trend of neural networks called convolutional neural network 

CNN) is a type of feed-forward artificial neural network in 

which the connectivity pattern between its neurons is inspired 

by the organization of the animal visual cortex. 
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