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ABSTRACT
The robust tracking and model following problem of linear
discrete-time systems is investigated in this paper. An approach to
design a robust tracking controllers for this class of linear systems
is proposed. First, it is assumed that system states must be fully
accessible. The system is controlled to track dynamic outputs gen-
erated by a reference model. By using the the Lyapunov stability,
the convergence of the tracking error to the origin, is proved. An ap-
plication to a class of disturbed systems is considered. Numerical
examples are given to demonstrate the validity of our results. Sec-
ond, it is assumed that the system states are not accessibles. An ob-
server is designed firstly, and then based on the observed states the
controller is designed. The proposed approach employs linear con-
trollers rather than nonlinear ones. Therefore, the designing method
is simple for use and the resulting controller is easy to implement.

General Terms
Robust tracking, observer based control

Keywords
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1. INTRODUCTION
During the last two decades, the robust tracking and model fol-
lowing problem have made much progress. Linear state feedback
controllers are employed for robust tracking of dynamical systems
[1, 2, 3, 4] and references therein. In [2], the authors presented a
linear robust tracking controller for a class of uncertain time-delay
systems. By using a Riccati-type equation, in [5] the researchers
develop an improved procedure for determining the controller such
that larger uncertainties are accommodated. While the proposed
scheme of [2] is based on the solution of the Lyapunov equation.
In [6] the study requires that the dimension of the reference model
be the same as the dimension of the nominal systems under con-

sideration. This presents a major limitation in the design of model
reference controllers. In some instances, one may require a high-
order system to follow a low-order reference model. In [7] this as-
sumption is dropped and the dimension of the reference model is
allowed to be unequal to the dimension of the nominal system un-
der consideration. Practical tracking is achieved when the tracking
error can be made arbitrarily small. In [8] and [9] the authors devel-
oped nonlinear robust controllers to achieve practical tracking for
a class of uncertain systems. In the case when there is no control
over the tracking error bound, the system is said to ε-track the in-
put. Authors of [1] developed a linear controller to achieve practical
tracking for matched uncertainties and ε-tracking for mismatched
uncertainties when certain conditions are satisfied.
The tracking error is guaranteed to decrease asymptotically to zero,
or asymptotic tracking is achieved in [10, 11]. Similar to these
works, for a class of unconstrained linear discrete-time systems,
this paper further investigates the problem of robust tracking and
model following. By using a Lyapunov-type equation, we propose
a new approach to the design of linear robust tracking and model
following controllers, that ensures the convergence of the tracking
error to the origin. Furthermore, there is no conditions on the di-
mension of the reference model.
In the most control systems, the existence of disturbances has a re-
markable probability. The influence of the physical environment on
the systems leads to the emergence of these undesirable parameters
[12, 13, 14, 15, 16, 17]. These disturbances can be deterministic
or stochastic and can affect different components of the system,
for example, the system’s dynamic, the control operator, the initial
state..., which can drive the system to unstable behavior, or con-
straints violations. In order to contribute in this thematic, an appli-
cation of the proposed approach to a class of perturbed systems is
also considered.
Most of these researches are limited to the continuous case, and the
results are based on the assumption that system states must be fully
accessible [18], whereas in practice, this assumption is often unrea-
sonable. In practice, the state is not often available (For instance,
unknown disturbances infecting the initial state leads to unknown
states). Therefore, it is necessary to estimate this unmeasured state
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vector. Then, we consider also a robust tracking problem for a class
of discrete-time linear systems with inaccessible state.
The rest of the manuscript is organized as follows: In Section II,
the model following problem to be tackled is stated and some stan-
dard assumptions are introduced, with the main theoretical results.
In Section III, an application of the developed approach to a class of
disturbed systems is proposed. In Section IV, a numerical example
is given to illustrate the use of our results. The case of linear sys-
tems with inaccessible states is considered in Section V. The paper
is concluded in Section VI.

2. PROBLEM STATEMENT AND SOME
PRELIMINARIES

Consider the linear, controlled, discrete-time system described by{
xi+1 = Axi +Bui

x0 ∈ Rn (1)

and the associated output function is :

yi = Cxi ∈ Rp (2)

where the state variable xi ∈ Rn and A,B,C are respectively
(n×n), (n×m), (p×n) matrices. ui ∈ Rm is the control function,
which is introduced such that the associated output function (2)
tracks a desired output ymi generated by a reference system of the
form {

xmi+1 = Amx
m
i

ymi = Cmx
m
i

(3)

where xmi is the state vector of the reference model, and ymi ∈ Rp

has the same dimension as yi. As pointed out in [1], not all models
of the form given in (3) can be tracked by a system given in (1) with
a feedback controller.

2.1 Case 1: Systems with accessible states
In this subsection, we assume that the system states are fully acces-
sibles, and we introduce for (1) the following standard assumption

Assumption 1 . The pair (A,B) given in (1) is completely con-
trollable.
It follows from Assumption 1 that there exists an (m×n) constant
matrix K such that A + BK is Hurwitz. And for any given sym-
metric positive definite matrix Q, there exists an unique symmetric
positive definite matrix P as the solution of the Lyapunov equation

P = (A+BK)TP (A+BK) +Q (4)

In this work, the requirement for the developed controller to force
the system output to follow the reference output model (3) as
closely as possible is the following assumption.

Assumption 2 . There exist matrices R, G, Ge and H given by

G = RT ×
[
RRT

]−1
Cm (5)

R = C(A+BK)−1BK (6)
Ge = (A+BK)−1BKG (7)

H = BT [BBT ]−1GeAm (8)

Where K is the above motioned matrix. If one of these matrices
cannot be found, a different model must be chosen.
The output tracking error ei and a new auxiliary state vector x̃i are
defined as

x̃i = xi −Gex
m
i (9)

ei = yi − ymi (10)

Where Ge is defined in (7). From (3), (7), (9) and (10), one can
obtain

ei = yi − ymi = Cx̃i (11)

It follows from (11) that

‖ei‖ ≤ ‖C‖ ‖x̃i‖ (12)

Since ‖C‖ ≤ ∞, one can conclude that the convergence of x̃i to
the origin is sufficient for the tracking goal.
In this paper we propose a feedback control law described as fol-
lows

ui = Kxi + (H −KG)xmi (13)

Where G and H are defined in (5) and (8) respectively.

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied. Then
the control law (13) drives the system output (2) to asymptotically
track the output of the reference system (3).

Proof. It follows from (5), (7), (8) and (9) that

x̃i+1 = xi+1 −Gex
m
i+1

= Axi +BKx̃i +BKGex
m
i

+B(H −KG)xmi −GeAmx
m
i

x̃i+1 = (A+BK)x̃i (14)

Constructing now the Lyapunov function as

V (xi) = xTi Pxi (15)

where P is the unique solution of Lyapunov equation (4). The in-
crement of the Lyapunov function in (15) is given by

∇V (x̃i+1) = x̃Ti+1P x̃i+1 − x̃Ti P x̃i
= x̃Ti (A+BK)TP (A+BK)x̃i − x̃Ti P x̃i
= −x̃Ti Qx̃i ≤ 0

This shows that all trajectories of the closed-loop system (14) will
converge to the origin. Then it can be obtained from (12) that
the tracking error ei decreases asymptotically towards zero. This
completes the proof.

Remark. Note that the result of theorem 2.1 is satisfied for all x0 ∈
Rn.

2.2 Case 2: Systems with inaccessible states
In this subsection, we assume that the state variable is unknown,
thus, an observer is designed firstly, and then based on the observed
states, the controller that guarantees the tracking goal, is designed.
Consider the linear, controlled, discrete-time system described by{

xpi+1 = Axpi +Bui

xp0 ∈ Rn (16)

and the associated output function is :

ypi = Cxpi ∈ Rp (17)

where the state variable xpi ∈ Rn and A,B,C are respectively
(n× n), (n×m), (p× n) matrices.
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Based on the fact that the output function ypi is measurable, an ob-
server is introduced to estimate the state variable xpi as follows{

zi+1 = Fzi + Lypi +Bui

z0 ∈ Rn (18)

Where F and L are constant matrices with appropriate dimension
satisfying

F is asymptotically stable (19)
F + LC = A (20)

Let’s define the observation error ẽi as follows

ẽi = zi − xpi
Thus we have

ẽi+1 = Fzi + LCxpi +Bui −Axpi −Bui

= F ẽi + (F + LC −A)xpi
By using (20) we have

ẽi+1 = F ẽi

It is deduced from (19) that ẽi → 0, which proves the observation
goal, and

‖ypi − Czi‖ → 0 (21)

In the case where the system is autonomous (uninfected), this re-
duces to {

xmi+1 = Amx
m
i

ymi = Cmx
m
i ∈ Rn (22)

Based on results of section 2, a control law ui is designed for
(16) such that the associated output function (17) tracks the desired
output generated by the reference system (3). The control law in
(13) cannot be used here because the state variable is not available,
hence the importance of the observer (18).
The proposed control law is

ui = Kzi + (H −KG)xmi −MLypi (23)

Where

G = RT ×
[
RRT

]−1
Cm (24)

R = C(F +BK)−1BK (25)
Ge = (F +BK)−1BKG (26)

M = BT [BBT ]−1 (27)
H = MGeAm (28)

and K is a constant matrix chosen in the way that (F + BK) is
Hurwitz invertible matrix. If one of these matrices cannot be found,
a different model must be chosen.
Let’s define an auxiliary variable as follows

x̃i = zi −Gex
m
i (29)

Where Ge is given by (26).

‖Czi − Cmx
m
i ‖ = ‖C (zi −Gex

m
i )‖

≤ ‖C‖ ‖x̃i‖

By passing to the limit, and by (21) it is deduced that

‖ypi − ymi ‖ ≤ ‖C‖ ‖x̃i‖ (30)

It is clear from (30) that the convergence of x̃i to the origin, is
sufficient to achieve the tracking goal. Then we have the following

result.

Theorem 2. If matrices (24-28) exist, then the control law (23)
drives the output function (17) to asymptotically track the output
of the reference system (3).

Proof. It follows from (24), (26), (28) and (29) that

x̃i+1 = zi+1 −Gex
m
i+1

= Fzi + Lypi +BKzi +B(H −KG)xmi
−Lypi −GeAmx

m
i

= F x̃i + FGex
m
i +BKGex

m
i −BKGex

m
i

+BKzi −BKGxmi
x̃i+1 = (F +BK)x̃i (31)

Constructing now the Lyapunov function as

V (xi) = xTi Pxi (32)

where P is the unique solution of Lyapunov equation

P = (F +BK)TP (F +BK) +Q (33)

for a given symmetric positive definite matrix Q. The increment of
the Lyapunov function in (32) is given by

∇V (x̃i+1) = x̃Ti+1P x̃i+1 − x̃Ti P x̃i
= x̃Ti (F +BK)TP (F +BK)x̃i − x̃Ti P x̃i
= −x̃Ti Qx̃i ≤ 0

This shows that all trajectories of the closed-loop system (31) will
converge to the origin. Then it can be obtained from (12) that the
tracking error ei decreases asymptotically towards zero. This com-
pletes the proof.

3. APPLICATION TO A SENSITIVITY PROBLEM
Consider the linear, controlled, discrete-time system described by{

xpi+1 = Axpi +Bui

xp0 = αx0 + β ∈ Rn (34)

and the associated output function is :

ypi = Cxpi ∈ Rp (35)

where the state variable xpi ∈ Rn and A,B,C are respectively
(n × n), (n × m), (p × n) matrices, and β ∈ Rn and α ∈ R
are disturbances that infect the initial state, knowing that they are
supposed inevitable. In the case where the system is autonomous
(uninfected), this reduces to{

xmi+1 = Amx
m
i

ymi = Cmx
m
i ∈ Rn (36)

We introduce the control law ui in (34) such that the associated
output function (35) tracks the desired output generated by the
reference (uninfected) system (36).

Definition. For a given ε > 0, and T ∈ N∗, a disturbance
(α, β) ∈ R × Rn is said to be εT -tolerable if the corresponding
output function ypi satisfies

‖ypi − ymi ‖ ≤ ε, ∀i ≥ T

where ymi is the output function of the reference (uninfected)
system.
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Theorem 3. Given ε > 0, T ∈ N∗ and a disturbance
(α, β) ∈ R × Rn. Suppose that Assumptions 1 and 2 are
satisfied. Then, there exists a control law ui that makes the
disturbance (α, β) εT -tolerable.

Proof. Given an ε > 0, T ∈ N∗. It is clear that

‖Cx̃i‖ ≤ ‖C‖ ‖x̃i‖ (37)

By Theorem 2.1, remark 2.1, assumption 1 and 2 and (14) there
exists a matrix K such that the corresponding control law given by
(13) ensures that

‖x̃i‖ ≤
ε

‖C‖
, ∀i ≥ T

Which implies, from (37), that

‖Cx̃i‖ ≤ ε, ∀i ≥ T

Then, it follows from (11) that

‖ypi − ymi ‖ ≤ ε, ∀i ≥ T

Which means that the disturbance associated to ypi is εT -tolerable.

4. ILLUSTRATIVE EXAMPLES
Example 1
To illustrate the utilization of our approach, in this subsection, we
consider the following numerical example. Here, a linear discrete-
time system is given as follows: xpi+1 = Axpi +Bui

ypi = Cxpi
xp0 = αx0 + β ∈ R2

i ≥ 0

where

Table 1.
Matrices
data

A B C x0(
1.5 −3
0 −2

) (
2 −2
6 −3

) (
0.9 1.3

) (
0.1 1

)T
and the perturbation α = 2 and β = (−0.4,−1.1)T . The control
input ui is used in order to ypi tracks the output response of the
reference (uninfected) system given by{

xmi+1 = Amx
m
i ∈ R2

ymi = Cmx
m
i ∈ R

where Am =

(
0.9 2
0 0.9

)
, Cm =

(
1 0.2

)
, xm0 =

(
1 0.1

)T .

It’s clear that the pair (A,B) is controllable, then we choose K
such that

K =

(
1.15 −0.6
2.3 −2.1

)
and A+BK =

(
−0.8 0
0 0.7

)
(38)

Matrices (5), (7) and (8) are given, respectively, by

G =

(
0.2758 0.0552
0.1747 0.0349

)
, Ge =

(
0.1377 0.0275
0.6739 0.1348

)
,

H =

(
0.1402 0.3396
0.0783 0.1896

)
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Fig. 1. Tracking performance and Tracking error
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Fig. 2. Impact of disturbances α on tracking performance where β =
(−0.4,−1.1).

From Figure 1, we can conclude that with the chosen K , the asso-
ciated control law ui ( given in (13)), makes the disturbance (α, β)
for this example, 0.11-tolerable.

Comment. 1) In this example, we should note that the disturbance
(α, β) is arbitrary chosen.
2) Note that the reference system and the nominal system have the
same dimension. Thus, to show the effectiveness of our control de-
sign, a three dimensional reference system is tracked by a two di-
mensional system in the following example.
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Fig. 3. Impact of disturbances β on tracking performance where α = 2.

Example 2
In this subsection, we consider the following numerical example xi+1 = Axi +Bui

yi = Cxi ∈ R
x0 ∈ R2

i ≥ 0 (39)

whereA,B ,C and x0 are given in table 1. In this example we con-
sider that the reference system does not have the same dimension
of the system (39), given by{

xmi+1 = Amx
m
i ∈ R3

ymi = Cmx
m
i ∈ R (40)

where Am =

 0.8 1.2 −1
0 0.7 1
0 0 0.5

 , Cm =
(
1 0.2 0.5

)
and xm0 =

(
0 1 0.1

)T . By using the same matrix K given in (38), matrices
(5), (7) and (8) are given, respectively, by

G =

(
0.2758 0.0552 0.1379
0.1747 0.0349 −0.0874

)
,

Ge =

(
0.1377 0.0275 0.0688
0.6739 0.1348 0.3370

)
,

H =

(
0.1246 0.2088 −0.0857
0.0696 0.1165 −0.0478

)
By using the control law (13), figure 3 shows that the tracking error
decreases asymptotically to zero, and the output of the system (39)
tracks the reference output of the system (40).
Remark. Note that the above results are based on the assumption
that system states must be fully accessible, whereas in practice, this
assumption is often unreasonable. This has motivated us to improve
our results by using an observer-based control for discrete-time lin-
ear systems with inaccessible state.

5. CONCLUSION
The problem of robust tracking and model following for a class
of linear discrete-time systems has been considered. Based on the
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Fig. 4. Tracking performance and Tracking error corresponding to exam-
ple 2

solution of the Lyapunov equation, we have shown that by em-
ploying the proposed adaptive robust tracking controller, the track-
ing error can be guaranteed to decrease asymptotically to zero. An
application of the proposed approach for a class of disturbed sys-
tems is also considered. Illustrative examples have been provided
to demonstrate the effectiveness of this control technique. By as-
suming that the system states are not fully accessibles, an observer-
based controller is designed such that the tracking error converges
asymptotically towards zero.
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