
International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 11, April 2017

18

An Approach to Sort Unicode based Bengali Text

using Trie

Ranit Debnath Akash
Department Computer

Science and Engineering,
Shahjalal University of

 Science and Technology,
Sylhet

U. Khyoi Nu
Department of

Computer Science and
Engineering,

Shahjalal University of
Science and Technology,

Sylhet

Biswapriyo Chakrabarty
Department of Computer

 Science and Engineering,
Shahjalal University of

Science and Technology,
Sylhet

ABSTRACT

This paper proposes a sorting algorithm for Unicode based

Bangla texts using Trie.. Bengali texts can not be sorted using

the Unicode character scheme as Unicode character sequence

is different from the Bangla Academy character sequence.

Moreover, Bengali, an Indo-Aryan language spoken by

approximately 200 million people has some distinct

properties with its diacritic signs. In this paper, we have sorted

Bangla texts based on the Bangla Academy character order

using an efficient information retrieval data structure. Our

proposed algorithm is more memory efficient and is

applicable to any unicode based Bangla text.

General Terms
Theoretical Informatics.

Keywords
Sorting Algorithm, Unicode Bengali text, Trie

1. INTRODUCTION
Bengali is one of the most spoken languages in the world.

[1][2][3] It is ranked second in the Indian subcontinent and

seventh in the world according to the population speaking in

Bengali which is about 210 million covering 3.05% of the

world population. Hence, it has become a crying need to

standardize Bengali language such as Bengali keyboard layout,

Bengali character recognition etc. As a very basic need of this

standardization, sorting of Bengali words has become one of

the demanding issues now a days. Few works has already been

done on this topic. This paper proposes a new approach to sort

Unicode Bengali texts using Trie. The approach is simple and

easy to implement in any code. [4] Since Bangla Academy is

national language authority of Bangladesh, the texts were

sorted according to its standard.

2. BENGALI LANGUAGE
Bengali is one of the most used language in the word and it

has a very complicated structure .

2.1 Base Letters
There are about 11 vowels and 39 consonants in Bengali

alphabet known together as Base Letter.

The Bangla vowels are

অ আ ই ঈ উ ঊ ঋ এ ঐ ঑ ঒

The Bangla consonants are
ও ঔ ক খ গ ঘ ঙ চ ছ জ ঝ ঞ ট ঠ ড র্ ঢ ণ দ ধ ন ঩ প ফ ব ভ

ম য র ঱ ল ঳ ঴ ড় ঢ় য় ৎ ং ং ং

2.2 Modifiers
Bengali modifiers can be categorized to two groups. One of

them is vowel modifier and another one is consonant modifier.

2.2.1 Vowel Modifiers

The vowel modifiers are generally known as –ওায. Out of 11

vowels, 10 are considered as modifiers.

Table 1. Vowel Modifiers Example

Vowel Vowel Modifier Example

আ ংা ভা

ই িং িভ

ঈ ংী ভী

উ ংু ভ ু

ঊ ংূ ভ ূ

ঋ ংৃ ভ ৃ

এ েং েভ

ঐ ৈং ৈভ

঑ েংা েভা

঒ েং েভ

2.2.2 Consonant Modifiers
There are six consonant modifiers in Bengali language. They

are called –পরা.
Table 2. Consonant Modifiers Example

Consona

nt

Consonant

Modifier

Example

ম ম-পরা ভয

য য-পরা ম্র

ন ন-পরা ম্ন

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 11, April 2017

19

র র-পরা ম্ল

ভ ভ-পরা ম্ম

ফ ফ-পরা ম্ব

2.3 Compound Characters
Compound characters are some different types of character

which are formed by combining two or more Bengali

alphabets and it will act like a single one though built with

more than one. There are about 285 compound characters in

Bangla language[5]. Some of the examples of compound

characters are:

Table 3. Compound Characters Example

Bangla

Word

Compound Character Decompressed Form

ব্রাহ্মড হ্ম ঴ + ং + ভ

মুক্ত ক্ত ও + ং + ঢ

ওষ্ট ষ্ট ল + ং + ঝ

ভগু্ধ গ্ধ ক + ং + ধ

উদ্ধায দ্ধ দ + ং + ধ

3. RELATED WORKS
Aamira Shabnam et al.[6] proposed an easily Comprehendible

Unicode Based Sorting and in which they have some

drawback because they haven‟t added any null modifier.

Aamira Shabnam et. al.[7] also proposed a Faster Approach

of sorting but their mapping and sorting order is different from

the Bangla Academy standard.

Partha Sarathi Kar et al.[8] proposed an improved Unicode

Based Sorting in which they have tried mapping every

characters and compound letters which increases the memory

or storage complexity.

Md. Mahfuzur Rahaman et al. [9] used a revised Unicode

based sorting method with maintaining the Bangla Academy

order including taking account of the ZWJ (Zero-Width-Joiner)

and ZWNJ (Zero-Width-Non-Joiner) at the time of mapping

and decompressing a word which gave a more correct sorting

order than others regarding many situations.

4. DATA SET

We have used the corpus of ফা রা টাঝাস঳ঝ (ও঩পা঳) [10] to

test our sorting method and it has given an excellent result.

5. METHODOLOGY

5.1. Behavior and assumptions
We assumed the followings

 Mapping is a must as Unicode character sequence

doesn‟t match the Bangla Academy character sequence.

So we need to sort them according to Bangla Academy

character sequence.

 As Md. Mahfuzur Rahaman et. al.(2016)[9] told, we have

considered the ZWJ (Zero-Width-Joiner) and ZWNJ

(Zero-Width-Non-Joiner) while mapping and also while

decompressing a word.

5.1.1. Mapping
We have used mapping as Md. Mahfuzur Rahaman et al. [9]

suggested which is the best one till now.

Table 4. Mapping method used in this method [9]

Unicode Value Character Mapped Value

200C ZWNJ 00

200D ZWJ 01

0985 অ 02

0986 আ 03

0987 ই 04

0988 ঈ 05

0989 উ 06

098A ঊ 07

098B ঋ 08

098F এ 09

0990 ঐ 10

0993 ঑ 11

0994 ঒ 12

0982 ং 13

0983 ং 14

0981 ং 15

0995 ও 16

0996 ঔ 17

0997 ক 18

0998 খ 19

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 11, April 2017

20

0999 গ 20

099A ঘ 21

099B ঙ 22

099C চ 23

099D ছ 24

099E জ 25

099F ঝ 26

09A0 ঞ 27

09A1 ট 28

09DC ড় 29

09A2 ঠ 30

09DD ঢ় 31

09A3 ড 32

09A4 ঢ 33

09CE ৎ 34

09A5 ণ 35

09A6 দ 36

09A7 ধ 37

09A8 ন 38

09AA ঩ 39

09AB প 40

09AC ফ 41

09AD ব 42

09AE ভ 43

09AF ম 44

09DF য় 45

09B0 য 46

09B2 র 47

09B6 ঱ 48

09B7 ল 49

09B8 ঳ 50

09B9 ঴ 51

09BE ংা 52

09BF িং 53

09C0 ংী 54

09C1 ংু 55

09C2 ংূ 56

09C3 ংৃ 57

09C7 েং 58

09C8 ৈং 59

09CB েংা 60

09CC েং 61

09CD ং 62

5.2. String store and sort:
In this paper a new methodology is proposed which is a little

different from the others. Here a Trie data structure is built

with the Bangla letters which are mapped at first to some

numeric values. Now with that Trie structure we are storing

every word in our corpus in the Trie tree. Basically Trie is a

rooted tree where initially there is only one node which is root

node from where we are starting the Trie tree. So it is initially

empty and it has only root node. Now for this data structure

every node has

• About 63 links to its children all of which point

to different Bengali characters.

• A Boolean field which tells if this node is end point of

any inserted word.

We insert words in Trie by searching it in the tire. For

example we start from the then we search a link that

correspond to the first character of the word. Here could be

two cases:

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 11, April 2017

21

1. A link may exist. Then we go to the next child level node

with that link and the algorithm continue its‟ search for

next character of word.

2. There is no link with the corresponding character. Then

we create a new node and link it with it‟s parent‟s link

for the corresponding position matching words‟ current

character. Then we repeat this step till we get to the last

character of the inserting word, when we have created a

similar node or pointed it somehow for the last character

we set the Boolean field of that node as true because it is

end of the inserting word.

Now when we are inserting a word in Trie e.g. the Bangla

word "ওরভ " we will search for an edge from the root named

“ও” to another node where we can reach from the root node to

that with the specific letter “ও” let‟s say it‟s a node n1 if it

exists then good otherwise we create as described above. In

the same way from n1 we will search and go to another node

with edge labeled 'র' to node n2, then to another node n3 with

edge labeled „ভ‟ & after reaching n3 we will mark its‟ Boolean

field as true as it is the end of the word. Now we store them in

Bangla Trie normally letter by letter. But we are making the

edge of letters from one to another starting from root in which

order they are appearing in the word. We can see an example

for the word “আভ”. Here deeply colored node means a word

ends in that node.

Fig 1.1: Trie word store 1

Now when we are storing the word “আিভ” and "আভায" added

in that structure it‟ll look something like below.

Fig 1.2: Trie word store 2

Now this is how Trie is storing words in the tree which is very

memory efficient. For the same prefix it is not storing it twice.

Now what we need to do after taking all the words we have to

search it and print it in the sorted order. Now we will traverse

the Trie starting from root node. We‟ll traverse it in the

Bengali word letter order that means we‟ll first look for the

letters in the order „অ‟, "আ", ..., "঑", '঒', 'ও', 'ঔ', … ং , ৺,ংা,

িং, ংী, … , েংা, েং etc in every node. That means after coming

to a node it will search for if there is a edge from it labeled অ,

then আ, then in the above order which is a defined order in

Bengali letters. Then after finding a node it will do the same

and will also check every node whether it ends with a word or

not. If it‟s a word it will be printed and then it will look for

another edge from that node. Now if we traverse the tree in the

predefined order we will get a sorted list of Bengali words.

Fig 1.3: Trie Data Structure

When it will traverse through Trie for the words in the above

tree at first we will go for the „অ' then from that we will again

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 11, April 2017

22

search and we will find a edge for „র‟ we will go to that then

from there we will find the edge with '঳' then we will find an

end mark in the that node so we will print the word

'অর঳' then will traverse back and go to the root. Then from

there we have traversed for „অ‟ now from there it will traverse

for „আ‟ then from there it will go with the edge labeled „ভ‟ and

it has an end mark so it will print the word „আভ‟ then from

there it will go for „ ংা ‟ with then from there we will go to „য‟

and it will have the end mark and print the „আভায‟, then it will

traverse back and now it go for the edge labeled 'িং' then it

will go back to root then it will search and go for the edge

labeled „ও‟ then eventually it will discover the word „ওরভ‟. So

in that way all the words will be printed in a sorted order.

6. RESULT AND ANALYSIS
Complexity of Inserting of a word in Trie: It has a time

complexity of O(n), where m is the word length cause here In

each iteration of the algorithm, we either search or create a

node in the Trie till we reach the last of the word. This will

take n effort. It also have a space complexity of O(n), because

the worst case newly inserted key doesn't share a prefix with

the the keys already inserted in the Trie. We have to add n

new nodes, which takes us O(n) space.

Complexity of Traversing the Trie tree and printing it in

sorted order: Here if we have total V vertices and total E

edges in the Trie Tree then we have an complexity of O(V

+E) to traverse the tree and print the words in the sorted order.

This method is memory efficient for the words with same

prefix cause then we don‟t have to store all characters of the

words, then it will share the same prefix characters then only

add the extra characters that are not in its‟ shared prefix.

For example, when উ঩সদ঱, উ঩ওায, উ঩঳ ঴ায, উ঩ভ঴াসদ঱,

উ঩িয, উ঩঱঴য, উ঩সচরা, উ঩সযাক্ত, উ঩঴ায all share a common

prefix উ঩ so we don‟t need to store the prefix more than once

we will add the other characters of different words other than

the common prefix after that.

Here our approach is obviously memory efficient than other

methods and also time efficient. We hope that it can be taken

as a new standard of sorting Bangla Unicode words.

7. CONCLUSION
The proposed algorithm sorts Unicode Bengali texts according

to the character order of Bangla Academy successfully using

Trie. This method is quite memory efficient and works pretty

well for large dataset too. So this approach can be considered

to be a standard to sort Unicode Bengali texts efficiently in

accordance with Bangla Academy.

8. REFERENCES
[1] https://en.wikipedia.org/wiki/Bengali_language

[2] http://www.listsworld.com/top-10-languages-most-spoken-

worldwide/

[3] http://timesofindia.indiatimes.com/india/Nearly-60-of-

Indians-speak-a-language-other-than-

Hindi/articleshow/36922157.cms

[4] https://en.wikipedia.org/wiki/Bangla_Academy

[5]http://forum.daffodilvarsity.edu.bd/index.php?topic=11714.

0

[6] Aamira Shabnam, Debakar Shamanta Piklu, “An Easily

Comprehendible Unicode Based Sorting Algorithm for

Bangla Words”

[7] Aamira Shabnam, Tapashee Tabassum Urmi, Md. Saiful

Islam, “A Faster Approach to Sort Unicode Represented

Bengali Words”

[8] Partha Sarathi Kar, Shantanu Mandal, Labiba Jahan, “An

Improved Unicode Based Sorting Algorithm for Bengali

Words”

[9] Md. Mahfuzur Rahaman, “A Revised Unicode based

Sorting Algorithm for Bengali Texts”

[10] ফা রা টাঝাস঳ঝ (ও঩পা঳) of http://scdnlab.com/corpus/

IJCATM : www.ijcaonline.org

