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ABSTRACT 

Real world engineering problems are usually designed by the 

presence of many conflicting objectives. In this paper, an 

approach is developed to solve multi-objective structural 

design using parameterized t-norms and t-co-norms based 

intuitionistic fuzzy optimization technique. Here binary t-

norms, t-conorms are extended in the form of n-ary t-norms 

and t-co-norms and their basic properties are discussed with 

some special cases. In this paper we have considered a multi 

objective structural optimization model with weight and 

deflection as objectives and stress as constraint function. Here 

design variables are considered as cross sectional area of bars. 

This classical truss optimization example is presented here in 

to demonstrate the efficiency of our proposed optimization 

approach. Numerical example is given here to illustrate this 

structural model through this approximation method.   

Keywords 

Intuitionistic Fuzzy Set, T-norms, T-conorms, Structural 

Optimization. 

1. INTRODUCTION 
Structural design optimization is a challenging research topic 

nowadays. The challenge is to design structure with light 

weight and with minimum cost. It has been seen that multi 

objectives conflict with each other, and optimizing the 

problem considering a single objective can result an 

unacceptable results with respect to the other objectives. A 

reasonable solution to a multi-objective problem is a set of 

solutions, each of which satisfies the objectives without being 

dominated by any other solution. There are two general 

approaches for multiple-objective optimization problem. One 

of this is , make individual objective functions by combining 

all objective functions  into a single composite function or 

move all objective but one to the constraint set. In the former 

case, determination of a single objective can be made by 

utility theory or weighted sum method, where weights or 

utility functions are dependent on the decision-maker’s 

preferences. Sometimes, it can be very difficult to accurately 

select these weights. In the latter case, as a constraining value 

must be established for each of these former objectives there 

is a problem to move objectives to the constraint set. Again 

this can be arbitrary. So in both cases, a set of solutions in 

exchange of single solution would return by optimization 

method for examination of trade-offs. For this reason, 

decision-makers often choose a set of good solutions 

considering the multiple objectives. The second general 

approach is finding an entire Pareto optimal solution set. A 

Pareto optimal set is nothing but a set of solutions that are non 

dominated with respect to each other. A Pareto optimal set of 

solution is one, when we go from any Pareto optimal solution  

to another Pareto optimal solution, there always at least one 

objective function improves with sacrifice of  at least one 

other. Since the final solution of the decision-maker is always 

a trade-off when considering real-life problems Pareto optimal 

solution sets are often preferred. 

It has been seen that numerous engineering design problem 

need to deal with imprecise data, manufacturing error or 

uncertainty of the environment during the design process. 

fuzzy as well as intuitionistic fuzzy optimization in case of 

structural engineering not only helps the engineers in their 

design and analysis of systems but also leads to significant 

advances and new discoveries in fuzzy optimization theory 

and technique. This fuzzy set theory was first introduced by 

Zadeh [4]. As an extension Intuitionistic fuzzy set theory was 

first introduced by Atanassov [3].When an imprecise 

information cannot be expressed by means of conventional 

fuzzy set, Intuitionistic Fuzzy set play an important role. In 

intuitionistic fuzzy (IF) set we usually consider degree of 

acceptance, degree of non membership and hesitancy function 

whereas we consider only membership function in fuzzy set. 

A few research works has been done on intuitionistic fuzzy 

optimization in the field of structural optimization. Dey et 

al.[2] used intuitionistic fuzzy technique to optimize single 

objective two bar truss structural model. Dey et al.[9] used 

multi-objective intuitionistic optimization technique in their 

paper on three bar truss structural model. This is the first time 

a parameterized intuitionistic multi-objective nonlinear 

programming is introduced in this paper with an application in 

structural design. 

An important concept in fuzzy as well as intuitionistic fuzzy 

set theory are triangular norms and conforms which are 

nothing but a generalized intersection and union of fuzzy sets. 

Alsina et al.[6] introduced the t-norm in fuzzy set theory and 

suggested that the t-norms could be used for the intersection 

of fuzzy sets. G.Deschrijver et al.[7] introduced the concept of 

intuitionistic fuzzy t-norm and t-co norm to investigate the 

theorems for similar representation of aggregated  t-norm and 

t-conorm.  

As per our best of knowledge, this is the first time 

parameterized t-norms and t- co-norm based intuitionistic 

fuzzy optimization programming technique is being used to 

solve multi-objective structural model in this paper. In the test 

problem we have considered  three-bar planar truss subjected 

to a single load condition where the objective functions are  

weight of the truss and deflection of loaded joint and the 

design variables are the cross-sections of bars with the 

constraints as stresses in members. 

The remainder of this paper is organized in the following way. 

In section 2structural optimization model is discussed. In 

section 3, mathematics Prerequisites is discussed with. 

extended n-ary t-norms and t-co-norms and calculation  of 
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some of special cases. In section 4, we discuss about weighted 

fuzzy aggregation. In section 5, we proposed the technique to 

solve a multi-objective non-linear programming problem 

using extended parameterized t-norms and t-co-norm based  

intuitionistic fuzzy optimization. In section 6, multi-objective 

structural model is solved using extended parameterized t-

norms and t-co-norm based intuitionistic fuzzy optimization. 

Numerical illustration of structural model of three bar truss 

and comparison of results by using different extended 

weighted t-norms and t-co-norm are discussed in section 

7.Finally we draw conclusions in section 8. 

2. MULTI-OBJECTIVE STRUCTURAL 

MODEL 
In the design problem of the structure i.e lightest weight of the 

structure and minimum deflection of the loaded joint that 

satisfies all stress constraints in members of the structure .In 

truss structure system, the basic parameters (including 

allowable stress ,etc) are  known and the optimization’s target 

is that identify the optimal bar truss cross-section area so that 

the structure is of the smallest total weight with minimum 

nodes displacement in a given load conditions . 

The multi-objective structural model can be expressed as 

 Minimize WT A                                                                  (1)  

 Minimize A  

 subject to A      

min maxA A A   

Where 1 2, ,...
T

nA A A A    are the design variables for the 

cross section, n is the group number of design variables for 

the cross section bar ,  
1

n

i i i
i

WT A A L


 is the total 

weight of the structure ,  A is the deflection of the loaded 

joint ,where ,i iL A and i are the bar length ,cross section 

area and density of the thi group bars respectively.  A is the 

stress constraint and    is allowable stress of the group bars 

under various conditions, minA and maxA  are the lower and 

upper bounds of cross section area A respectively. 

3. MATHEMATICAL PRELIMINARIES 

3.1 Fuzzy Set 
Let X denotes a universal set. Then the fuzzy subset A  in 

X is a subset of order pairs    , :
A

A x x x X 
  where 

: 0,1
A

X    is called the membership function which 

assigns a real number  A
x  in the interval 0,1    to each 

element x X . A is non  fuzzy and   A
x  is identical to the 

characteristic function of crisp set. It is clear that the range of 

membership function is a subset of non-negative real 

numbers. 

3.2 Intuitionistic Fuzzy Set  
Let  1 2, ,...., nX x x x be a finite universal set. An 

intuitionistic fuzzy set (IFS) set iA in the sense of Atanassove  

[3] is given by equation     , ,i i
i

iA A
A X x x x X     
  

where the function   : 0,1i
i

A
x X    ;

  0,1ii iA
x X x     and   : 0,1i

i

A
x X    ;

  0,1ii iA
x X x    define the degree of membership 

and degree of non-membership of an element ix X to the 

set iA X ,such that they satisfy the condition 

   0 1i ii iA A
x x     , ix X  . For each IFS iA  in X

the amount       1i i i
i i

iA A A
x x x        is called the 

degree of uncertainty (or hesitation ) associated with the 

membership of elements ix X in iA we call it intuitionistic 

fuzzy index of iA with respect of an element ix X . 

3.3  Level set or    cut of a Fuzzy Set 
The   level set of a fuzzy set A of X is a crisp set A  

which contains all the elements of X that have membership 

values greater than or equal to   i.e 

  : , , 0,1AA x x x X        . 

3.4  ,   cut of a Intuitionistic Fuzzy Set  

A set of  ,  - cut generated by IFS 
iA where , 0,1    

are fixed number such that 1  
 
is denoted by 

   

   
,

, , : ,

, , , 0,1

i i

i i

A Ai

A A

x x x x X
A

x x
 

 

     

    
  

      

 

 

  

 and defined as the crisp set of element x  which belong to 

iA at least to the degree  and which belong to iA at most to 

the degree   . 

3.5 Triangular Norm (T-Norm) 
: 0,1 0,1 0,1T              is said to be t-norm if it satisfies the 

following properties 

i)    , , , 0,1T a b T b a a b    
                      

(commutativity) 

ii)      , , , , , , 0,1T T a b c T a T b c a b c     (Associativity) 

iii)    , ,T a b T a c with b c , , 0,1a b c   

(Monotonocity) 

iv)    0,0 0, 1,1 1;T T   

v)  ,1 0,1T a a a    
                                            

(Identity) 

3.6 Extended n-ary Triangular Norm  
For the purpose of operations of multiple fuzzy sets ,it is 

useful to define the notation of multidimensional t-norms. Let 

0,1
n

   be a n-dimensional cube and 
1 2( , ,....., )nx x x and 

1 2( , ,....., ) 0,1
n

nz z z    .A mapping : 0,1 0,1
n

T        is called 

n-dimensional t-norm if it satisfies the following properties. 

i)
 

 
1 2 1 1

1 2 1 1 1 1

, ,....., , , ,.....,

, ,....., , , ,...., , , ,....,

i i i n

i j i j i j n

T x x x x x x

T x x x x x x x x x

 

     

ii)
  

  

1 2 1 1 2 2 1

1 2 1 1 2 1

, ,..., , , , ,...,

, ,..., , , ,...,

n n n n n

n n n n

T T x x x x x x x

T x x x T x x x

   

    
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iii) For    1 2 1 1 2 1, ,..., , , ,..., ,n n n nx x x x z z z z    

   1 2 1 1 2 1, ,..., , , ,..., ,n n n nT x x x x T z z z z  with i ix z for some 

i and i ix z for some 1,2,....,i n  

iv)    0,0,....,0 0, 1,1,...,1 1T T   

v)  1,1,..., ,...,1i iT x x   

3.7 Properties of Extended n -ary Triang- 

ular Norm (T-Norm) 
Due to associative law it is easy to extend a triangular norm 

T into  n arguments the n-ary operation 
nT on 0,1   satisfies 

the following properties  

i)    
1 21 2, ,..., , ,...,

nn n nT x x x T x x x   where  is a 

permutation of  1,2,......,n
                            

(Commutativity)
 

ii)     1 2 1 1 2 1, ,..., , ,..., , ,.., ,...,n n i i n i i j nT x x x T x x x T x x x  
 

  1 1 2 1, ,..., , ,...,n j j j nT T x x x x x  
 

iii)
  

   

'

' ' '

1 2 1 2, ,..., , ,...,

n i i

n n n n

i N x x

T x x x T x x x

   

                  
(monotonocity) 

iv)
 

 
1 2 1 1

1 2 1 1

, ,..., ,1, ,...,

, ,..., , ,.., ,...,

n i i n

i i j n

T x x x x x

T x x x x x x

 

                    
(Identity Law) 

A t-norm nT is said to be continuous if T is continuous 

function on 0,1   .From the above, we may call nT an 

extension of triangular norm .In the sequel we omit number of 

argument n and simply write T of the class of mapping 

generated by triangular norm T . 

3.8 Triangular Conorm (T-Conorm) 
: 0,1 0,1 0,1S              is said to be t-conorm if it satisfies the 

following properties 

i)    , , , 0,1S a b S b a a b    
                       

(commutativity) 

ii)      , , , , , , 0,1S S a b c S a S b c a b c    
  

(Associativity) 

iii)    , ,S a b S a c with , , 0,1b c a b c      

(Monotonocity) 

iv)    0,0 0, 1,1 1;S S   

v)  ,0 0,1S a a a     (Identity) 

3.9 Extended n-ary Triangular Conorm 

(T-Conorm) 
For the purpose of operations of multiple fuzzy sets ,it is 

useful to define the notation of multidimensional t-norms. Let 

0,1
n

   be a n-dimensional cube and 
1 2( , ,..., )nx x x and 

1 2( , ,..., ) 0,1
n

nz z z    .A mapping : 0,1 0,1
n

S        is called n-

dimensional t-norm if it satisfies the following properties. 

i)
 

 
1 2 1 1

1 2 1 1 1 1

, ,..., , , ,...,

, ,..., , , ,..., , , ,...,

i i i n

i j i j i j n

S x x x x x x

S x x x x x x x x x

 

     

ii)
  

  

1 2 1 1 2 2 1

1 2 1 1 2 1

, ,..., , , , ,...,

, ,..., , , ,...,

n n n n n

n n n n

S S x x x x x x x

S x x x S x x x

   

    

iii) For    1 2 1 1 2 1, ,..., , , ,..., ,n n n nx x x x z z z z    

   1 2 1 1 2 1, ,..., , , ,..., ,n n n nS x x x x S z z z z  with i ix z for some 

i and i ix z for some 1,2,....,i n  

iv)    0,0,...,0 0, 1,1,...,1 1S S   

v)  0,0,..., ,...,0i iS x x  

3.10 Properties of Extended n-ary Triang- 

ular Conorm (T-Norm) 
Due to associative law it is easy to extend a triangular norm 

S into  n arguments the n-ary operation 
nS on 0,1   satisfies 

the following properties  

i)    
1 21 2, ,..., , ,...,

nn n nS x x x S x x x   where  is a 

permutation of  1,2,...,n
                               

(Commutativity)
 

ii)     1 2 1 1 2 1, ,..., , ,..., , ,.., ,...,n n i i n i i j nS x x x S x x x S x x x  
 

  1 1 2 1, ,..., , ,...,n j j j nS S x x x x x  
 

iii)
  

   

'

' ' '

1 2 1 2, ,..., , ,...,

n i i

n n n n

i N x x

S x x x S x x x

  

             
(monotonocity) 

iv)
 

 
1 2 1 1

1 2 1 1

, ,..., ,0, ....,

, ,..., , ,.., ,...,

n i i n

i i j n

S x x x x x

S x x x x x x

 

                    
(Identity Law) 

A t-norm nS is said to be continuous if S is continuous 

function on 0,1   .From the above, we may call nS an 

extension of triangular norm .In the sequel we omit number of 

argument n and simply write S of the class of mapping 

generated by triangular norm S . 

3.11 Four Basic T-norm and T-conorm 

and their Generalization with Weight 

Let 
   

   

, , : ,

, , , 0,1

i i
j j

i i
j j

j j j jA A
i

j

j jA A

x x x x X
A

x x

 

     

   
 

  
      

 

 



 

be n intuitionistic fuzzy set for 1,2,....,j n . 

i)Minimum t-norm and maximum t-conorm 

The intuitionistic fuzzy minimum t-norm and maximum t-co-

norm can be defined as  

      

      

1 1 2 2

1 1 2 2

, ,.....,

min , ,.....,

M n n

n n

T x x x

x x x

  

  
and 

      

      

1 1 2 2

1 1 2 2

, ,.....,

max , ,.....,

M n n

n n

S x x x

x x x

  

    

Similarly n-ary intuitionistic fuzzy minimum t-norm and 

maximum t-co-norm 

with  weight   can be defined as  
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      

      

1 1 1 2 2 2

1 1 1 2 2 2

, ; , ;.....; ,

min ; ;.....;

w

M n n n

n n n

T w x w x w x

w x w x w x

  

  
 and 

      

      

1 1 1 2 2 2

1 1 1 2 2 2

, ; , ;.....; ,

max ; ;.....;

w

M n n n

n n n

S w x w x w x

w x w x w x

  

    

ii) Probabilistic t-norm and t-conorm 

The intuitionistic fuzzy probabilistic t-norm and t-co-norm 

can be defined as  

         1 1 2 2

1

, ,.....,
n

P n n i i

i

T x x x x   


 and 

         1 1 2 2

1

, ,....., 1 1
n

P n n i i

i

S x x x x   


  
 

Similarly n-ary intuitionistic fuzzy probabilistic t-norm and t-

co-norm with  weight   can be defined as  

         1 1 1 2 2 2

1

, ; , ;.....; ,
i

n
w

w

P n n n i i

i

T w x w x w x x   


  and 

         1 1 1 2 2 2

1

, ; , ;.....; , 1 1
i

n
w

w

P n n n i i

i

S w x w x w x x   


  

iii)Lukasewicz t-norm and t-conorm 

The intuitionistic fuzzy Lukasewicz t-norm and t-co-norm can 

be defined as  

        1 1 2 2

1

, ,....., max ( 1),0
n

L n n i i

i

T x x x x n   


 
   

 


and         1 1 2 2

1

, ,....., min 1,
n

L n n i i

i

S x x x x   


 
  

 


 

Similarly n-ary intuitionistic fuzzy Lukasewicz t-norm and t-

co-normwith  weight   can be defined as  

        1 1 2 2

1

, ,....., max ( 1),0
n

w

L n n i i i

i

T x x x w x n   


 
   

 


 and 

        1 1 2 2

1

, ,....., min 1,
n

w

L n n i i i

i

S x x x w x   


 
  

 


 

iv)Weber (or Drastic Product ) t-norm and t-conorm 

The intuitionistic fuzzy Weber (or Drastic Product ) t-norm 

and t-co-norm can be defined as  

      

     

1 1 2 2, ,.....,

min max 1

0

D n n

i i i i

T x x x

x if x

otherwise

  

  
 


 

And 

 

      

     

  

1 1 2 2, ,.....,

max min 0

1 min 0

D n n

i i i i

i i

S x x x

x if x

if x

  

 



 
 



 

Similarly n-ary intuitionistic fuzzy Lukasewicz t-norm and t-

co-norm 

 with  weight   can be defined as  

      

     

1 1 1 2 2 2, ; , ;.....; ,

min max 1

0

w

D n n n

i i i i i i

T w x w x w x

w x if w x

otherwise

  

  
 


 and 

      

     

  

1 1 1 2 2 2, ; , ;....., ,

max min 0

1 min 0

w

D n n n

i i i i i i

i i i

S w x w x w x

w x if w x

if w x

  

 



 
 



 

3.12 Some Particular Classes of T-norms 

and T-co-norms 
A t-norm and t-co-norm is commutative order semi-group 

with unit element 1 on [0,1] of real numbers, So the class of t-

norm and t-co-norm is quite large. Two well-known class of t-

norm and t-co-norm are discussed here. 

Yager (1980) introduced the following classes of t-norms and 

t-co-normsas 

    

      

1 1 2 2

1

1 1 2 2

,

1 min 1, 1 1 [0, )

YT x x

x x



  

 

  

 
 
 

 
        
 
 

 

and  

    

      

1 1 2 2

1

1 1 2 2

,

min 1, [0, )

YS x x

x x



  

 

  

 
 
 

 
     
 
   

Extended n-ary form of above t-norm is 

      

  

1 1 1 2

1

1

, ,........,

1 min 1, 1 [0, )

Y

n n

n

i i

i

T x x x

x





  

 


 
          

  


 

and 

      

  

1 1 1 2

1

1

, ,........,

min 1, [0, )

Y

n n

n

i i

i

S x x x

x





  

 


 
        

  


 

The extended form with different weights of the above t-

norms and t-conorms are 

      

  

1 1 1 2 1 2

1

1

, ; , ;....; ,

1 min 1, 1 [0, )

Y

n n n

n

i i i

i

T w x w x w x

w x





  

 


 
          

  


 

and  
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      

  

1 1 1 2 1 2

1

1

, ; , ;........; ,

min 1, [0, )

Y

n n n

n

i i i

i

S w x w x w x

w x





  

 


 
        

  


 

It can be prove that  

(Ia)
      

      

1 1 1 2

1 1 1 2

lim , ,........,

, ,........, [0, )

Y

n n

M n n

T x x x

T x x x




  

   



   

 
Proof of (Ia) is given in the paper Dey and Roy [10] 

(IIa)
      

      

1 1 1 2
0

1 1 1 2

lim , ,........,

, ,........, [0, )

Y

n n

D n n

T x x x

T x x x




  

   



     

Proof of (IIa) is given in the paper Dey and Roy [10] 

(Ib)
      

      

1 1 1 2

1 1 1 2

lim , ,........,

, ,........, [0, )

Y

n n

M n n

S x x x

S x x x




  

   



   

 

(IIb) 
      

      

1 1 1 2
0

1 1 1 2

lim , ,........,

, ,........, [0, )

Y

n n

D n n

S x x x

S x x x




  

   



   

 
Proof of (Ib) 

Case I. 

Let      1 1 1 2 ........ 1n nx x x       

Then   

      1 1 1 2lim , ,........,Y

n nS x x x


  


 

  

1

1

lim min 1,
n

i i

i

x








  
            

  

  

1

1

min 1, lim
n

i i

i

x








  
            

  

  
1

min 1, lim i in x






                  

 

 i ix  

      1 2max , ,......, nx x x  

       1 2, ,......,M nS x x x   . 

Case II. 

Let      1 1 1 2 ........ 1n nx x x       

Then   

      1 1 1 2lim , ,........,Y

n nS x x x


  


 

  

1

1

min 1,
n

i i

i

x





 
  

   
  

 

  

 min 1,1  

      1 1 1 2max , ,........, n nx x x    

      1 1 1 2, ,........,M n nS x x x    

Case III. 

Let     , 1,2,..., ,i i j jx x for i j n i j    .Without loss of 

generality let us consider 

     1 1 1 2 ........ n nx x x      

Let    
1

1

n

i i

i

P x
 




 
 
 
 

  

Then   

1

1

lim ln lim ln
n

i i

i

P x


 


 


 
  

 
  

  
1

ln

lim

n

i i

i

x

form












 
   


 

    

  

1

1

ln

lim

n

i i i i

i

n

i i

i

x x

x



 

 













 

  
 

 
 

1
2

1 1

1 1

1

1
1 1

1 1

1

ln

lim

ln

n
i i

i i

n
i i

i i

x
x

x
x
















 



 
 



 
   

 
 

   
 





 

 1 1ln x

  1 1lim P x





  

      1 1 2 2max , ,......., n nx x x    

      1 1 1 2, ,........,M n nS x x x  

 Proof of (IIb) 

Case I. 

Let 

         1 1 1 1 1 1.. ... 0 0i i i i n n i ix x x x and x            

Then 

      1 1 1 2
0

lim , ,........,Y

n nS x x x


  


 

  

1

0
1

limmin 1,
n

i i

i

x








 
  

   
  

 

  
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   
0

min 1,lim i ix





  

 i ix  

      1 1 1 2max , ,........, n nx x x    

      1 1 1 2, ,........,D n nS x x x    

Case II. 

Let   0 1,2,........,i ix for i n    

Then 

      1 1 1 2
0

lim , ,........,Y

n nS x x x


  


 

  

1

0
1

limmin 1,
n

i i

i

x








 
  

   
  

 

  

 min 1,0  

0  

      1 1 2 2max , ,......., n nx x x    

      1 1 1 2, ,........,D n nS x x x    

Hamacher  (1978) introduced the following classes of t-

norms and t-co-norms  as 

    
   

        

1 1 2 2

1 1 2 2

1 1 2 2

,

[0, )
1 1 1 1

HT x x

x x

x x

  

 


   
   

    

 

and 

    
       

   

1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2

,

(2 )
0

1 (1 )

HS x x

x x x x

x x

  

    


  

  
 

   

Extended n-ary form of above t-norm is 

      

 

    

1 1 2 2

1

1

, ,......,

[0, )

1 1 1

H

n n

n

i i

i

n

i i

i

T x x x

x

x

   





  





   
 

    
 





 

And 

      

   

 

1 1 1 2

1 1

1

, ,........,

(2 )

0

1 (1 )

H

n n

nn

i i i i

i i

n

i i

i

S x x x

x x

x

   

  



 

 



 

 

 

 

  

The extended form with different weights of the above t-

norms and t-conorms are 

      

  

    

1 1 1 2 2 2

1

1

, ; , ;...; ,

[0, )

1 1 1

i

i

H

n n n

n
w

i i

i

n
w

i i

i

T w x w x w x

x

x

   





  





   
 

    
 



  

and  

      

    

  

1 1 1 1 1 2

1 1

1

, ; , ;........; ,

(2 )

0

1 (1 )

i

i

H

n n n

nn
w

i i i i i

i i

n
w

i i

i

S w x w x w x

w x x

x

   

  



 

 



 

 

 

 

  

It can be prove that 

 
(Ia)

      

      

1 1 1 2
1

1 1 1 2

lim , ,........,

, ,........, [0, )

H

n n

P n n

T x x x

T x x x




  

   



   

 
Proof of (Ia) is given in the paper Dey and Roy [10] 

(IIa)
      

      

1 1 1 2

1 1 1 2

lim , ,..,

, ,..., [0, )

H

n n

D n n

T x x x

T x x x




  

   



     

Proof of (IIa) is given in the paper Dey and Roy [10] 

 (Ib)
      

      

1 1 1 2
1

1 1 1 2

lim , ,...,

, ,..., [0, )

Y

n n

P n n

S x x x

S x x x




  

   



   

 

(IIb)
      

      

1 1 1 2

1 1 1 2

lim , ,...,

, ,..., [0, )

Y

n n

D n n

S x x x

S x x x




  

   



   

 
Proof of (Ib) 

      1 1 1 2
1

lim , ,........,H

n nS x x x


  


 

   

 

1 1

1

1

(2 )

lim

1 (1 )

nn

i i i i

i i

n

i i

i

x x

x


  

 

 





 



 

 


 

  
1

1 1
n

i i

i

x


    

      1 1 1 2, ,........,P n nS x x x  

 Proof of (IIb) 

Case I. 

Let       1 1 1 2 ........ 0n nx x x     

 Then 

      1 1 1 2lim , ,........,H

n nS x x x


  

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   

 

1 1

1

(2 )

lim

1 (1 )

nn

i i i i

i i

n

i i

i

x x

x


  

 

 





 



 

 


 

0  

      1 1 2 2max , ,......., n nx x x    

      1 1 1 2, ,........,D n nS x x x    

Case II. 

Let      1 1 1 2 ........ 0n nx x x     

 Then 

      1 1 1 2lim , ,........,H

n nS x x x


  


 

   

 

1 1

1

(2 )

lim

1 (1 )

nn

i i i i

i i

n

i i

i

x x

x


  

 

 





 



 

 


 

1  

      1 1 1 2, ,........,D n nS x x x  

 Hence the proof. 

4. WEIGHTED INTUITIONISTIC 

FUZZY AGGREGATION 
Weighted aggregation has been used quiet extensively 

especially in fuzzy decision making, where the weight are 

used to represent the relative importance and the negligence 

the decision maker attaches to different decision criterion 

(goals or constraints).Weighted aggregation of fuzzy sets by 

using t-norm has been considered by Yagar [5].He proposed 

to modify the membership function with the associated weight 

factors before the fuzzy aggregation. Xeshui Xu [8] presented 

intuitionistic fuzzy aggregation operator .The weighted 

aggregation is then the aggregation of the modified 

membership and non-membership functions and the general 

form of this idea is  

           1 1 1 1 2 2 2, , , , ,..., ,k k kD x w T I x w I x w I x w  

           2 1 1 1 2 2 2, , , , ,..., ,k k kD x w S I x w I x w I x w  

Where w are   vectors of weight factor 0,1 1,2,.....,iw i k   

associated with the aggregated membership  function  i ix

and non-membership function  i ix .Here T is triangular 

norm and S is triangular conorm ,I is a function of two 

variables that transforms the membership and non-

membership with 
1

1, 0;
k

i i
i

w w


  . 

 

 

 

5. MATHEMATICAL ANALYSIS 

5.1 Intuitionistic Fuzzy Non-linear 

Programming Optimization with 

Different Weighted T-norm and T-

conorm Operator to Solve Multi-

Objective Non-linear Programming 

Problem 
A multi-objective non-linear parametric intuitionistic 

programming (MONLP) Problem can be  formulated as  

      1 2, ,....,
T

pMinimize f x f x f x                                    (2) 

 Subject to   ; 1,2,.....,j jg x b j m   

0x   

Following Zimmermann [11] ,we have presented a solution 

algorithm to solve the MONLP Problem by fuzzy 

optimization technique. 

Step-1: Solve the MONLP (2) as a single objective non-linear 

programming problem p th by taking one of the objective at a 

time and ignoring the others .These solutions are known as 

ideal solutions. Let 
ix be the respective optimal solution for 

the 
thi different objectives with same constraints and evaluate 

each objective values for all these 
thi optimal solutions. 

Step-2: From the result of step -1 determine the 

corresponding values for every objective for each derived 

solutions. With the values of all objectives at each ideal 

solutions, pay-off matrix can be formulated as follows 

     

     

     

     

1 2

* 1 * 1 * 1
1 1 2

* 2 * 2 * 22
1 2

* * *
1 2

........

........

........

.......... ............. ........ ..........

.........

p

p

p

p
p p p

p

f x f x f x

f x f x f x
x

f x f x f xx

x f x f x f x

 
 
 
 
 
 
 
 
 



 

 Here 1 2, ,......, px x x are the ideal solution of the objectives 

     1 2, ,...., pf x f x f x  respectively. 

Step-3: From the result of step 2 now we find lower bound 

(minimum) 
ACC
iL  

and upper bound (maximum) 
ACC
iU by using following rule 

     max , minACC p ACC p
i i i iU f x L f x  where 1 i p 

.But in IFO The degree of non-membership (rejection) and the 

degree of membership (acceptance) are considered so that the 

sum of both value is less than one. To define the non -

membership of NLP problem let 
Re j
iU and 

Re j
iL  be the upper 

bound and lower bound of objective function  if x  where 

Re Rej jACC ACC
i ii iL L U U   .For objective function of 

minimization problem ,the upper bound for non-membership 

function (rejection) is always equals to that the upper bound 

of membership function (acceptance).One can take lower 
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bound for non-membership function as follows  

Re j Acc
i iiL L   where  0 Acc Acc

i i iU L   based on the 

decision maker choice. 

The initial intuitionistic fuzzy model with aspiration level of 

objectives becomes  , 1,2,....,iFind x i p  

so as to satisfy   i Acc
i if x L with tolerance 

 Acc Acc Acc
i i iP U L   for the degree of acceptance for

1,2,.....,i p .   Re ji
i if x U with tolerance  

 Acc Acc Acc
i i iP U L  for degree of rejection for 

1,2,.....,i p .Define the membership (acceptance) and non-

membership (rejection) functions of above uncertain 

objectives as follows. For the , 1,2,....,thi i p objectives 

functions the linear membership function   i if x and 

linear non-membership   i if x is defined as follows 

  

 
 

 

 

1

1

0

Acc
i i

Acc Acc
i i

Acc
i i

f x L
T

U L T
Acc Acc

i i i i iT

Acc
i i

if f x L

e e
f x if L f x U

e

if f x U



 
 
   



 





  


 




 

  

 

 
 

 

Re

2
Re

Re Re

Re Re

Re

0

1

j
i i

j
i i j j

i i ii ij j
i i

j
i i

if f x L

f x L
f x if L f x U

U L

if f x U



 

 
   
  





 
After determining the different membership functions for each 

of the objective functions,one can adopt following three type 

of decisions 

i) According to the extension of the weighted  intuitionistic 

min-max operator the MONLP (2) 

can be formulated as  

 

       
1

1 1 1

;

,...,

D

p p p

Maximize x w

Maximize Minimum w f x w f x



 



 

 

       
2

1 1 1

;

,....,

D

p p p

Minimize x w

Minimize Maximum w f x w f x



 



 

such that  

     0 1; 1,2,..., .i i i if x f x for i p    
 

     , 1,2,..., .i i i if x f x for i p    

     0,1 , 0,1 , 1,2,..., .i i i if x f x for i p           

  ; 1,2,...., .j jg x b j m   

1

0; 1; 0,1 1,2,..., .

p

i ii

i

x w w for i p



       

According to Angelov [1] the above problem can be 

formulated as  

 Maximize                                                                   (3) 

     ; ; 1,2,.., .i i i i i iw f x w f x for i p       

  ; 1,2,..., .j jg x b for j m   

0;0 1; ; , 0,1x               

1

0; 1; 0,1

p

i i

i

x w w



      

ii)According to the extension of the weighted  intuitionistic 

Yager (1980) operatorthe MONLP (2) can be formulated as  

 

   

1

1

;

0,1 1 0

D

p

i i i

i

Maximize x w

Maximize w f x



 



 
 

    
 
 





               (4) 

    
2

1

; 1, 0,

p

i i iD

i

Minimize x w Minimize w f x  



 
 

  
 
 

  

Subject to the same constraint as (i) 

iii)According to the extension of the weighted  intuitionistic 

Hamecher (1978) operator the MONLP (2) can be formulated 

as  

 

   

     

1

1

1

;

2

1 1 1

i

i

D

p
w

i i

i

p
w

i i

i

Maximize x w

f x

Max

f x







  





 
 
 

    
  







                        

(5) 

 

         

     

2

1 1

1

;

2

0,

1 1

i

i

D

pp
w

i i i i i

i i
p

w

i i

i

Minimize x w

w f x f x

Min

f x



  



 

 



 

 

 

 





 

Subject to the same constraint as (i) 

Step-4: Solving any of the above two we will get the optimal 

solution of MONLP (2). 

5.2 Pareto Optimality Test 

A numerical test of Pareto optimality for 
*x can be performed 

by solving the following problem 

1

p

i
i

Maximize R 


                                                          

(6) 

subject to  

   * 1,2,..., .i i if x f x i p    

, 0 1,2,..., .ix X i p  
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The optimal solution of (3),say 
**x and  **

if x are called 

strong Pareto optimal. Solution provided i is very small, 

otherwise it is called weak Pareto-optimal Solution 

6. SOLUTION OF MULTI-OBJECTIVE 

STRUCTURAL OPTIMIZATION 

PROBLEM BY INTUITIONISTIC 

FUZZY OPTIMIZATION 

TECHNIQUE 
To solve the MOSOP (1) step 1 of 5.1is used. After that 

according to step 2 pay-off matrix is formulated  

   

   

   

* 1 * 1
1

2 * 2 * 2

WT A A

WT A AA

A WT A A







 
 
 
 
 

 
In next step following step 2 we calculate the bound of the 

objective  ,Acc Acc
WT WTU L and 

Re Re
,

j j
WT WTU L for weight function 

 WT A ,such that  Acc Acc
WT WTL WT A U  and

 Re Rej j
WT WTL WT A U  and ,Acc AccU L  ;

Re Re
,

j j
U L  for 

deflection  ,A such that  Acc AccL A U   and

 Re Rej j
L A U   with the condition 

Re
;

jAcc
i iU U

Re
,

j Acc
i iiL L for i WT    so as   

 0 Acc Acc
i i iU L   are identified.

 

According to IFO technique considering membership and 

non-membership function for MOSOP (1)  

    

 

 

 

 

1

1

0

Acc
WT

Acc Acc
WT WT

WT A

Acc
WT

WT A L
T

U L T
Acc Acc
WT WTT

Acc
WT

WT A

if WT A L

e e
if L WT A U

e

if WT A U



 
 
   



 





  


 




 

    

 

 
 

 

Re

2
Re

Re Re

Re Re

Re

0

1

j
WT

j
j jWT

WT WTWT A j j
WT WT

j
WT

if WT A L

WT A L
WT A if L WT A U

U L

if WT A U



 

 
   
  





 

and 

    

 
 

 

 

1

1

0

Acc

Acc Acc

Acc

A L
T

U L T
Acc Acc

A T

Acc

if A L

e e
A if L A U

e

if A U



 





 





  



 
 
   



 





  


 




 

    

 

 
 

 

Re

2
Re

Re Re

Re Re

Re

0

1

j

j
j j

A j j

j

if A L

A L
A if L A U

U L

if A U




 

 






  



 

 
   
  





 

 

After determining the different membership functions for each 

of the objective functions, one can adopt following three types 

of decisions 

i) According to the extension of the weighted intuitionistic 

min-max operator the MONLP (2) can be formulated as  

 Maximize                                                                   (7) 

       
       

1 2

1 2

; ;

; ;

WT

WT

w WT A w A

w WT A w A





    

    

 

 
 

 
min max

1 2 1 2 1 2

;

;

0, 0, 1; , 0,1

A

A A A

w w w w w w

    

 

      

 

0 1; ; , 0,1             

ii) According to extension of weighted Yagar operator with 

2   

        1 20,1 1 1WTMax w WT A w A           (8) 

      1 21, WTMinimize w WT A w A    

such that  

     0 1;WT WTWT A WT A     

     0 1;A A        

     ;WT WTWT A WT A   

     ;A A      

  ;A      

min max;A A A   

1 20, 0,w w  1 2 1;w w 
1 2, 0,1w w     

iii)According to extension of weighted Hamacher operator 

with 1.5   

       

       

1 2

1 2

1.5 0.5 1 1

w w

WT

w w

WT

WT A A
Max

WT A A





  

  
 

    

       (9) 



International Journal of Computer Applications (0975 – 8887) 

Volume 163 – No 7, April 2017 

44 

             

       

1 2

1 2

1 2 0.5

1 0.5

w w

WT WT

w w

WT

Minimize

w WT A w A WT A A

WT A A

 



     

  

 
    

 
   

 

subject to the same constraint as (6.i) 

7. NUMERICAL ILLUSTRATION 
A well-known three bar planar truss structure is considered 

.The design objective is to minimize weight of the structure 

 1 2,WT A A and minimize the deflection  1 2,A A along x 

axis and y  axis at loading point of a statistically loaded 

three bar planar truss subject stress    constraints on each 

of the truss members.  

 

Fig .1. Design of three bar planar truss 

The multi-objective optimization problem can be stated as 

follows 

   1 2 1 2, 2Minimize WT A A L A A                                  

(10) 

 
 

 
1 2

1 2 2

1 1 2

2
,

2 2
x

L A A
Minimize A A

E A A A








 

 
 

2
1 2 2

1 1 2

,
2 2

y

LA
Minimize A A

E A A A


 


 

such that  

 
 

 
1 2

1 1 2 12

1 1 2

2
,

2 2

T
P A A

A A
A A A

 


    


 

 
 

2 1 2 2

1 2

,
2

TP
A A

A A
     

 

 
 

2
3 1 2 32

1 1 2

,
2 2

CA
A A

A A A


     


 

min max 1,2.i i iA A A i    

Where P  applied load ;   material density; L   length ;

E Young’s modulus ; 1A  cross sectional area of bar-1and 

bar-3 . 2A  cross sectional area of bar-2. x and y are the 

deflection of loaded joint along x and y  axes respectively.

1

T 
  and 2

T 
  are the maximum allowable tensile stress for 

bar-1 and bar-2 respectively. 3

C 
  is maximum allowable 

compressive stress for bar -3. 

The optimal results of model (10) using t-norms and t-

conorms are shown in table 2 to 5 and Pareto optimal solution 

is shown in table 6. 

In table 2, for equal importance, the extension of weighted 

parameterized Hamecher-t-norm t-co-norm operator gives 

minimum structural weights as well as minimum deflection.  

In table 3, for more importance on structural weight, the 

extension of weighted parameterized Hamacher-t-norm t-co-

norm operator gives minimum structural weights as well as 

minimum deflection. 

In table 4, for more importance on deflection, the extension of 

weighted parameterized Hamacher t-norm t-co-norm operator 

gives minimum structural weights where as weighted 

parameterized min-max t-norm t-co-norm operator gives 

minimum deflection. 

In table 5, For more importance on deflection, the extension 

of weighted parameterized Hamacher-t-norm t-co-norm 

operator gives minimum structural weights and minimum 

deflection.  

Table.1 The input data for MOSOP (10) 

Applied 

Load 

P (KN) 

Material 

Density 

( ) (KN/m3) 

Length 

L (m) 

Maximum 

allowable 

tensile 

stress 

1
T 

 

(KN/m2) 

Maximum 

allowable 

tensile 

stress 

2
T 

 

(KN/m2) 

Maximum 

allowable 

compressive 

stress 

3
C 

 

(KN/m2) 

Young’s 

Modulus 

E 

(KN/m2) 

 

min
iA and 

max
iA

 

of cross section of 

bars 

4 210 ( )m  

20  100  1  20  20  10  82 10  

min

max

0.1,

5, 1,2

i

i

A

A i



 
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Table 2.Optimal weight for equal importance on structural weight and deflection 
1 2 3

1.
3

i e w w w   and for 1.28WT 

1.7
x

  0.48
y

 
 

Weighted 

paremeterized t-

norm,t-conorm 

operator 

* 4 2

1 10A m  * 4 2

2 10A m  * 210WT KN  
* 710x m   

* 710y m   

Min-max operator 0.5495064  5  6.099013  1  0.8198038  

Yager 0.6060065  2.252335  3.464348  1  0.6501473  

Hamacher 0.6062547  2.246576  3.459086  1  0.6494715  

Table 3.Optimal weight for more importance on structural weight 1 2 30.6, 0.2, 0.2w w w   and for 1.28WT  1.7
x

 

0.48
y

   

Weighted paremeterized 

t-norm,t-conorm operator 
* 4 2

1 10A m  * 4 2

2 10A m  * 210WT KN  * 710x m   * 710y m   

Min-max operator 0.5495096  5  6.099019  1  0.8198038  
Yager 0.6060065  2.252335  3.464348  1  0.6501473  

Hamacher 0.6062547  2.246576  3.459086  1  0.6494715  

Table 4.Optimal weight for more importance on deflection 1 2 30.2, 0.6, 0.2w w w   and for 1.28WT  1.7
x

  0.48
y

   

Weighted paremeterized 

t-norm,t-conorm operator 
* 4 2

1 10A m  * 4 2

2 10A m  * 210WT KN  
* 710x m   

* 710y m   

Min-max operator 3.324846  3.905162  10.55485  0.2195391  0.08122667  

Yager 0.6060065  2.252335  3.464348  1  0.6501473  

Hamecher 0.6062547  2.246576  3.459086  1  0.6494715  

Table 5.Optimal weight for more importance on deflection 1 2 30.2, 0.2, 0.6w w w   and for 1.28WT  1.7
x

  0.48
y

   

Weighted paremeterized 

t-norm,t-conorm operator 
* 4 2

1 10A m  * 4 2

2 10A m  * 210WT KN  
* 710x m   

* 710y m   

Min-max operator 0.5495098  5  6.099020  1  1.8198039  

Yager 0.6060065  2.252335  3.464348  1  0.6501473  

Hamacher 0.6062547  2.246576  3.459086  1  0.6494715  

Table 6. Pareto Optimality test for  1 2 3 1/3w w w    

R  
* 4 2

1 10A m  * 4 2

2 10A m  * 210WT KN  
* 710x m   

* 710y m   

0.1  0.6062548  2.246580  3.459090  1  0.6494715  

 

8. CONCLUSIONS 
In this paper, we have proposed a method to solve multi-

objective structural model in intuitionistic fuzzy environment. 

Here binary t-norms are expressed in extended n-ary t-norms 

and discussed their basic properties and some special cases. 

The said model is solved by using t-norms  and t-conorm 

based on intuitionistic fuzzy optimization  technique. A main 

advantage of the proposed method is that it allows the user to 

concentrate on the actual limitations in a problem during the 

specification of the flexible objectives. This approximation  

method can be applied to optimize different models in various 

fields of engineering and sciences. 
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