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ABSTRACT 

Continues Stirred Tank Reactor (CSTR) is widely used in 

chemical industries and to get high productivity and quality 

from CSTR the control of various parameter is an important 

issue. Neural Network based Model Predictive Controller 

(NNMPC) refers to a class of control algorithms that compute 

a sequence of manipulated variable adjustments in order to 

optimize the future behaviour of a plant. In the present study 

NNMPC is implemented in Neural Network Toolbox of 

Matlab software that calculates the control input to optimize 

CSTR performance over a specified future time horizon using 

minimization routines based on five different line searches. 

These five conjugate gradient based line searches are namely, 

Golden section; Bent's; Hybrid bisection cubic; Charalambous 

and Backtracking line searches. Performance analysis of 

CSTR output response and error convergence plot indicates 

that the brent's line search based minimization routine gives 

best result as compared to other line searches and the NNMPC 

utilizing Brent's line search based minimization routine 

controls the output concentration effectively.   
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1. INTRODUCTION 
The traditional process control systems uses linear dynamic 

models whereas for the highly nonlinear systems, control 

techniques which are based on nonlinear models may  provide 

significant  improvement. Model Predictive Control (MPC) 

concept is being extensively studied and widely acceptable in 

industrial  applications. The main reasons for such popularity 

of the predictive control strategies are the intuitiveness and 

the explicit constraint handling. 

Adaptive tracking control is considered for a class of general 

nonlinear systems using multilayer neural 

networks(MNNs)[1]. A non linear model of the plant is 

approximated by an external model, and the resultant 

controller ensures internal properties and stability of the 

control system[2]. Non-linear control of CSTR for reversible 

reaction is carried out using Neural Network as design tool[3]. 

Fuzzy optimal control methodology is applied to the design of 

the feedback loops of an Exothermic Continuous Stirred Tank 

Reactor system[4].Developing a model incorporating the 

nonlinear dynamics of the system warrants lot of computation, 

an efficient control of the product concentration can be 

achieved only through accurate model.[5].Neural Network 

Approximate Generalized Predictive Control (NNAPC) that 

uses a combination of Artificial Neural Network (ANN) with 

Approximate Generalized Predictive Control technique 

(APC).[6]. Fuzzy based structure strategy gives the more 

flexibility and precise behavior in control action in 

comparison to the least square based approach.[7]. Predictive 

control algorithm is applied to control the concentration in a 

continuous stirred tank reactor (CSTR), whose parameters are 

optimally determined by solving quadratic performance index 

using the optimization algorithm[8]. 

Another approach to neuro-fuzzy control is a combination of 

the neural predictive controller and the neuro-fuzzy controller 

(Adaptive Network-based Fuzzy Inference System - ANFIS). 

These controllers work in parallel. The output of ANFIS 

adjusts the output of the neural predictive controller to 

enhance the control performance. Such design of an 

intelligent control system is applied to control of the 

continuous stirred tank reactor and laboratory mixing 

process[9]. Adaptive controller is an efficient controller for 

temperature control of CSTR than PID controller[10].The 

simulation result shows that both NNPC and SVMPC gives 

better control performance than PID for set-point change as 

well as for load change of ±10% in methanol feed flow rate 

and molar ratio of methanol to isoamylene in reactor effluent 

feed[11] 

The control is performed in primary and secondary control-

loops where the primary controlled output of the reactor is a 

concentration of the main reaction product and the secondary 

output is the reactant temperature. A common control input is 

the coolant flow rate. The controller in the primary control-

loop is a P-controller with an adjustable gain. A controller in 

the secondary control-loop consist of the static nonlinear and 

the dynamic adaptive linear part. The proposed method is 

verified by control simulations[12]. For controlling the 

product composition in the CSTR, the neuro controller 

NARMA-L2 is implemented by manipulating the input feed 

composition. The simulation results show the superiority of 

the NARMA-L2 in accurately tracking the composition set-

point changes in the CSTR and control the system better as 

compared to that of the conventional PID[13].   

Literature review of earlier work clearly indicates that the 

application of NN for CSTR output control is attempted 

several times before, but none of the author included the 

effect of design parameters of NN on the performance of 

CSTR. Thus an attempt had been made in the presented paper 

to analyze these effects. 

In this paper, introduction is given in section I. The remainder 

of the paper is organized as follows: In Section II, the Neural 

Network based Model Predictive control(NNMPC) is 

described. Section III discuss various minimization routines, 

section IV explains CSTR non-linear Plant Model and section 

V provides simulation model for validation and testing of the 

designed controller. The results and discussions are given in 

Section VI, and section VII presents concluding remarks.  

2. NN MODEL PREDICTIVE CONTROL 
The neural network model predictive controller uses a neural 

network model of a nonlinear plant to predict future plant 
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performance. The controller then calculates the control input 

that will optimize plant performance over a specified future 

time horizon. The first step in model predictive control is to 

determine the neural network plant model (system 

identification). Next, the plant model is used by the controller 

to predict future performance(optimization process). 

2.1 System Identification 
The first stage of model predictive control is to train a neural 

network to represent the forward dynamics of the plant. The 

prediction error between the plant output and the neural 

network output is used as the neural network training signal. 

The neural network plant model uses previous inputs and 

previous plant outputs to predict future values of the plant 

output. The structure of the neural network plant model 

consists of input layer, hidden layers and an output layer. This 

network can be trained offline in batch mode, using data 

collected from the operation of the plant. Training is done in 

batch mode using fast algorithms that uses one of the three 

standard numerical optimization techniques i.e. Conjugate 

gradient;  Quasi-Newton and Levenberg-Marquardt (trainlm). 

The Levenberg-Marquardt algorithm [14-16]is used in the 

present paper as it appears to be the fastest method for 

training moderate-sized feedforward neural networks (up to 

several hundred weights). It also has a very efficient 

MATLAB implementation, because the solution of the matrix 

equation is a built-in function, so its attributes become even 

more pronounced in a MATLAB setting. 

2.2 Predictive Control 
The model predictive control method is based on the receding 

horizon technique [17]. The neural network model predicts 

the plant response over a specified time horizon. The 

predictions are used by a numerical optimization program to 

determine the control signal that minimizes the following 

performance criterion over the specified horizon 

=  (𝑦𝑟 𝑡 + 𝑗 − 𝑦𝑚 𝑡 + 𝑗 )2
𝑁2
𝑗=𝑁1

+ 𝜌 (𝑢′ 𝑡 + 𝑗 − 1 −
𝑁𝑢

𝑗=1

𝑢′ 𝑡 + 𝑗 − 2 )    (1) 

where N1, N2, and Nu define the horizons over which the 

tracking error and the control increments are evaluated. The u′ 

variable is the tentative control signal, yr is the desired 

response, and ym is the network model response. The ρ value 

determines the contribution that the sum of the squares of the 

control increments has on the performance index. 

Fig.1 illustrates the block diagram for model predictive 

control process. The controller consists of the neural network 

plant model and the optimization block. The optimization 

block determines the values of u′ that minimize J, and then the 

optimal u is input to the plant. The controller block is 

implemented in Simulink, as described in the section V. 

 

 

 

 

Fig.1 Block diagram of model predictive control process 

3. MINIMIZATION ROUTINES 
Optimization process involves minimization of error using 

minimization routines based on conjugate gradient based line 

search algorithms. In most of the conjugate gradient 

algorithms, the step size is adjusted at each iteration. A search 

is made along the conjugate gradient direction to determine 

the step size, which minimizes the performance function 

along that line. Five different search functions are discussed 

here that are used to analyze the performance of plant(CSTR) 

output : 

3.1 Golden Section Search (srchgol) 
The golden section search srchgol is a linear search that does 

not require the calculation of the slope. This routine begins by 

locating an interval in which the minimum of the performance 

occurs. This is accomplished by evaluating the performance at 

a sequence of points, starting at a distance of delta and 

doubling in distance each step, along the search direction. 

When the performance increases between two successive 

iterations, a minimum has been bracketed. The next step is to 

reduce the size of the interval containing the minimum. Two 

new points are located within the initial interval. The values 

of the performance at these two points determines a section of 

the interval that can be discarded, and a new interior point is 

placed within the new interval. This procedure is continued 

until the interval of uncertainty is reduced to a width 

of tolerance of search, which is equal to step size/Parameter 

that relates the tolerance to the initial step size. 

3.2 Brent's Search (srchbre) 
Brent's search is a linear search, which is a hybrid 

combination of the golden section search and a quadratic 

interpolation. Function comparison methods, like the golden 

section search, have a first-order rate of convergence, while 

polynomial interpolation methods have an asymptotic rate that 

is faster than superlinear. On the other hand, the rate of 

convergence for the golden section search starts when the 

algorithm is initialized, whereas the asymptotic behavior for 

the polynomial interpolation methods may take many 

iterations to become apparent. Brent's search attempts to 

combine the best features of both approaches. 

For Brent's search the same interval of uncertainty is kept as it 

is with golden section search, but some additional points are 

computed. A quadratic function is then fitted to these points 

and the minimum of the quadratic function is computed. If 

this minimum is within the appropriate interval of uncertainty, 

it is used in the next stage of the search and a new quadratic 

approximation is performed. If the minimum falls outside the 
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known interval of uncertainty, then a step of the golden 

section search is performed. 

3.3 Hybrid Bisection-Cubic Search 

(srchhyb) 
Like Brent's search, srchhyb is a hybrid algorithm. It is a 

combination of bisection and cubic interpolation. For the 

bisection algorithm, one point is located in the interval of 

uncertainty and the performance and its derivative are 

computed. Based on this information, half of the interval of 

uncertainty is discarded. In the hybrid algorithm, a cubic 

interpolation of the function is obtained by using the value of 

the performance and its derivative at the two end points. If the 

minimum of the cubic interpolation falls within the known 

interval of uncertainty, then it is used to reduce the interval of 

uncertainty. Otherwise, a step of the bisection algorithm is 

used. 

3.4 Charalambous' Search (srchcha)  
The method of Charalambous srchcha was designed to be 

used in combination with a conjugate gradient algorithm for 

neural network training, it is a hybrid search. It uses a cubic 

interpolation, together with a type of sectioning. 

3.5 Backtracking (srchbac) 
The backtracking search routine srchbac is best suited to use 

with the quasi-Newton optimization algorithms. It begins with 

a step multiplier of 1 and then backtracks until an acceptable 

reduction in the performance is obtained. On the first step it 

uses the value of performance at the current point and at a step 

multiplier of 1. Also it uses the value of the derivative of 

performance at the current point, to obtain a quadratic 

approximation to the performance function along the search 

direction. The minimum of the quadratic approximation 

becomes a tentative optimum point (under certain conditions) 

and the performance at this point is tested. If the performance 

is not sufficiently reduced, a cubic interpolation is obtained 

and the minimum of the cubic interpolation becomes the new 

tentative optimum point. This process is continued until a 

sufficient reduction in the performance is obtained. 

4. PLANT MODEL 
A standard catalytic Continuous Stirred Tank Reactor (CSTR) 

model is used in the present study. The diagram of the process 

is shown in the Fig.2 

 

Fig. 2 Plant Model[18] 

The dynamic model of the system is 

𝑑(ℎ)

𝑑𝑡
= 𝑤1 𝑡 + 𝑤2 𝑡 − 0.2 ℎ(𝑡)  (2) 

𝑑𝑐𝑏 (𝑡)

𝑑𝑡
=  𝑐𝑏1 − 𝑐𝑏(𝑡) 

𝑤1(𝑡)

ℎ(𝑡)
+  𝑐𝑏2 − 𝑐𝑏(𝑡) 

𝑤2(𝑡)

ℎ(𝑡)
−

𝑘1𝑐𝑏 (𝑡)

(1+𝑘2𝑐𝑏  𝑡 )
2
     (3) 

where h(t) is the liquid level, Cb(t) is the product 

concentration at the output of the process, w1(t) is the flow 

rate of the concentrated feed Cb1, and w2(t) is the flow rate of 

the diluted feed Cb2. The input concentrations are set 

to Cb1 = 24.9 and Cb2 = 0.1. The constants associated with the 

rate of consumption are k1 = 1 and k2 = 1. 

The objective of the controller is to maintain the product 

concentration by adjusting the flow w1(t). To simplify the 

example, set w2(t) = 0.1. The level of the tank h(t) is not 

controlled for this experiment. 

5. SIMULATION MODEL 
A diagram of the simulation process is shown in Fig.3, it 

includes a catalytic Continuous Stirred Tank Reactor (CSTR) 

whose output concentration is controlled via NNPC, input to 

the controller is set to a random reference signal.  

 

Fig.3 Block diagram of simulation model 

Plant Identification is done to develop the neural network 

plant model to predict future plant outputs. The optimization 

algorithm uses these predictions to determine the control 

inputs that optimize future performance. The plant model 

neural network has seven hidden layer, the number of delayed 

inputs-2 nos. and delayed outputs-2 nos., and the training 

function is trainlm to train the neural network plant model. 

Then training data is generated which is further used to train 

the network(plant model) according to the training algorithm. 

Simulation is performed after loading the trained neural 

network plant model into the NN Predictive Controller block.  

The NN Predictive Controller is designed by setting controller 

horizons N2 and Nu(N1 is fixed at 1.), weighting parameter ρ, 

the parameter α to control the optimization. It determines how 

much reduction in performance is required for a successful 

optimization step. Five different minimization routines are 

used by the optimization algorithm, and 2 iterations of the 

optimization algorithm are performed at each sample time. As 

the simulation runs, the plant output for five different 

minimization routines and the random reference signal are 

displayed, as in the Fig.4. Also the error convergence plot is 

shown in Fig.5 that compares the reference signal with 5 

outputs having different minimization routines to optimize the 

neural network predictive controller. 

Random 
 Reference 

NNMPC Plant(CSTR) 

Plant Output Flow Rate 
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Fig.4 Output response of CSTR for different line search algorithms v/s ref. signal 

 

Fig.5 Error convergence plot for five different line search algorithms/minimization routines 

Table 1 Comparison of statistical characteristics of five minimization routines. 

Statistics 

Type of Minimization Routines 

Brent (bre)  

Golden Section 

(gol)  

Hybrid 

Bisection 

Cubic (hyb) 

Charalambous 

(cha) 

Backtracking 

(bac) 

Min  -1.2154  -1.3131  -1.3693  -1.4534 -1.4693 

Max 1.6312  1.6497 1.6380 1.6765 1.6556 

Mean 0.2407 0.2458 0.2440 0.2378 0.2468 

Median 0.0461 0.0387 0.0457 0.0377 0.0422 

Mode -1.2154  -1.3131 -1.3693 -1.4534 -1.4693 

Std 0.5263  0.5313  0.5332 0.5424 0.5423 

Range 2.8466 2.9628 3.0073 3.1299 3.1249 

 

6. RESULTS AND DISCUSSIONS 
Fig.4 shows the output concentration response of CSTR 

corresponding to different line searches used for optimization 

of NNMPC. Five different line search algorithms are used for 

minimisation of MSE during the conjugate-gradient based 

training of the multilayered feed forward neural network 
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based predictive controller. Fig.5 indicates the error 

convergence in the five conditions, using data statistics tool in 

Matlab a comparison is obtained for the five conditions. Table 

1 gives the comparison of statistical parameters for various 

line search routines and shows that the Brent's line search 

routine has minimum magnitude of range, mode and standard 

deviation, hence it is best suited for the particular application.  

7. CONCLUSION  
Application of neural network predictive control for output 

concentration control of continuous stirred tank reactor had 

been successfully attempted. Designing of NNMPC using 

multilayer feedforward neural network involves conjugate 

gradient based training. Training of neural network is done by 

minimizing the mean square error(MSE) cost function using 

different line search algorithms. Out of the five line searches 

attempted, the brent's line search based minimization routine 

train the neural network more accurately as compared to other 

line searches. It has minimum standard deviation and appears 

closer to the random reference signal. Thus it can be 

concluded from the present study that Brent's line search 

based minimization routine outperforms in the present 

scenario and significantly affect the output of CSTR. In future 

the effect of other NNMPC design parameters can be 

analyzed for CSTR application.   
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