
International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 2, March 2017

7

A New Improved Circular Skip List with Priority Search

Upinder Kaur
Research Scholar,
Dept. of Computer

Science and Applications, KUK.

Pushpa Rani Suri, PhD
Professor, Dept. of

Computer Science and
Applications, KUK.

ABSTRACT
Skip list is a data structure with an ordered sequence of

elements. It consists of layer of linked list. They consist of a

layered structure and all nodes are in the bottom layer. These

nodes are reduced to half towards upper layers and thus a

pyramid-like structure is formed, which facilitates search,

insertion and removal operations. A circular linked list is a

type of linked list in which the last node of the list points back

to the first node. In this paper we proposed a new data

structure improved circular skip list (ICSL). ICSL is created

with the help of circular linked list and skip list data

structures. In circular linked list, operations are performed on

a single round robin list. However, our new data structure

consists of circular link lists formed in layers which are linked

in a conical way with improved priority search feature. Time

complexity of search, insertion and deletion equals to O (log

N) in an N-element improved circular skip list data structure.

Improved circular skip list data structure is employed more

effectively (O(log N)) in circumstances where circular linked

lists (O(N)) are used with improved priority searching

technique.

Keywords
ICSL, Skip List

1. INTRODUCTION
Various disciplines in computer sciences benefit from data

structures directly or indirectly. Different data structures are

used as solutions to various problems. New data structures are

sometimes required due to the limitations such as processing,

time and hardware or inefficiency of current data structures.

Sometimes, a data structure is preferred over another one

because of its processing speed. New data structures emerged

because dynamic and static structures are required [1]. Taking

these factors into consideration, it is evident that new data

structures and algorithms will continue to emerge [2]. A

circular linked list is a type of linked list in which the last

node of the list points back to the first node. In single or

double linked list the last node contains a NULL pointer since

there is no next node, whereas in a circular linked list the

"next" pointer of the last node contains the address of the first

node (Figure 1). Therefore it is called a circular linked list. A

circular linked list has a "start" node, but no "end" node. In a

Circular Linked List all the nodes are linked in continuous

circle (Figure1).

 Figure 1. Circular Linked list structure

It can be both singly or doubly linked list. In a circular linked

list elements can be added to the back of the list and removed

from the front in constant time. Both types of circularly -

linked lists benefit from the ability to traverse the full list

beginning at any given node. This avoids the necessity of

storing first node and last node, but we need a special

representation for the empty list, such as a last node variable

which points to some node in the list or is null if it's empty.

This representation significantly simplifies adding and

removing nodes with a nonempty list, but empty lists are then

a special case. Circular linked lists are most useful for

describing naturally circular structures, and have the

advantage of being able to traverse the list starting at any

point. They also allow quick access to the first and last

records through a single pointer [3].

Figure2. Circular Linked List

2. SKIP LIST
Skip list data structure, which was introduced by Pugh [4,5,6]

is a data structure alternative to binary tree search structure.

Linked lists are used in skip list data structure and it is aimed

to facilitate searching, insertion and deletion through placing

elements in a pyramid-like order at different levels. In this

data structure, elements are placed at different levels

randomly. First, all nodes are placed at level 0 and, starting

from left row and skipping each 2ith node (i=0,..,MaxLevel

(15)), pointers representing each level are created towards the

top. The list at level 0 is the linked list at the bottom in skip

list data structure and encompasses all nodes. Each list from

bottom to the top is arranged as an index of the previous list

[1,7]. Search, insertion and delete algorithms of nodes in skip

list data structure is discussed in article written by Pugh [4,5].

In addition, several studies have been conducted so far on the

improvement and analysis of skip list data structure

algorithms. These studies are about level optimization in skip

list data structure [1], effects of P threshold values in creation

of random level and to the performance of skip list data

structure [2], a simple optimistic skip list algorithm [8],

analysis of an optimized search algorithm for skip lists [9],

skip lists and probabilistic analysis of algorithms [10],

deterministic skip lists [11], concurrent maintenance of skip

lists [5].

Various data structures and algorithms were also created apart

from skip list data structure such as skip graphs [12], tiara

(peer-to-peer network maintenance algorithm) [13] and

corona [14]. Time complexity is O(N) for search, insertion

and deletion processes when linked and ordered lists are used.

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 2, March 2017

8

On the other hand, the time complexity in which these

processes are performed is O(log N) in skip list data structure

[6]. In a search algorithm, a node is searched from upper

levels to lower levels. During insertion, first, the node to be

inserted is searched. If not found, new value is inserted to the

matching location starting from a random level and pointers

and lists are updated. The process is repeated for other levels

where a node is to be inserted. Search is performed from the

top level to lower levels for removal operations. The node is

deleted when found and pointers and lists are updated. The

process is repeated other levels where the node is available

[2]. A group of data consisting of {A,C,F,H,K,M,P,T,V,X,Z}

elements as a skip list is shown in Figure 3.

Figure 3. Standard Skip list

3. IMPROVED CIRCULAR SKIP

LIST(ICSL)
As described above, by using the circular linked list and skip

list data structures, a new data structure called Improved

Circular skip list (ICSL) was developed. Operations are

performed only on a single ordered list in circular linked list

(Figure 2). However, in our method, nodes are searched,

inserted and deleted on circular linked lists (Figure 4) which

are linked to each other in levels that are indexes of each

other.

Figure 4. Improved circular skip list

In this new conical data structure, the relationships are defined

as Circular linked list 0 = RLevel 0, Circular linked list 1 =

RLevel1, ... , Circular linked list (Ɩ)=RLevel (Ɩ) (Figure 4). In

ICSL data structure each ring is a sub-sequence of the

previous one, RLevel 0 RLevel 1...  RLevel Ɩ.

RLevel 0 at the bottom level in improved circular skip list

data structure and encompasses all elements. Each ring level

from bottom to the top is lined as an index of previous ring

called Rlevel. In addition, ICSL data structure is similar to

skip list data structure. In contrast to skip list data structure,

head and tail is not required together and only head is enough

in ISCL data structure. Our new data structure is created by

removing the tail from skip list data structure. In this way the

last element (tail) of circular linked list is linked in a way that

it points back to the first element (head) (Figure 4), and this

process is performed for entire levels.

When RLevel in ICSL data structure are created (RLevel 0,

RLevel 1,.., RLevel Ɩ), levels are created randomly. Let us say

that the number of ordered nodes in our ICSL data structure is

N. RLevel 0 consists of these entire N ordered nodes (Figure4

Rlevel 0). Because N ordered elements are included, search at

RLevel 0 level is performed in O(N) time complexity. Rlevel

1 is created if every other element of the list at RLevel 0 also

has an extra link to the element two ahead of it (Figure 4 –

RLevel 1). Since the maximum number of elements at RLevel

1 level equals , search is performed within O(N)

time complexity. RLevel 2 is created if every forth element of

the list at RLevel 0 also has an extra link to the element four

ahead of it (Figure 4 RLevel 2). Since the maximum number

of elements at Rlevel 2 level equals . , search is

performed within O(N) time complexity. When each 2ith

node (i=0,..,MaxLevel(15 or 31)) is linked to the following

2ith node via a pointer in this way, since the maximum

number of elements at RLevel i level equals , time

complexity to reach a node in a search equals O(log N) at

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 2, March 2017

9

maximum. Similar to skip list data structure searching,

insertion and deletion [4,6] can also be performed in our ICSL

data structure.

3.1. Searching in ICSL
In our ICSL data structure, as described in the previous

section, each 2ith (i=0,..,MaxLevel(15 or 31)) node is linked

to the following 2ith node via a pointer. Thus, a conical

structure is created, which allows reaching the required node

in a time complexity of O(log N) at maximum. Search is

initiated in the Rlevel at the top level and

continues towards Rlevel at lower levels. Steps to be followed

for search in our new data structure are as follows:

Figure 5: Searching in ICSL, find ‘K’ node in a ICSL consisting of {A, C, F, H, K, P, T} elements

Because it is similar to skip list data structure, search in ICSL

data structure can be performed through modifying the

algorithm used in skip list.

3.2. Insertion in ICSL
It is required to find the position in order to insert a new node,

which requires searching. It is possible to reach a node in a

time complexity of O(log N) at maximum, which is the time

complexity for node insertion. While constructing skip ring

data structure from nodes, nodes are placed at random levels.

The random_level() algorithm (Algorithm 1) creates a random

level between 0,..,MaxLevel(15 or 31) to form up levels to

insert nodes.

Algorithm 3: Insertion in ICSL

InsertNode(Rlevel,key)
TempRlevel.head
LevelRlevel.level
Update[maxlevel +1]
For I level down to 0 do
While (temp.next*i+≠Rlevel.head
And temp.next[i].value < key
Temptemp.next[i]
Update[i]temp;
End for
Temptemp.next[0];
If(temp_Rlevel.head or temp.value≠key)
(generation new level by random_level() algorithm)
Newlevel random_level();
If (newlevel>level)
For I level+1 to newlevel do
Update[i]temp;
Levelnewlevel;
Endif
Tempmake_newnode(newlevel,value);
For i0 to newlevel do
Temp.next[i]update.next[i];
Update.next[i]temp;
End for
End if

Algorithm 1(searching in ICSL)
Searchnode(Rlevel,key)
Temprlevel.head
LevelRlevel
If(temp.next[0]=Rlevel.head) or level<0)
Return false
For I level downto 0 do
While(temp.next*i+≠Rlevel.head
And temp.next[i]value < key)
Temptemp.next[i]
Temptemp.next[0]
If(temp≠Rlevel.head and temp.value=key)
Return true;
Return false;

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 2, March 2017

10

Figure 6(a): The steps to insert ‘M’ node (random level=3) in a ICSL data structure

Figure 6(b). Insert new node and update ICSL

3.3 Deletion in ICSL
It is required to search and find a node in order to delete a

node. It is possible to reach a node in a time complexity of

O(log N) at maximum, which is the time complexity for node

deletion. Deletion of a node in a ICSL data structure is similar

to that of a skip list data structure [4,6]. Similar to search

algorithm, the first thing that must be controlled during

removal operation is that not a single element can be available

in ICSL data structure.

Algorithm 2: Generating random level
Random_level()
Rlevel0;
Frandrand()
{frand value in 0..1}
While (frand<p) and (level<maxRlevel)
{p=1/2 or 1/4}
RlevelRlevel+1;
return level;

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 2, March 2017

11

3.4 ICSL Priority Search
The innovative search algorithm which was called priority

search used in the ICSL data structure. It was benefited from

the pyramidal layered-structure of the skip list data structure.

The standard searching algorithm (algorithm 1) in the skip list

data structure starts at top-level to the lowest level until it

finds the searching data or it ends up in the lowest level. In

this we developed new searching algorithm for ICSL

(Algorithm 5 was based on the hit search number for each

searched data. If a datum has greater hit search number, then

it was upgraded in the skip list data structure to upper level.

That is, the mostly searched data were located in the upper

levels of the skip list data structure and rarely searched data

were located in the lower levels of the skip list data structure.

The time complexity of searching in the skip list data structure

(Algorithm 1) is O(logN), but the time complexity of

searching algorithm in priority search (Algorithm 5)

approximates to (1). In another word, the mostly searched

data were located in the top-level of the skip list data

structure, thus, the searching for these data has time

complexity as (1). The rarely searched data were located in

the lowest level and their searching time complexities

approximate to O(logN). The time complexity of searching by

using priority search algorithm changes between (1)-

O(logN). Table I will be obtained by using the priority search

algorithm. It was performed by using frequencies (hit search

numbers). That is, the searched data is upgraded once for each

search process. Therefore, the mostly searched data were

located at the top of skip list data structure (pyramidal

structure) and rarely searched data were located at the bottom

of skip list data structure. The priority search algorithm was

Tabel 1. Frequency wise level distribution of nodes in ICSL

Nodes A C F

Frequency 0 1 0

level 0 1 0

Nodes H K P T

frequency 2 0 1 0

Level 2 0 1 0

Algorithm 4 (Delete node in Improved circular skip list
DeleteNode(RLevel,key)
TempRlevel.head
LevelRlevel
Update(MaxLevel+1);
If(temp.next[0]=Rlevel.head)or
 (level<0)
 Returns false
For iRlevel downto 0 do
 While (tempnext*i+≠Rlevel.head
 And temp.next[i]value<key
 Temptemp.next[i];
 Update[i]temp;
End for
Temptemp.next[0];
If (temp.value=value)
 For i 0 to Rlevel do
 If (update.next*i+≠temp)
 Break;
 Update.next[i]=temp.next[i]
 End for
Free(temp);
While(Rlevel>0 and
 temp.next[Rlevel]=rlevel.head)
 RlevelRlevel-1;
End if

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 2, March 2017

12

used in the skip list data structure due to its pyramidal

structure. Additionally, the standard search algorithm

(Algorithm 1) for the skip list of size N has time complexity

as O(logN). Data were sorted in ascending order in the skip

list data structure when skip list data structure were

constructed. The most important property of skip list data

structure is its pyramidal structure and ordered data in it. The

searching process started at the first element in the list and

carried on till the end of list, when data were unordered. So,

the searching algorithm is a linear algorithm in term of the

number of data in the list. The time complexity of linear

search is O(N). If data were unordered, initially they must be

ordered by using any sorting algorithm.

Significance of using Priority search algorithm in ICSL

locates the most searched data to the top of the pyramid-

shaped skip list data structure. For these reason, enabling time

complexity (1) of frequent searched data were important.

The priority search algorithm may be used in the search

engine like Google, Yandex, etc. The greater frequency

(search hit number) the upper level for searched data; the

smaller frequency the lower level for searched data. The

mostly searched data were located in the top level of skip list

data structure, so, searching this data will take less time. The

rarely searched data were located in the lowest level of the

skip list data structure, so, its searching time will take longer.

If searching process was grouped with respect to frequencies

of data, the searching would be easier. There many data (may

be billion data, etc.) in the internet. If data were located in a

large skip list data structure for search engine, it would be

more advantageous. This data structure is also advantageous

for dictionary operations, since the most hit data will be on the

top level of skip list data structure and its searching will take

shorter time; the least hit data will be on the lowest level of

the skip list data structure and its searching time will take

longer time.

4. EXPERIMENTAL RESULTS:

PRIORITY SEARCH AND OTHERS
The proposed algorithm was implemented by using java and

tested successfully. In order to compare ICSL Priority Search

(ICSL PS), Circular Skip list search (CLS), and Standard Skip

List Search (SSL), random and sorted data were used. The

searching times of ICSL PS, CLS and SL for sizes from 1000

to 50000 of data in list were illustrated in the Table II and

Table III. Moreover, each algorithm was applied to same size

list 100 times and all times for all executions was added up

and then their average was computed. This means that the

effect of data permutation will be minimized and the

comparison will be more equitable. If there is one search for

algorithm, the comparisons may be non-equitable. For

example, searched data for PS may be on the top level of skip

list data structure, and then its time will be (1). If the

searched data for CLS is not found in the circular skip list,

then its time will be longer. This case may be available for

each search algorithm. Due to this case, there were 100

executions for equitable comparisons of search algorithms.

All results were obtained on the same computer and the

results in Table II and Table III demonstrated that when size

of list is small, CSL shows normal performance; when the

size of array increases, the performance of ICSL PS increases

and PS is better than CLS and SSL. The results were

illustrated in Figure. 7

Table II Searching Time for ICSL PS, CSL and SSL for

sorted list data (ms =milliseconds)

No. of

Nodes

1000 5000 100000 30000 50000

SSL 0.0033 0.0105 0.0170 0.0400 0.0400

CSL 0.00015 0.00017 0.00021 0.00024 0.00026

ICSL 0.00009 0.00011 0.00012 0.00016 0.00018

Table II, Table III and Fig. 7, Fig. 8 depict that ICSL PS is

better than SSL and CSL with respect to searching time. The

time complexities for searching ICSL PS, and CSL on sorted

lists are O(logN). The time complexities for searching SSL on

sorted list is O(log N). While computing time complexity for

any algorithm, the dominant (term with the greatest degree)

term is regarded as time complexity. The asymptotic

behaviors of ICSL PS and CSL are similar; however, the

constant coefficients are different and this case makes ICSL

PS be the best algorithm. It is noticeable in Table II and Table

III; ICSL PS algorithm has better performance than C LS and

SSL. Moreover, ICSL PS algorithm is better than CLS

algorithm as seen in Fig. 8. Searched data in CLS PS

algorithm were located to the top of Skip List, hence time

complexity will be (1) for these data.

Algorithm 5: Priority search with ICSL

PrioritySearch(Rlevel,Search_Key)
Head=Rlevel_head
LevelRlevel
Update[maxlevel +1]
While(Rlevel≠0)
If(headnext[Rlevel]value=Search_key)
For iRlevel downto 0 do
 While(head.next*i+≠null and head.next*i+=value <
search_key)
 Headhead.next[i]
 Update[i]head
End for
Headhead.next[0]
Intlevel=Rlevel+1;
if(level>Rlevel)
update[level]=Rlevel.head
Rlevel=level
End if
Headnext[level]= update[levelnext[level]
Update[level]next[level]=head
Return true
End if
If (headnext[level]value < search_key)
Head=head-->next[level]
If(headnext[levelvalur > search_key)
Level=level-1
End while
Return false;

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 2, March 2017

13

Figure 7. Performance comparison for SSL, CSL, ICSL

PS (If the searched data are in middle of List)

Table iii Searching Times For Ssl, Csl And Icsl Ps For

Sorted List (If The Searched Data Are Near To The End

Of List) (Ms=Millisecond)

No of

Node

s

1000 10000 30000 50000

SSL 0.0048 0.0173 0.0850 0.2888

CSL 0.0001

4

0.00001

6

0.0002

0

0.0002

4

ICSL 0.0000

8

0.00010 0.0001

5

0.0001

7

The results in Table II were obtained when the searched data

were located near to the beginning of List. Whereas, Table III

shows the situation where the searched data were located near

to the end of the List. Comparing the results of algorithm in

both tables, it was seen that the search time increases if the

data were located SS Lat the end of List. However, the results

were the same for CSL and ICSL PS algorithms no matter

where the searched data was located.

Figure 8. Performance comparison for ICSL PS and CSL

(Sorted List)

5. CONCLUSION
Skip list data structure was created with the help of circular

linked list data structures. Due to the layered structure, ICSL

data structure presented in this study reduces the time

complexity of search, insertion and deletion processes in

linked list data structure to O(logN), which was O(N). The

improved priority searching was better than searching in

standard skip list considering the applications. The time

complexity of priority search algorithm was between (1)-

O(logN); the most searched data has time complexity as (1),

the least searched data has time complexity as O(logN). To

summary priority search algorithm could be used in searching

processes more efficiently. It enables saving remarkable time

when larger sets of data were handled.

6. REFERENCES
[1] Aksu, M.; Karcı, A.; Yılmaz, ¸ S.: Level optimization in

Skip List data structure. In: Proceedings of the 1st

International Symposium on Innovative Technologies in

Engineering and Science (ISITIES2013). pp. 389-396

(2013)

[2] Aksu, M.; Karcı, A.; Yılmaz, ¸ S.: Effects of P threshold

values in creation of random level and to the

performance of skip list data structure. Bitlis Eren Univ.

J. Sci. 2(2), 148–153 (2013)

[3] Cormen, T.; Leiserson, C.; Rivest, R.; Stein, C.:

Introduction to Algorithms. MIT Press, London (2009)

[4] McMillan, M.: Data Structures and Algorithms Using

C#. Cambridge University Press, New York (2007)

[5] Shaffer, C.A.: Data Structures & Algorithm Analysis in

C++. Dover Publications, Mineola (2011)

[6] Colvin, R.; Groves, L.; Luchangco, V.; Moir, M.: Formal

verification of a lazy concurrent list-based set. In:

Proceedings of the Computer Aided Verification, Lecture

Notes in Computer Science. 4144, 475–488 (2006)

[7] Herlihy, M.; Lev, Y.; Luchangco, V.; Shavit, N.: A

simple optimistic skiplist algorithm. In: Proceedings of

the Structural Information and Communication

Complexity. Lecture Notes in Computer Science. 4474,

pp. 124–138 (2007)

[8] Pugh, W.: Skip lists: a probabilistic alternative to

balanced trees. Commun. ACM 33(6), 668–676 (1990)

[9] Kirschenhofer, P.; Prodinger, H.: The path length of

random skip lists. Acta Inf. 31(8), 775–792 (1994)

International Journal of Computer Applications (0975 – 8887)

Volume 161 – No 2, March 2017

14

[10] Papadakis, T.: Skip lists and probabilistic analysis of

algorithms. PhD Thesis. University of Waterloo. Tech.

Report CS-93-28, (1993)

[11] Poblete, P.V.; Munro, J.I.; Papadakis, T.: The binomial

transform and the analysis of skip lists. Theor.Comput.

Sci. 352, 136–158 (2006)

[12] Munro, J. I.; Papadakis, T.; Poblete, P.V.: Deterministic

skip lists. In: Proceedings of the SODA ’92 Proceedings

of the third annual ACM-SIAM symposium on Discrete

algorithms. pp. 367–375 (1992)

[13] Pugh, W.: A Skip List Cookbook. Dept. of Computer

Science, University of Maryland. College Park.

Technical report. CS–TR– 2286.1. (1990)

[14] Pugh, W.: Concurrent Maintenance of Skip Lists. Dept.

of Computer Science. University of Maryland. College

Park. Technical report. TR–2222.1. (1989)

[15] Lotan, I.; Shavit, N.: SkipList-Based Concurrent Priority

Queues. In: Proceedings of International Parallel and

Distributed Processing Symposium. Mexico, pp. 263–

268 (2000)

IJCATM : www.ijcaonline.org

