
International Journal of Computer Applications (0975 ï 8887)

Volume 162 ï No 2, March 2017

44

Early Stage Software Reliability Modeling using

Requirements and Object -Oriented Design Metrics:

Fuzzy Logic Perspective

Syed Wajahat A. Rizvi
Department of Computer
Science, BBD University,

Lucknow

Raees Ahmad Khan
Department of Information
Technology, Dr. Bhimrao

Ambedkar University, Lucknow

Vivek Kumar Singh
Department of Information

Technology, BBDNITM,
Lucknow

ABSTRACT

In the current scenario as the influence of information

technology has been rising day by day, the industry is facing

the pressure of developing software with higher level of

reliability. Generally it is an accepted fact that the roots of

unreliability lies in ill defined requirements and design

documents. With this spirit, researcher has proposed and

implemented a reliability prediction model through fuzzy

inference system that utilizes early stage product based

measures from requirements and object-oriented design

stages. The study starts with the review findings those have

been used as foundation for proposing a reliability

quantification framework. Subsequently this framework has

implemented in the form of reliability prediction model that

predicts reliability at the requirements as well as design level

through its output variable. The model has been validated as

well as quantitatively compared with two existing reliability

models. The obtained results are quite encouraging and

supports that the proposed framework and reliability

prediction model are better. Consideration of requirements

phase along with the object-oriented design provides this

paper an edge over other similar studies those are based on

only design phase. Because ignoring requirements

deficiencies and only concentrating on design constructs will

not help in developing reliable software.

Keywords

Software Requirements, Software Reliability, Fuzzy Logic,

Early Reliability Prediction, Object-oriented Design, Software

Reliability Model.

1. INTRODUCTION
With the start of the twenty-first century it is observed that

every sector of the society is depending more on software than

before. The presence of software is impacting directly or

indirectly, almost everyone living on the globe [1]. Whether it

is transportation, health, defense, telecommunication, e-

commerce, entertainment, home appliances etc. all domains

are governed by the software directly or indirectly. Nobody

can think about a life without the devices controlled by

software. Reliability is a quality factor that needs to be

assured in almost all safety-critical systems [2]. Industry is

under pressure to develop and deliver reliable and quality

software with shorter lead-times and low development costs.

Over the last two decades software reliability has become one

of the key factors that are being considered as a differentiator

among different competitors in the industry. It is the productôs

reliability that establishes the success of a company in the

global market. Literature has defined software reliability as

the probability of failure free operations for a specified period

of time in a specific environment [3].

Review of the literature highlights several unfortunate events

that had already occurred in various domains due to

unreliability of corresponding software applications [4]. In

general revealing the presence of defects is considered as a

method to measure the reliability. The reliability of software

depends on the number of defects those originates in early

stages and subsequently propagated undetected to later stages

of development [5]. After realizing reliability as one the key

quality attribute, its prediction cannot be delayed or ignored.

While there exists a significant number of reliability models

in the literature that estimates or predicts reliability, at various

development stages, by utilizing different measures as well as

variety of techniques, but there is no work in the literature that

has considered the combination of requirements stage

measures with object-oriented design for predicting the

reliability of the developing software before its coding starts.

Even though, it is a universally accepted statistic that 70 -

80% of all the faults in software are get introduced during the

requirements phase [6], this phase of development lifecycle

had not been given needed importance while predicting the

reliability. Because timing of prediction is the key for the final

quality of any software product, the more early it is monitored

or control the higher level of reliability can be achieved [7].

Majority of existing reliability models are applicable only in

the later stages of development, and helping developers either

by the end of coding phase or in the testing stage. That

becomes too late for developers to take corrective measure to

improve its reliability as well as quality [8]. Therefore, in

order to fill the above identified gap, it appears highly

advantageous and significant to develop a reliability

prediction model that will consider requirements and object-

oriented design measures for predicting the reliability before

the coding of the software starts.

The rest of the paper is organized as follows; section 2

describes the state-of-art on reliability prediction studies.

Section 3 presents the overview of reliability quantification

framework. Framework has been systematically implemented

as a reliability prediction model in section 4. Section 5 of the

paper statistically validated the reliability model, and its

predictive accuracy results are presented in section 6. Section

7 quantitatively compared the developed model with two

existing reliability models and finally the paper concludes

with future work in section 8.

2. RELATED WORK
During the last three decades the literature has been

witnessing a significant number of reliability studies [9, 10,

11, 12, 13, 14, 15]. The researcher has already critically

reviewed some of these studies in earlier papers [16, 17, 18].

However, following paragraphs are further reviewing some

International Journal of Computer Applications (0975 ï 8887)

Volume 162 ï No 2, March 2017

45

recent as well as critical efforts in the domain of reliability

engineering. In a study [19] Jaiswal and Giri, presented a

model for reliability estimation of component-based software.

Along with this model author had also proposed a model for

quantifying the reusability. Five quality attributes

(understandability, variability, portability, maintainability and

flexibility) were identified to estimate reusability. But an

important observation is that even though these factors may

have different degree of influence on reusability, all were

multiplied by a constant value (i.e. 0.2) in the modelôs

equation. The study did not mention any justification in this

regards. Besides that development as well as validation

process had not been described clearly. It is unclear how

accurate the reliability prediction given by this approach

would be.

In another study [20] Kumar and Dhanda, developed a model

for predicting the reliability of object-oriented design. Initially

the study had developed two multivariate regression models

for computing effectiveness as well as functionality,

subsequently these two quality attributes were used as

independent variables for estimating the software reliability at

the design stage. But the authors did not justified why

effectiveness and functionality were used in reliability

prediction in the presence of other factors that have more

significant impact on reliability. Another study [21],

developed two multivariate regression models for quantifying

software complexity and reliability of object-oriented design.

Initially complexity was estimated in terms of encapsulation,

cohesion, inheritance and coupling, followed by reliability

computation in terms of complexity. But the author had not

justified the goodness or statistical significance of neither of

the multivariate model. It is unclear how competently these

models are estimating their respective dependent variables,

besides that the significance of individual independent

variable was not shown to justify their involvement as

independent variables in the complexity model. Although, ótô

test of statistic might be used for this. Beside that one

weakness that had not been taken care of by the author is the

multicollinearity and autocorrelation, the two problem with

the multiple linear regression.

During a similar effort [22] Wende Kong, presented an

approach that focuses on the prediction of software reliability

at the requirements phase. The point of attraction was to

identify weaknesses in the SRS document, and how to make

SRS correct and complete. The technique of Cause-Effect

Graph Analysis was used for reliability prediction. The study

mathematically formalized the Cause Effect Graph (CEG),

and applied it on SRS to identify its faults, subsequently fault

tree was built through the identified SRS faults. Binary

Decision Diagram (BDD) approach had used with an

algorithm to analyze the fault tree and quantifying the

influence of the detected requirements faults on software

reliability. Although the effort is quite influencing but the

process of identifying SRS faults is totally manual, requires a

good level of domain knowledge and understanding of the

system under study along with inspectorôs creativity,

experience and even intuition. Similarly the scalability is also

one the issue, for large SRS it will be very difficult to build

and analyze the Cause-Effect Graph (CEG). The author had

also mention that validation process was not up to the mark

and it is unclear how accurate the reliability prediction given

by this approach would be. One more important issue was that

without prior and comprehensive knowledge of the system,

the faults found through CEGA may not be correct and the

final reliability estimation may not be very meaningful,

besides that proposed approach is very costly and also time-

consuming, specially, to construct an initial Cause Effect

Graph (CEG) from a given informal specification. One more

point is that not every aspect of software will be specifiable

by a CEG, because a CEG can only capture functional

requirements specified in the SRS. CEG analysis could not

detect hidden requirements.

In another study [23], regarding utilizing formal method for

reliability quantification Hooshmand and Isazadeh, performed

an effort for early software reliability assessment on the basis

of software behavioral requirements. Viewchart was used (as

formal method) to specify the behavior description of

software systems. The concept of Markov chain was also used

with viewchart, to know the rate of system's transition from

one stage to other. The study further predicated some states,

for each of the systemôs view, those may cause system

failures, and assess software reliability as the union of the

probabilities of these failure states. But some finding have

been noticed during the critical review like as the reliability

assessment is totally based on the union of the probabilities of

failure states, therefore for each of the view identifying and

introducing the probable events those may cause a system

failure, needs the comprehensive knowledge about the

different behaviors of the system. Also the study had not

specified any rule or guidelines for drawing the viewchart

specification from the corresponding system behavior. Further

to compute system state transition rate, a systemôs prototype

has to be develop on the basis of its viewchart specifications.

And subsequently this prototype needs to be executed with

some input values belonging to the corresponding operational

profile. This makes the approach quite complicated and expert

specific, especially at the requirement stage. Apart from these

there is also an issue of scalability, developing viewchart

specification for a system of significant size and complexity

would be a challenging task.

After revisiting a range of studies on reliability prediction or

estimation, the critical findings summed up as follows:

¶ No consensus or standard steps/procedure among

researchers for predicting software reliability.

¶ Studies utilizing multiple linear regression for

reliability quantification, had not bothered about

multicollinearity and autocorrelation at all.

¶ The appropriate size as well as quality level of the

dataset has been a serious concern for empirical

analysis.

¶ Reliability quantification should also be accompanied

by suitable suggestive measures so that in future

proactive actions could be initiated in time.

¶ One of the observations that cannot be overlooked is

the need of timely identification and subsequent

fixation of residual defects so that reliable software

could be delivered in time.

¶ The best time to detect and arrest faults is the

requirements and design stages. To accomplish this

task researchers are bound to use quality measures

based on these stages. But usually most of metric

values in early stages are subjective as their sources are

subjective, like opinions of domain experts.

¶ Therefore, to deal with such intrinsic subjectivity and

vagueness, fuzzy techniques have come up as a

dependable tool in capturing and processing these early

stage metric values.

¶ There are just a few attempts where fuzzy techniques

were used to quantify the reliability. But the key

concern is the time and the stage of SDLC. These

International Journal of Computer Applications (0975 ï 8887)

Volume 162 ï No 2, March 2017

46

models are helping developers either by the end of

coding phase or in the testing stage. These feedbacks

make it too late to improve the existing product

towards a more reliable one.

After going through the critical issues raised in above

paragraphs, it is needed to advise some way out that will

triumph over the shortcomings identified and highlighted in

above points. Therefore, in the next section the researcher is

going to present a roadmap in the form of a prescriptive

framework.

3. RELIABILITY QUANTIFICATION

FRAMEWORK (
FL

SRQF)
In continuation with the highlighted need and significance as

discussed in previous section, the researcher has already

proposed a structured framework (Fuzzy Logic based

Software Reliability Quantification Framework (FLSRQF)) as

a solution for the identified inadequacies present in earlier

reliability prediction studies [24]. The framework described a

comprehensive reliability quantification process through its

eight phases (Conceptualization, Identification, Association,

Quantification, Corroboration, Analysis, Assessment and

Amendment and Packaging) as depicted in fig 1. It has been

structured in a manner that could be easily implementable by

industry personnel as well as researchers. The focus of the

framework is on the requirement and design phase of the

development life cycle. In [24] the researcher had

comprehensively described all the phases of the framework

along with its salient characteristics those support its claim to

be a better reliability framework.

4. FRAMEWORK IMPLEMENTATION
This section of the paper is going to systematically implement

each phase of the proposed framework (FLSRQF). In order to

implement the framework the researcher has developed a

model as depicted in the figure 2. The model is referred as

Early Stage Reliability Prediction Model (ESRPM) and is

based on the assumption that the software reliability and its

quality are adversely affected by the weaknesses of

requirements and design constructs. Therefore the model

focuses on these two, most significant, early phases of SDLC.

Looking at the architecture of the model it can be easily

noticed that the model integrates requirements and object-

oriented design measures as input to the fuzzy inference

system and predict the reliability of the developing software

up to its design stage before the coding starts.

4.1 Implementing Conceptualization Phase
As far as this phase of the framework is concern, it provides

foundation for the rest of the phases. It is considered as the

primary step to device a comprehensive solution for an

important problem. As shown in figure 1, it has four sub

tasks: Assess Need and Significance; Explore Advantage at

Early Stage; Assess the Contribution of Fuzzy Logic; Explore

Developmental Feasibility. All these four conceptual sub-

tasks have already been discussed in the first two sections of

this paper. Therefore the researcher is not going to repeat it

again.

Fig 1: Software Reliability Quantification

Framework

4.2 Implementing Identification Phase
In order to reach to an appreciable solution, it is needed to

identify the factors that are influencing directly or indirectly

to the problem and its solution. The objective of the

identification phase is to identify the factors that are related

directly or indirectly to the reliability prediction. There is no

doubt, that quantified reliability will not have significant

value if its underlying factors are not identified appropriately

[24].

4.2.1 Identify Reliability Factors
In this study the researcher has followed the methodology

suggested by Dromey [25] that is to quantify any higher level

quality attribute, it should be decomposed into lower level

attributes. Therefore to quantify the reliability as per this

methodology, researcher has shortlisted the some researches,

highlighting a variety of factors impacting the reliability

positively or negatively. After scanning McCallôs [26],

Dromey [27], Boehm [28], ISO/IEC 9126 and ISO, 2001 [29]

researcher has shortlisted twelve factors shown in figure 3.

International Journal of Computer Applications (0975 ï 8887)

Volume 162 ï No 2, March 2017

47

Fig 2: Early Stage Reliability Prediction Model (ESRPM)

4.2.2 Identify Requirements Level Metrics
After recognizing the criticality of requirements stage for

early reliability prediction, it is needed to consider appropriate

measures form this stage. Consequently, study has focused on

the identification of reliability-relevant software metrics and

gathered following requirements metrics [12, 30, 31, 32].

ERT (Experience of Requirement Team), RFD (Requirement

Defect Density), RS (Requirements Stability), RSDR

(Regularity of Specification and Documentation Reviews),

RIW (Review Inspection and Walkthrough), RCR

(Requirement Change Request), Scale of New Functionality

Implemented, RC (Complexity of New Functionality), DSM

(Development Staff Motivation), RM (Requirements

Management), QDI (Quality of Documentation Inspected) and

PM (Process Maturity).

Fig. 3: Reliability Factors

4.2.3 Identify Design Stage Metrics
As the study concentrates on four object-oriented design

constructs therefore the researcher has gathered following

object-oriented design metrics from the literature [33, 34, 35,

36, 37, 38, 39, 40, 41, 42]. LCOM (Lack of Cohesion in

Methods), AIF (Attribute Inheritance Factor), MPC (Message

Pass Coupling), DIT (Depth of Inheritance), IMc (Inheritance

Metric Complexity Perspective), NOC (Number of Children),

EMc (Encapsulation Metric Complexity Perspective), WMC

(Weighted Method per Class), CBO (Coupling Between

Objects), Response for a Class (RFC), CoMc (Cohesion

Metric Complexity Perspective), CMc (Coupling Metric

Complexity Perspective), DAC (Data Abstraction Coupling)

and AHF (Attribute Hiding Factor).

4.3 Implementing Association Phase
The aim of this phase in the proposed framework is to align

all the components together by justifying their role in the early

prediction. On the basis of their part to predict the reliability,

the researcher has shortlisted eight metrics out of twenty six

(Requirements (12) and Design (14)) metrics identified in the

previous identification phase. Out of these eight metrics four

belongs to requirement phase (RS, RIW, RC and RFD) and

four belongs to object-oriented design (IMc, CMc, EMc and

CoMc). Following paragraphs are providing a brief

description about the selected metrics along with their

relationship with software reliability.

RS: Requirements Stability is inversely proportional to the

number of change request initiated by the client regarding

software requirements. Higher frequency of change requests

give rise to the probability of errors that may be creep into the

requirements documents, and subsequently infect the

subsequent phases of development [31].

More Change Requests => Low Requirements Stability

=> Less Reliability

RIW: Similarly RIW (Review, Inspections and Walkthrough)

is also a valuable mean for identification as well as

rectification of requirements faults to improve its reliability.

More the number of RIWs the more error free the SRS will be

[31].

High RIW => More Defect Identification and Removal =>

More Reliable SRS

RFD: Third metric RFD (Requirements Fault Density)

measures the fraction of faulty requirements specification

document. Requirement fault density provides an indicator of

the software quality of developing software during

requirement analysis phase [31].

High Fault Density => Low Reliability

RC: Similarly the fourth identified metric RC (Complexity of

New Functionality) also negatively impact the reliability of

the developing software [31].

High value of RC => Make the SRS Complex => Low

Reliability

IMc: Inheritance metric (complexity perspective) provides

overall complexity of a design hierarchy through inherited

methods and attributes and estimated by taking the average of

óInheritance metric complexity perspective of every classô

[21, 43].

CMc: Coupling metric complexity perspective computes the

overall complexity of the design hierarchy, through

aggregating the coupling of involved classes in the design

[21].

EMc: Encapsulation metric (complexity perspective) provides

overall complexity of a design hierarchy through encapsulated

methods and attributes and is estimated by taking the average

of óEncapsulation metric complexity perspective of every

classô [40].

CoMc: Cohesion metric complexity perspective is defined as

the average of óCohesion metric complexity perspective per

classô [36, 41, 21].

Therefore in summarized form it can be shown how the

selected requirements and design metrics are associated with

the reliability. RS Ŭ Reliability; RC Ŭ 1/Reliability; RFD Ŭ

International Journal of Computer Applications (0975 ï 8887)

Volume 162 ï No 2, March 2017

48

1/Reliability; RIW Ŭ Reliability; IMc Ŭ 1/Reliability; CMc Ŭ

1/Reliability; CoMc Ŭ Reliability; EMc Ŭ Reliability.

4.4 Implementing Quantification Phase
It is the most critical phase of the framework, because the

actual development of the reliability prediction model takes

place in this phase itself. The model is implemented in

MATLAB utilizing fuzzy logic toolbox. The basic steps of the

model development are selection of reliability-relevant

software metrics as input/output variables, development of

fuzzy profile of these input/output variables, building the

fuzzy rule base and reliability prediction at the end of

requirements and design phase using fuzzy inference system

(FIS).

4.4.1 Select Input and Output Variables
As already discussed in the identification phase that out of

total eight metrics four (RS, RIW, RC, RFD) have been

selected for the requirements phase and rest four (EMc,

CoMc, CMc, and IMc) for the design phase. These metrics

(shown in Table 1) are considered as input variables for the

fuzzy based reliability prediction model (ESRPM) and can be

applied to the requirement and design phases. Apart from that,

two output variables RLR and DLR are also taken as the

output for the model. RLR and DLR represent the level of

reliability at the end of requirements and design phases,

respectively.

Table 1. Input and Output Variables

Phase Input Variable
Output

Variable

Requirement RS, RIW, RC, RFD RLR

Design
RLR, EMc, CoMc,

CMc, IMc
DLR

4.4.2 Develop Fuzzy Profiles
Input/output variables selected at the previous steps are fuzzy

in nature and are characterized by membership function.

Developing a membership function with help of domain

expert knowledge is one of the basic steps in the design of a

problem which is to be solved by fuzzy set theory. In this

research, membership functions of all the input and output

metrics are defined with the help of domain experts.

Membership function can have a variety of shapes like

polygonal, trapezoidal, triangular, and so on [44].

Table 2. Fuzzy Profiles for Requirements Measures

Value
RC

(0-1)

RS

 (0-1)

RFD

(0-1)

RIW

(0-1)

RLR (0-

1)

Very

low
 (0;0;0.35)

Low
(0;0;

0.3)

(0;0;0.

35)

(0;0;0

.4)

(0;0;

0.4)

(0.25;0.4;

0.55)

Mediu

m

(0.2;

0.4;0.

6)

(0.25;

0.45;0.

75)

(0.2;0

.4;0.7

)

(0.2;0

.4;0.6

)

(0.45;0.6;

0.85)

High
(0.5;

1;1)

(0.6;1;

1)

(0.5;1

;1)

(0.4;1

;1)

(0.65;0.8;

0.95)

Very

high
 (0.85;1;1)

In this research triangular membership functions are

considered for fuzzy profile development of identified

input/output variables. Triangular membership functions

(TMFs) are widely used for calculating and interpreting

reliability data because they are simple and easy to understand

[45]. Also, they have the advantage of simplicity and are

commonly used in reliability analysis.

Table 3. Fuzzy Profiles for Design Stage Measures

Value
RLR

(0-1)

IMc

(0-1)

EMc

(0-1)

CMc

(0-1)

CoMc

(0-1)

DLR

(0-1)

Very

low

(0;0;

0.35)

(0;0;0

.3)

Low

(0.25

;0.4;

0.55)

(0;0;

0.4)

(0;0;

0.35)

(0;0;

0.4)

(0;0;0.

4)

(0.2;0

.35;0.

5)

Medi

um

(0.45

;0.6;

0.85)

(0.3;

0.5;0

.7)

(0.25

;0.45

;0.75

)

(0.25

;0.5;

0.7)

(0.3;0.

5;0.75

)

(0.4;0

.55;0.

7)

High

(0.65

;0.8;

0.95)

(0.6;

1;1)

(0.65

;1;1)

(0.6;

1;1)

(0.65;

1;1)

(0.6;0

.75;0.

9)

Very

high

(0.85

;1;1)

(0.8;1

;1)

Fuzzy membership functions are generated utilizing the

linguistic categories such as very low (VL), low (L), medium

(M), high (H), and very high (VH), identified by a human

expert to express his/her assessment. Table 2 and 3 lists the

selected input/output variables along with their fuzzy range as

well as profile. For visualization purpose these membership

function are also shown in Figs. 4-13.

4.4.3 Develop Fuzzy Rule Base
In this step fuzzy rules are defined in the form of IF-THEN

conditional statement. IF part of the rule is known as

antecedent, and THEN part is consequent [44, 46]. The fuzzy

rule base can be designed from different sources such as

domain experts, historical data analysis, and knowledge

engineering from existing literature [31, 47]. In this research

the fuzzy rules that are required for the prediction of the

reliability are defined with the help of domain experts. In case

of the model developed in this study each of the four

requirements phase input metrics has three linguistic states

i.e., low (L), medium (M) and high (H). Therefore, total

number of rules is 81. Similarly in design phase total number

of rules is 405.

4.4.4 Perform Fuzzification
In this phase, fuzzy inference engine evaluates and combines

the result of each fuzzy rule. It maps all the inputs to an

output. This process of mapping inputs onto output is known

as fuzzy inference process [7, 46]. The two main activities for

information processing are as follows: combining input from

all the óóifôô part of fuzzy rules and aggregation of óóthenôô part

to produce the final output. The Mamdani fuzzy inference

system [48] is considered here for all the information

processing.

4.4.5 Perform Defuzzification
Defuzzification is the process of deriving a crisp value from a

fuzzy set using any defuzzification methods such as centroid,

bisector, middle of maximum, largest of maximum and

smallest of of maximum [44]. Centroid method is used in the

International Journal of Computer Applications (0975 ï 8887)

Volume 162 ï No 2, March 2017

49

Fig. 4 Fuzzy Profile of RS

Fig. 5 Fuzzy Profile of RIW

Fig. 6 Fuzzy Profile of RC

Fig. 7 Fuzzy Profile of RFD

Fig. 8 Fuzzy Profile of RLR

Fig. 9 Fuzzy Profile of EMc

Fig. 10 Fuzzy Profile of IMc

Fig. 11 Fuzzy Profile of CMc

International Journal of Computer Applications (0975 ï 8887)

Volume 162 ï No 2, March 2017

50

Fig. 12 Fuzzy Profile of CoMc

Fig. 13 Fuzzy Profile of DLR

present research for finding the crisp value, representing the

requirements and design level reliability at the end of

requirements and design phase respectively.

4.5 Implementing Corroboration Phase
Although the developed reliability prediction model (ESRPM)

has been corroborated empirically in the next Section, even

though in order to analyze the fault prediction consistency and

influence of various software metrics on early fault prediction

some analysis has been presented.

Table 4. Reliability Prediction at Requirements Stage

RS RIW RC RFD RLR

Best

Case
1 1 0 0 0.953

Average

Case
0.5 0.5 0.5 0.5 0.665

Worst

Case
0 0 1 1 0.113

Table 5. Reliability Prediction at Design Stage

RLR EMc CoMc IMc CMc DLR

Worst

Case
0 0.1 0.1 0.9 0.9 0.096

Average

Case
0.5 0.5 0.5 0.5 0.5 0.55

Best

Case
1 0.9 0.9 0.1 0.1 0.937

Table 4 and 5, presents the values of RLR (Requirements

Level Reliability) and DLR (Design Level Reliability) by the

proposed model for the best, average and worst-case input

values of different input metrics. These values of RLR and

DLR signifying the lower and upper bounds of prediction

range at the requirements and design phase respectively. It can

be easily noticed that the value of the RLR is 0.113 in the

worst case, because the values of corresponding requirements

level measure are at their extremes. The RLR at the end of

requirements phase range from 0.113 to 0.953, while the

range for DLR is 0.096 to 0.937, which is quiet satisfactory.

The model also helps to determine the influence of a

particular software metrics on the software reliability. Once

the impact of the particular software metric on reliability has

been identified, the better and more cost effectively it can be

controlled to improve the overall reliability and quality of the

product.

4.6 Implementing Analysis Phase
After implementing the quantification phase successfully this

is the next critical phase of the framework. The following sub

sections analyses different quantitative input as well as output

values and inferred the suggestive measures along with the

guidelines for improving the software reliability.

4.6.1 Sensitivity Analysis
In order to justify the influence of software metrics in the

proposed model, sensitivity analysis has been preformed. In

this analysis, the impact of input variable on output variable is

analyzed. It is desirable to know the significance of input

metrics in software reliability prediction. As explained in the

previous section that the Design Level Reliability (DLR) has

been computed in terms of Requirements Level Reliability

(RLR), along with four other Object Oriented Design metrics

(IMc, EMc, CMc, CoMc). While, the value of RLR depends

on four requirements stage metrics RS, RIW, RC and RFD.

Therefore, it seems important to determine the impact of a

particular software metrics on the software reliability. Once

the impact of the particular software metrics on reliability has

been inferred, the better and more proactively it can be

controlled to improve the overall reliability as well as quality

of the product. Figure 14-31 are elaborating the sensitivity of

RLR or DLR with respect to various input variables.

4.6.2 Quantified Reliability and Metrics
After ensuring that the developed model is running

successfully, in this phase various artifacts involved in the

reliability prediction needs to be further analyzed to know

more about their behavior. The following sub sections will

perform this task for requirements and design phase

separately. Figure 14-31 are elaborating the sensitivity of

RLR or DLR with respect to various input variables.

4.6.2.1 Analyzing the Requirements Metrics
Observing the quantitative change in the Requirements Level

Reliability (RLR), on the basis of the quantitative variation in

the values of requirement metrics, following observations are

noticed:

(a) Individual Variation
As the value of RS moves towards 0 to 1 the value of

RLR also increases from 0 to 1.

As the value of RS moves towards 1 to 0 the value of

RLR also decreases towards 0.

As the value of RIW moves towards 0 to 1 the value of

RLR also move from 0 to 1.

As the value of RIW decreases from 1 to 0 the RLR also

decreases in the same direction.

As the value of RC moves from 1 to 0 the value of RLR

move in opposite direction (0 to 1).

International Journal of Computer Applications (0975 ï 8887)

Volume 162 ï No 2, March 2017

51

As the value of RC increases from 0 to 1 the value of

RLR decreases towards 0.

As the value of RFD moves towards 1 the value of RLR

move in reverse direction (1 to 0).

As the value of RFD decreases, the value of RLR

increases from 0 to 1.

(b) Combinational Variation
As the values of RC along with RFD move towards 1 to

0 the value of RLR moves towards 0 to 1.

As the values of RC and RFD move towards 0 to 1 the

RLR decrease from 1 towards 0.

As the values of RS along with RIW decreases, the value

of RLR responds in the same direction.

As the values of RS and RIW move from 0 to 1 the value

of RLR also increases from 0 to 1.

As the values of RC and RIW move towards 1 or 0 the

value of RLR neither increases nor decreases.

As the values of RS and RFD vary from 0 to 1 or 1 to 0

the value of RLR neither increases nor decreases.

As the values of RC and RS move towards 1 or 0 the

RLR reflects no influence, neither increases nor

decreases.

After going through afore mentioned empirical observations

in the form of individual and combinational variations,

following conclusion may be drawn.

ñHigher the value of RS the more reliable the requirements

will beò

ñHigher the value of RC the less reliable the requirements

will beò

ñHigher the value of RIW the more reliable the

requirements will beò

ñHigher the value of RFD the less reliable the requirements

will beò

4.6.2.2 Analyzing the Design Metrics
Similarly, observing the quantitative change in the Design

Level Reliability (DLR), on the basis of the quantitative

variation in the values of Object-Oriented Design metrics

following observations are noticed:

(a) Individual Variation

As the value of RLR moves from 0 to 1, the value of DLR

also increases in the same direction.

As the value of RLR decreases from 0 to 1, the value of

DLR also decreases from 0 to 1.

As the value of EMc increases towards 1 the value of

DLR also increase.

As the value of EMc decreases towards 0 the value of

DLR also decreases.

As the value of CoMc moves towards 1 the value of

DLR also increases.

As the value of CoMc moves towards 0 the value of

DLR also decreases.

As the value of IMc decreases from 1 to 0, the value of

DLR increases towards 1 from 0.

As the value of IMc moves towards 1 from 0, the value

of DLR decreases towards 0 from 1.

As the value of CMc moves from 0 to 1, the value of

DLR moves in reverse direction.

As the value of CMc moves towards 0 the value of DLR

increases.

Figure:14 Sensitivity of RLR with respect to RFD

Figure:15 Sensitivity of RLR with respect to RS

Figure:16 Sensitivity of DLR with respect to RC

International Journal of Computer Applications (0975 ï 8887)

Volume 162 ï No 2, March 2017

52

Figure:17 Sensitivity of DLR with respect to Cohesion

Figure:18 Sensitivity of RLR with respect to RIW

Figure:19 Sensitivity of DLR with respect to EM

Figure: 20 Sensitivity of DLR with respect to Inheritance

Figure: 21 Sensitivity of DLR with respect to Coupling

Figure:22 Sensitivity of RLR with respect to RIW and RS

International Journal of Computer Applications (0975 ï 8887)

Volume 162 ï No 2, March 2017

53

Figure: 23 Sensitivity of DLR with respect to RLR and

EM

Figure: 24 Sensitivity of RLR with respect to RFD and RC

Figure:25 Sensitivity of DLR with respect to RLR and

Cohesion

Figure:26 Sensitivity of DLR with respect to Cohesion and

Encapsulation

Figure:27 Sensitivity of DLR with respect to

Encapsulation and Inheritance

Figure:28 Sensitivity of DLR with respect to Inheritance

and Coupling

