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ABSTRACT 
Conventionally, pattern recognition problems involve both 

samples and features that get collected over time or that gets 

generated from distributed sources. The system starts to falter 

when the number of features reaches a certain threshold and 

exhibits the curse of dimensionality. Traditionally 

dimensionality reduction (DR) is performed to prevent the 

curse of dimensionality when all features are available or 

when the system starts to degrade in its performance. But in 

the current digital age systems, the enormous and continuous 

influx of both samples and features mandates performing DR 

at regular intervals to keep up with the system performance. 

The massive amount of feature space and sample space that 

gets accumulated instantaneously allows little chance to 

extract the knowledge effectively that can be used promptly 

and hence mandates performing the DR at regular intervals of 

time. In real time scenarios, for any domain, decisions have to 

be made as and when the data is made available to realize the 

best outcome and to mitigate the risks. The various ways in 

which the features flow or get generated can be different 

depending on the domain of the dataspace. Due to its ever 

changing environment, extraction of knowledge can get more 

challenging. To overcome this problem of big data, an 

incremental dimensionality reduction (IDR) approach to 

extract, carry forward, build  and accumulate the knowledge 

without recalling the previous data is explored in this case 

study. Both Feature subsetting and Feature transformation 

methods are employed for the purpose of illustrating the 

incremental reduction of attributes. The hyperspectral image 

generated from an AVIRIS sensor provides a versatile 

environment required to demonstrate the in depth study of an 

IDR approach. This case study attempts to showcase a novel 

approach of maximizing the knowledge while minimizing the 

information loss through the use of IDR techniques in a 

multifaceted environment with hyperspectral data. 

General Terms 
hyperspectral data, big feature space, sequence compulsive, 

sequence optional, correlation index  

Keywords 
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), 

dimensionality reduction (DR), Incremental dimensionality 
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1. INTRODUCTION 
In a n-dimensional feature space where „n‟ is a very large 

number, the sparsity of the data space will be very high [7]. 

As the volume of dataspace increases, the information to be 

gathered will be irregularly scattered. When sparsity 

increases, it mandates the reduction of features which will aid 

in the accumulation of the knowledge while increasing the 

compactness of the feature space. Instead of working with „n‟ 

dimensions,„d‟ dimensions can be used where d<<n to reduce 

computational costs and to enhance visualization.  There are 

two important methods of dimensionality reduction. The first 

one being Feature Subsetting (FS) and the second one being 

Feature transformation (FT) [2]. In Feature Subsetting, a 

subset of key features represent the entire feature space by 

retaining independent features and by discarding dependent 

features that are identified and selected using a filter approach 

or a wrapper approach [11, 12, 13]. The common aim of both 

approaches is to obtain the maximum knowledge by using 

minimum number of features. In the Filter method, a near 

optimal subset of features are selected based on a certain filter 

criterion or a rank. Filter method doesn‟t aim at evaluating the 

performance of the model and no learning is involved [2]. In a 

Wrapper approach, a near optimal subset is generated by 

learning and evaluating the model at each step of building the 

optimal subset. This subset is termed as an optimal subset 

because it represents the entire feature set by eliminating 

redundant features and by compacting the maximum 

knowledge. Knowledge can be in terms of variance of the 

feature set, classification accuracy, and predictor performance 

or decision making criterion. In Feature Transformation, the 

original feature space is transformed into another space of 

equal dimension. Usually, if the DR is performed in a 

supervised environment, Linear Discriminant Analysis (LDA) 

is employed and if the DR is performed in an unsupervised 

environment, Principal Component Analysis (PCA) is 

employed. To prevent the curse of dimensionality due to the 

huge influx of data, a customized and an incremental 

approach of the traditional DR method known as Incremental 

dimensionality reduction (IDR) is proposed.  When a big 

dataspace is involved with a big, variant feature space and an 

invariant sample space, it becomes critical to explore the 

relationship among the attributes, extract knowledge as and 

when the information is gathered, without recalling the 

previously generated knowledge or previously processed data. 

Remotely sensed multispectral data often involves large 

amount of data due to large spatial and multispectral 

coverage. Among the multispectral images, hyperspectral 

images is one such example that can generate a big feature 

space. Hyperspectral images are produced by instruments 

called imaging spectrometers. They contain a wealth of data, 

but interpreting them requires an understanding of exactly 

what properties of ground materials we are trying to measure, 

and how they relate to the measurements actually made by the 

hyperspectral sensor [5]. A typical example of hyperspectral 

image is the AVIRIS dataset acquired on June12, 1992 over 

the Purdue University Agronomy farm [1]. This scene was 

gathered by AVIRIS sensor over the Indian Pines test site in 

North-western Indiana and consists of 145\times145 pixels 

and 224 spectral reflectance bands in the wavelength range 

0.4–2.5 10^(-6) meters[6]. This scene is a subset of a larger 

one. The Indian Pines scene contains two-thirds agriculture, 



International Journal of Computer Applications (0975 – 8887) 

Volume 163 – No 7, April 2017 

22 

and one-third forest or other natural perennial vegetation. 

There are two major dual lane highways, a rail line, as well as 

some low density housing, other built structures, and smaller 

roads. The scenario also pertains to some of the crops (corn 

and soybeans) being in their early stages of growth with less 

than 5% coverage. The ground truth available is designated 

into 16 classes of Vegetation and Buildings and are not all 

mutually exclusive. Indian pine data set captured from the 

AVIRIS sensor has each of its pixel represented by 220 

spectral bands. The number of spectral bands have been 

reduced to 200 by removing bands covering the region of 

water absorption: [104-108], [150-163], 220 [1, 6].  

Due to the small number of samples and the high number of 

features available in hyperspectral imaging applications, the 

need to reduce the attributes and to prevent the curse of 

dimensionality becomes inevitable [1-6, 10-13]. In order to 

maintain the performance of a classifier, performing DR at 

regular intervals in big feature space is mandated. But since 

the traditional DR process waits for all the features to get 

collected before reducing the feature space, an IDR approach 

is proposed to tackle the problem of the classier performance 

at regular intervals to enhance efficiency of the system. IDR 

aims at eliminating unproductive attributes, to accumulate the 

local knowledge and to progressively accumulate the 

maximum global knowledge. 

2 INCREMENTAL FEATURE 

SUBSETTING WITH 

HYPERSPECTRAL DATA [FSIDR] 
In this case study, an incremental filter approach based on 

proximity of attributes measured using correlation between 

attributes is used. A pairwise combination of all the possible 

attributes are considered and their correlation is calculated 

using PCC. For example, if a set of 200 attributes is 

considered, it can generate 39800 ( 200C2 ) correlations. Since 

the correlation of attributes is commutative in nature, one has 

to ideally calculate 19900( 200C2 / 2) correlations.  Instead of 

working on an exhaustive list that gets enumerated while 

working with traditional FS, an incremental feature sub 

setting (FSIDR) approach is thought of to reduce the 

computational cost and to build the knowledge incrementally 

as and when the features are made available. At a given 

instance, only a selected set of features can be considered for 

the purpose of calculation, thus achieving parallelism. The 

nature of incremental flow of features can vary depending on 

the arrival/generation of features in the given environment 

[17, 18]. In this study, two scenarios are considered: One 

being analogous to the temporal flow of features which 

involves sequence compulsive arrival of features and the other 

one being analogous to features coming from distributed 

environment or from a multisensory environment which 

involves the generation of features that is sequence optional 

[15].  

The framework for the incremental feature 

subsetting consists of two significant variables: Pearson‟s 

correlation coefficient (PCC) represented by „r‟ and the 

threshold factor represented by „t‟. The strength of the 

correlation measured between two features is quantified by 

„r‟. Threshold factor „t‟ is the cutoff value that is used to 

determine whether both the features considered are eligible to 

be retained or if one of the feature can be eliminated from the 

feature subset. The value of „t‟ is suggested to be 0.6 and has 

been utilized in the experiments of this study [17]. The PCC 

for every pair of attributes in the first batch is calculated. If 

the PCC value for a pair of attributes X, Y is less than 0.6, 

then both the attributes are added to the optimal subset 

because the attributes are considered to be uncorrelated to 

each other. If the PCC value is greater than 0.6, it indicates 

that both the attributes are highly correlated and the presence 

of both in the optimal subset is deemed redundant. So the 

deciding criteria to retain one of them will be the attribute that 

has a higher standard deviation. Higher standard deviation in 

an attribute indicates that the variance is higher and hence gets 

added to the optimal subset that is being built while deleting 

the one with a lower standard deviation. 

2.1 Sequence Compulsive model for FSIDR  
Let us consider the AVIRIS dataset, a hyperspectral image of 

Indian Pines region in Indiana in 1992[1-6]. Using target class 

guided compression in Feature subspace, Meenakshi et al  

have extracted the spectral signature of each class individually 

and the corresponding sample space for each of the 16 classes 

[16]. In hyperspectral data, due to the high possibility of 

pixels getting mixed up in the presence of the overlapping 

spectral bands, two different datasets have been derived out of 

the AVIRIS data for the purpose of exploration. Using the 

spectral signatures and the corresponding sample set for the 

classes of interest and to illustrate the IDR in high 

dimensional spaces, the two subsets, also referred to as the 

AVIRIS mini datasets namely overlapping class dataset and 

distinct class dataset are used.  A set of 5 overlapping classes 

and another set of 3 distinct classes are considered for 

realizing the trends and patterns while performing IDR. The 

overlapping classes dataset consists of 1737 samples 

comprising of 5 classes namely: alfalfa, corn mintill, soy 

clean, stone tower and wheat. Since the corn and soya 

samplings are at their early stages of development, they have 

not yet developed the discriminating features that are 

distinctive in nature. Hence the spectral signature for the 2 

classes overlap extensively during classification. The distinct 

class data consist of 344 samples with 3 classes namely: 

alfalfa, wheat and stonetower. This dataset has distinctive 

features that differentiates the clusters better as their spectral 

signatures don‟t overlap as much as the overlapping class 

dataset.  

Table 1: Optimal subset of distinct class dataset for 

temporal FSIDR 

         Batch  Attributes for DR Optimal Subset 

{B1} {B1} {A, B} 

{B1} + {B2} {A, B} + {B2} {A, C, D} 

{B1} + {B2} + {B3} {A, C, D} + {B3} {A, C, D, E, F} 

{B1} + {B2} + {B3} 

+ {B4} 
{A, C, D, E, F} + {B4} {A, C, D, E, F} 

{B1} + {B2} + {B3} 

+ {B4} + { B5} 
{A, C, D, E, F} + {B5} {A, C, D, E, F, X} 
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Fig 1: Temporal FSIDR of distinct class dataset 

Let us assume that the features from the distinct dataset  are 

arriving temporally over time, 40 features in each batch with 5 

batches i.e. batches B1, B2, B3, B4 and B5. On applying 

incremental feature subsetting procedure, the first batch of 40 

features reduces itself to an optimal subset of 2 features { A, 

B} and provides 88.4% classification accuracy [see Figure 1]. 

These two features from B1 is added to the next 40 features of 

B2 and is incrementally reduced to {A, C, D}. Similar 

procedure is carried out for batches B3, B4 and B5 [see Table 

1]. At the end of FSIDR, the optimal feature subset consists of 

6 features {A, C, D, E, F, X} and achieves 100% 

classification accuracy. The same results are obtained when 

traditional FS is performed with all features reduced at once. 

This supports the hypothesis made earlier that sub optimal 

knowledge can be obtained incrementally in the interim and 

an optimal knowledge can be progressively built without 

waiting for all the features to arrive. This in turn bolsters the 

decision making process because the interim knowledge 

generated incrementally is not only synchronous to the 

knowledge that is made available at the end but is also in line 

to the knowledge extracted when DR is performed with all the 

features at once. At any instant of time, the decision making 

criterion based on incremental learning as illustrated in this 

section will be built upon the unseen data of the future, 

without recalling the previous data.   

2.2 Sequence Optional model for FSIDR  
Features can be generated from different sources or from 

multisensors as in features generating from a video 

surveillance with video cameras focusing from different 

directions. Traditionally, the features need to merged centrally 

in order to extract the global knowledge. So, data is collected 

in one central repository and once all features are collected, 

the knowledge extraction is performed. This would require a 

prolonged waiting time, computationally intensive operation 

due to the massive amount of data being dealt at once etc. To 

avoid these problems, the IDR process proposes to reduce the 

data as and when it is generated and build the overall 

knowledge as it incrementally merges the previously 

generated knowledge with the new set of features that is being 

generated. 

 

Fig 2: Distributed FSIDR of distinct class dataset 

Let us assume that the AVIRIS minidataset distinct class data 

is generated from 3 different sources:  Batch 1, Batch2   and 

Batch 3 to simulate a multisensory environment. The 200 

features of the dataset is divided into 3 batches, chosen 

heuristically for the purpose of exploration. Batch 1 consists 

of features 1 to 74  ; Batch 2 consists of features 75 to 159 and 

Batch 3 consists of features 160 to 200.For a given set of 3 

batches there can be 6 (3!) different sequences in which they 

can be merged (see Table 2). For illustration let us consider 

the sequence {B2, B1, B3}. Batch 2 represented by B2, 

generates an optimal subset of 3 features with a classification 

accuracy of 59%.  These 3 features from Batch 2 are 

incrementally merged with Batch1   to obtain 5 features in the 

optimal subset resulting in 100% classification accuracy (see 

Figure 2).  

The third batch is also incrementally merged in a similar way 

and the classification accuracy remains at its maximum even 

after adding an additional feature to the optimal subset from 

Batch 3.  The experiments carried out illustrate that the 

knowledge will either be carried forward progressively or will 

remain at its maximum thus bolstering the FSIDR approach of 

merging the batches in a distributed environment. The order 

of merging of batches are interchanged and the experiments 

are carried out as explained. Although the same results were 

obtained at the end of merging all the batches, the interim 

knowledge obtained may vary from sequence to sequence (see 

Table 2 ). In this example with 3 batches, Batch1 has 96.5% , 

Batch2 has 77% and Batch 3 has 59% individual classification 

accuracy. Batch 1, which has the least misclassification, when  

merged earlier in the merging sequence gives a better average 

classification accuracy. If Batch 3 which has the highest 

misclassification, when merged earlier provides the least 

average classification accuracy. Generally it is be observed 

that in AVIRIS data, if batches with less misclassification are 

merged earlier, the subsequent merges tend to converge 

towards the right classification as it moves further 

incrementally. 

The results of the experiments with 3 batches shows that all 

the merging sequences achieve 100% classification at the end 

of the IDR (see Table 2). It can also be observed that the 

interim classification accuracy varies from sequence to 

sequence in the order they are merged and reduced. The 

merging sequence {B1, B2, B3} is the most optimal one 

because it achieves the highest average classification 

accuracy, i.e. 98.8%. (see Figure 3). It implies that choosing 

the optimal merging sequence not only provides maximum 

classification accuracy at the end but also provides the best 

interim knowledge throughout the IDR process. 

It is observed that in this optimal merging sequence, the 

spectral values are arranged in the descending order .The 
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average spectral value of B1, B2 and B3 are 4314, 1754 and 

1126 respectively. Conversely it is also observed that if the 

batches with lower spectral values are merged earlier as in 

{B3, B2, B1} and {B2, B3, B1}, the average classification 

accuracy dips to a lowest level of average classification 

accuracy. 

Table 2 : Phasewise classification Accuracy of all the combinations of the 3 batches using distinct dataset 

 

 

 

Fig 3 : Average Classification Accuracy of the  various 

combinations of batches of distinct dataset 

To corroborate the deductions of the above experiment, the 

same dataset is divided into 8 batches B1…B8 with 25 

features each in sequence for further experimentation. The 

average spectral values of each batch is calculated and is 

listed in the descending order of the spectral values. With 8 

batches, there can be  40320 (8!)  merging sequences that can 

be generated (see Table 3). But since it is seen in previous 

section by using  an exhaustive set that the decreasing order of 

spectral values generates the best average classification 

accuracy,  two sequences i.e. descending order of batches and 

ascending order of batches in terms of their average spectral 

values are considered  (see Table 3). 

Table 3: Average Spectral values of the 8 batches of  the 

distinct dataset 

Batch 
    Average 

Spectral value 

B2 4569.61 

B1 4366.66 

B3 3952.62 

B4 2496.48 

B5 1513.92 

B6 1425.93 

B7 1179.37 

B8 1080.51 

The results of merging 8 batches incrementally is as shown 

(see Table 4). It can be observed that if the batches with 

higher spectral values are merged earlier i.e. the merging 

sequence     { B2} + {B1} + {B3} + {B4} + {B5} + {B6} 

+{B7} + {B8} generates  a consistent and progressive 

knowledge during its course of IDR and knowledge 

extraction. The converse holds true  as well as   the second 

sequence { B8} + {B7} + {B6} + {B5} + {B4} + {B3} 

+{B1} + {B2}, arranged in the descending order of average 

spectral bands generates approximately 30% less 

classification accuracy during the course of IDR. Since IDR 

can provide the best decision making criteria at any given 

point of time, it is critical to identify the optimal merging 

sequence and it is suggested that the merging of batches 

should follow the rule of merging higher spectral values 

earlier to achieve best results .  

3. INCREMENTAL FEATURE 

TRANSFORMATION WITH 

HYPERSPECTRAL DATA [FTIDR] 
In feature subsetting, although redundant features are 

eliminated to obtain the reduced space, eliminating the 

features in its entirety poses a risk of information loss. An 

alternative method of DR known as feature transformation is 

considered that does not eliminate any features but recreates a 

transformed feature space from the original feature space. The 

transformed feature space comprises of a fraction of each of 

the original features by assigning a certain weightage to each 

of the feature. [22]. 

Table 4 : Phase wise (FTIDR) classification accuracy of the 8 batches of the distinct dataset 

 

3.1 Sequence compulsive model for FTIDR 

using hyperspectral data 
Hyperspectral data characteristically comprises of several 

features that define a given pixel in an unsupervised 

environment [1-6]. To reduce the feature space, IDR is 

performed by employing Principal Component Analysis 

(PCA). The variability of the principal components (PCs) aid 

to determine the number of PCs to be considered significant 

enough for a given model. 

In our previous studies where datasets like Dow Jones data, 

Corn Soya data, and Student datasets have been used, 90% 

cumulative variance is considered as the threshold to classify 
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the data effectively [17,18].  In the AVIRIS dataset since the 

spectral values have high variability throughout the dataset 

and the classes are not mutually exclusive like the usual 

datasets, the PCs hold significant variance even beyond 90% 

cumulative variance. Hence by trial and error, the point where 

the scree plot starts to straighten is determined to be a 

quantitatively reasonable threshold to classify the dataset 

effectively in hyperspectral data. For example if the 

percentage of cumulative variances for a given dataset are 

82.6, 94.1, 97.5, 98.3, 98.9, 99.4, 99.5, 99.6, 99.7 … 99.9 and 

100 respectively, the variability of the first 6 components will 

be considered as most significant because the % variability 

starts to stabilize at the threshold (see Figure 4). In this study, 

the knowledge obtained is quantitatively measured in terms of 

classification accuracy. In this example the classification 

accuracy achieved by using the 6 PCs with cumulative 

variance of 99.4 % doesn‟t improve by adding additional PCs. 

It indicates that after the threshold point, the variability of the 

PC is minimal or negligible and this in turn implies that it 

would not add significantly to the knowledge that is being 

incrementally accumulated. 

 

Fig 4 : Scree plot for choosing the number of principal 

components 

3.1.1 Sequence Compulsive model for FTIDR 

using distinct dataset  
While performing the incremental merging of the features 

assumed to be arriving temporally, two different approaches 

were considered [18]. The first approach will be to 

incrementally merge the PCs successively. The second 

approach will be to incrementally merge the original features 

successively instead.  Both the approaches are applied to the 

distinct class dataset and results are as shown (see Figure 5, 6, 

7). The trend in which the pattern changes as the batches are 

merged in both approaches remains visually identical. 

Quantitatively, although the classification accuracy obtained 

and the cumulative variance accumulated in the second 

approach is slightly higher, the number of PCs used to achieve 

the classification is lesser in the first approach because the DR 

is performed on the PCs (see Figure 7). But for the first 

approach there is an additional step of converting the original 

attributes to PCs before merging can take place. Approaches 

are highly comparable: the second approach proves to be 

more efficient in terms of time and complexity of the 

algorithm.  

 

 

Fig 5: Comparison of classification accuracy required for 

the two approaches using distinct dataset 

 

Fig 6 : Comparison of  PCs required for the two 

approaches using distinct dataset 

 

Fig 7: Comparison of cumulative variance accumulated 

phasewise for the two approaches using distinct dataset 

3.1.2 Sequence Compulsive model for FTIDR 

using overlapping dataset 
The overlapping class dataset with 5 classes and 200 features 

for each sample is assumed to arrive with 25 features in each 

batch (see Figure 8). Hence 8 batches with 25 features in each 

batch are assumed to arrive sequentially. As the features 

arrive temporally, the change in trend is visually irregular and 

can be observed from one batch to another which is due to the 

presence of vastly varying spectral ranges in each batch .As 

shown in the previous section, merging the original attributes 

instead of the PCs incrementally for performing DR is a 

computationally effective approach. So the same approach is 

used for illustrating the incremental merge of overlapping 

classes dataset as well. While incrementally merging the 

batches in this dataset, Corn and Soya classes are 

misclassified most of the time as they have overlapping 

spectral bands owing to its early developmental stages (see 

Figure 9). The other 3 classes have distinct spectral bands and 

are classified distinctively. 
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It can be observed that, although individual batches display 

irregular trend locally, the incremental merge consistently 

maintains the optimal pattern and generates progressive 

knowledge while converging towards the maximum possible 

knowledge globally (see Figure 8, 9). The incremental merge 

achieves approximately 60% classification accuracy at the end 

which corroborates the previous studies [11, 12]. The 60% 

classification accuracy that is achieved incrementally is the 

same when all the features are reduced together at once (see 

Figure 10). IDR not only projects an advantage over time but 

also supports the concept of availing the best possible 

cumulative knowledge at any instance of time for making well 

informed decisions. 

 

Fig 8: Local pattern in each batch of the overlapping dataset 

 

Fig 9: Global pattern accumulating at each incremental phase of the overlapping dataset 

 

Fig 10: Classification accuracy and number of PCs for 

overlapping dataset at each incremental stage 

 

3.2 Sequence optional model for FTIDR 

using hyperspectral data 
In hyperspectral data where the number of samples is 

comparatively less than the number of features, the need for 

DR is more imminent [9-12]. Although hyperspectral data can 

be inherently thought of as sequence compulsive flow of 

features, one can simulate the data as is coming from the 

multisensors. Let us consider the distinct Class dataset of 3 

classes to be generating from 5 different sensors with 40 

features each (see Figure 12). The challenge will be to merge 

the features such that the best possible knowledge is 

accumulated locally and maximum knowledge is built 

globally with minimum loss of information. In an incremental 

mode, IDR will aim at gathering the interim knowledge 

progressively, accumulating maximum knowledge gradually, 

without recalling the previously processed data. Since the 

sequence of merging the features in a distributed environment 

in not sequence compulsive, identifying the order of merging 

the features that can achieve the maximum classification 

accuracy needs an organized approach. To arrive at the 
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optimal merging sequence in a distributed environment, a 

framework based on the correlation based proximity measure 

and principal component is devised (see Figure 11).  

 

Fig 11 : Framework to identify the optimal merging sequence 

The idea of PCA is achieved by transforming the original set 

of variables to a new set of variables known as principal 

components (PCs). The PCs will be uncorrelated to each other 

and the maximum variance of the feature set will be 

accumulated in the first few PCs [14,22]. Usually, the first PC 

itself will accumulate around 80% of the variance of the entire 

feature set. It is well established that the first PC will 

accumulate the maximum variance of the feature set [22]. 

Hence in our study, the first PC of each batch is considered to 

represent the corresponding batch. The correlation of all 

combinations of batches are calculated using only the first PC 

and is referred to as the first PC matrix. Since the distinct 

dataset has mutually exclusive classes, the same has been 

considered for illustration. For example, consider 5 batches of 

40 features each from the distinct class dataset: B1, B2, B3, 

B4 and B5, the correlation of the possible combination of 

batches are calculated to generate the first PC matrix (see 

Table 5) 

 

Table  5: Correlation index matrix of the distinct dataset 

with 5 batches 

 

If the average PCC of the matrix is low i.e. <= 0.6, it indicates 

that the batches have high variance amongst themselves. In 

this case the average PCC =0.51 indicates that the 

uncorrelated batches must be merged successively to 

accumulate maximum knowledge progressively. On the other 

hand, if the average PCC is high (i.e. >=0.6), then the global 

knowledge can be built progressively by merging the highly 

correlated batches first. For a given „n‟ batches, there are n! 

ways of generating the merge sequences. 

 

Fig 12: Local pattern in each batch of the distinct dataset 

To identify the most optimal merge sequence that not only 

build knowledge progressively but also compacts maximum 

knowledge, either a Prims like approach or a Kruskal‟s like 

approach is followed. The correlation of the first PC matrix is 

arranged in a sorted order (see Table 6). For the purpose of 

illustration let us consider the Prims like approach with high 

correlation as criterion for ranking. The starting batch can be 

an arbitrary one in Prims like approach. For the ease of 

explaining, the starting batches for merging is considered to 

be B4 and B5. Now the optimal sequence will be {B4, 

B5}.The next in the list is {B3, B4}. Since B4 is already in 

the sequence, only B3 is selected for the merge arriving at 

{B4, B5, B3}. Similarly when the B1,B5  are considered the 

sequence now grows to {B4,B5,B3,B1} and finally end up as  

{B4,B5,B3,B1,B2} (see Figure 13). 

Evaluate 

Correlation  

Prim’s or 

Kruskal’s  
First PC Approach  

       
Prim’s or 

Kruskal’s  

High Correlation 

 

Low Correlation 

Merging 

sequence  
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Fig 13: Phase wise merging pattern obtained for the optimal merging sequence with high correlation as priorit 

On similar lines if low priority is considered as the criterion 

for ranking then we get the optimal sequence list as {B1, B2, 

B5, B4, B3} (see Figure 14). In Kruskals like approach, the 

first batch to start the merging sequence is fixed. The batch 

that satisfies the ranking criterion should be selected first. At 

every step, the batch need not be connected to the already 

selected batches in the optimal merging sequence as in the 

case of Prims like approach. Coincidentally for this dataset 

both Prim‟s like and Kruskal‟s like approach with low 

correlation as criterion for ranking will generate the same 

sequence of merging i.e. {B1, B2, B5, B4, B3}. Since the 

overall correlation value <0.6, it can be observed that the 

pattern of merging the batches with low correlation is more 

consistent with the final results than the pattern of merging the 

batches with high correlation successively (see Figure 13 and 

Figure 14). 

 

Fig 14: Phase wise merging pattern obtained for the optimal merging sequence with low correlation as priority 

Table 6 : Sorted PCC values of the combinations of 

features using distinct dataset with 5 batches 

B4B5 0.959 

B3B4 0.939 

B1B5 0.890 

B3B5 0.810 

B1B4 0.778 

B1B3 0.546 

B2B3 0.485 

B2B4 0.177 

B2B5 -0.058 

B1B2 -0.397 

For this dataset, if Prims like approach with high correlation 

as criterion is used for merging, the average classification 

remains low but if low correlation is considered then the 

average classification accuracy remains high. (see Figure 15). 

Prims like approach with low correlation also requires less 

number of PCS to achieve the accuracy and remains fairly 

consistent throughout when compared to Prims like approach 

with high correlation (see Figure 16). The cumulative 

variance accumulated at each phase for both high correlation 

and low correlation seems highly comparable (see Figure 17). 

This shows that when the overall variance of the dataset is 

low, merging the batches with lower correlation will generate 

more knowledge incrementally. 

 

Fig 15 : Comparison of Classification accuracy :  Low 

Correlation vs High Correlation in distinct dataset 
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Fig  16: Comparison of number of PCs used :Low 

correlation Vs high correlation in AVIRIS distinct dataset 

 

Fig 17 : Comparison of cumulative variance  : Low 

correlation vs high correlation in AVIRIS distinct dataset 

 

 

4. DIVIDE AND CONQUER PARADIGM 

AS A PROOF OF CONCEPT 
The IDR method draws a certain analogy with the Divide and 

Conquer algorithmic paradigm on the lines of parallelism. 

Divide and Conquer ( DnC) is an algorithmic paradigm that 

bears resemblance to dynamic programming and Greedy 

algorithms. In DnC, a given problem is broken down into sub 

problems[24]. Each sub problem is broken down into further 

sub problems until the final solution is reached. Usually in an 

ideal dataset, the number of samples will be significantly 

higher than the number of attributes. But in high dimensional 

datasets with big feature space, the number of attributes will 

be unusually higher than the number of samples as in 

hyperspectral data. Hence the feature space can be broken 

down iteratively to batches with heuristically sizeable features 

as done in DnC. In Summary, DnC procedure divides the 

problem into subproblems, reduces and merges the 

subproblems recursively and finally conquers the solution of 

the problem .The Divide and Conquer technique can be 

thought of as a proof of concept that demonstrates the 

parallelism achieved while performing IDR. It  is also used to 

illustrate the advantages of IDR over DnC. The distinct 

dataset, a minidataset of AVIRIS is subjected to DnC using 

FS and FT techniques separately as follows.  

4.1 Divide and Conquer using Feature 

Subsetting  

For DnC using FS or FT, the 200 features are first broken 

down recursively until the features are considered to be of a 

manageable size i.e. approximately 12 features in a batch. (see 

Figure 18). The features are recursively broken down from 

Step #1 to Step #5 likewise. At Step #6, feature reduction 

starts to takes place. Hence, the steps for both the techniques 

are common until Step #5, which involves dividing the 

batches of features recursively (see Fig 18).  

 

Figure  18 : Common steps for Divide and Conquer using FS and FT 

For DnC using the FS technique, with a PCC threshold of 0.6 

(60%) , two attributes are considered to have a high 

correlation in the given feature space [17]. The batches of 

features are reduced individually to get the reduced subset. At 

step#9, the reduced features are merged in pairs (see Figure 

19).At Step #10, the merged features are reduced further. It 

can be observed that less number of features are obtained 

every time after reduction indicating that the redundant 

features are eliminated. At Step #11, the first 100 features are 

reduced to 5 features and the last 100 features are reduced to 4 

features using the DNC procedure. These features are finally 

reduced to 6 features. At this point, the features cannot be 

reduced any further and hence reaches the final reduced 

feature space. The 6 features obtained this way provides 100% 

classification accuracy.  

4.2 Divide and Conquer  using Feature 

transformation  
DnC with FT technique is similar to FS except that FT 

transforms the original feature space before reduction. PCA is 

employed here for illustration of the DR procedure. At step#6 

after the batches of features are broken down to attain a 

manageable size of features, PCA is applied to each batch and 

the original feature space of 12 and 13 features are 

transformed into an eigen transformed feature space of the 

same number of features (see Figure 20). For reduction of the 

transformed feature space, the threshold point where the scree 

plot starts to slow down the variance is considered and is 

reduced accordingly. At step #8 , the reduced features are 

merged and since the merging can introduce redundancy, the 

merged features are reduced again. This process of  merge, 
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reduce and conquer is carried out recursively and at step #14, 

only six features are obtained .These 6 features are further 

reduced to get the final solution of 4 features that represent 

the entire feature space. At this point the feature space cannot 

be reduced any further.
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Figure 19: Divide and Conquer using Feature Subsetting 
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                     Figure 20: Divide and Conquer using Feature Transformation 
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Fig 21: Comparison of the number of attributes necessary 

for Divide and Conquer Vs Incremental dimensionality 

reduction 

4.3. Comparative analysis between IDR 

method and Divide and Conquer 

Paradigm 

DnC using FS and FT techniques have yielded the same 

results when subjected to IDR i.e. 100% classification 

accuracy with FS and 99.7 % classification accuracy with FT. 

The results are the same when traditional DR is applied 

assuming all features are available together. 

FS and FT techniques are highly comparable. FS requires 

lesser attributes than FT to hold the knowledge together ( i.e. 

1128 Vs 1410). In the AVIRIS mini dataset considered, FS 

eliminates features which absolutely doesn‟t add any 

information or knowledge to the cumulatively accumulated 

knowledge. FS achieves max classification accuracy by using 

6 attributes.  While DnC is performed using FT, one 

stonetower pixel is misclassified as a wheat pixel consistently 

due to overlapping spectral value and hence achieves a 

classification accuracy of 99.7% (see Fig 24). The features 

obtained by DnC are compared with the features obtained by 

IDR methods for both FS and FT techniques ( see Figure 21). 

Although the number of features match , the features in the 

reduced space might be slightly different. The features 

obtained with FS technique for both DnC and IDR method 

have an average correlation value of 0.87 and the features of 

FT technique have an average correlation value of 0.99. This 

indicates that although the feature sets are not exactly the 

same, the features are highly correlated to each other in both 

the methods. In DnC method, the procedure breaks down the 

problem into subproblems, merges the solutions until the 

problem cannot be  reduced any further, thus achieving 

parallelism. There are two main drawbacks of DnC when 

compared to IDR method. The first one being - DnC method 

avails the decision making parameters to the user only at the 

end of the procedure. The second drawback is that DnC can 

be applied only when all features are available together not 

otherwise. 

In the proposed IDR method, the procedure can break down 

the problem( when all features are available) into subproblems 

, can also factor the problem as a subproblem as it features are 

made available in the feature space ( streaming data ) and can 

build the solution incrementally with whatever data is 

available at that instant. The solution of the incoming 

subproblem is incrementally merged with the accumulated 

solution of  the subproblems merged prior , thus building the 

cumulative knowledge progressively. At any point in time , 

the Proposed IDR procedure provides the best possible 

decision making parameters to the user that will be in line 

with the final, unseen solution that will be achieved at the end. 

Hence, the user does not have to wait till the end of process to 

gather the best possible decision making criteria.  

5. PERFORMANCE EVALUTAION 
How feature transformation and subset selection are targeted 

depends on the purpose, i.e. whether it is for concept 

description or for classification. The former aims at 

preserving the topological structure of the data whereas the 

latter aims at enhancing the predictive power [23]. A similar 

rationale applies to FSIDR and FTIDR as well. In a traditional 

DR approach, one might want to apply DR when there are 200 

attributes in the feature space. In Incremental DR, the feature 

space is regularly and incrementally reduced to compact the 

feature space and does not wait for features to accumulate 

before it can reduce. In traditional FS, the maximum number 

of features needed to achieve maximum classification 

accuracy is 200 but if an incremental approach is adopted, at 

the end of IDR, only 14 to 22  attributes will be available in 

the feature space to hold the same knowledge that will be 

accumulated by the 200 features. In general, IDR requires 

approximately 90% less attributes to hold the same knowledge 

when compared to traditional DR (see Figure 22 and 23).   

 

Fig 22: Maximum attributes necessary to hold maximum 

knowledge using FT method 

 

Fig 23: Maximum attributes necessary to hold maximum 

knowledge using FS method 

In the distinct dataset considered, FSIDR achieves 100% 

classification accuracy and FTIDR achieves 99.7 % 

classification accuracy. A single pixel in the stone tower class 

gets wrongly transformed into the spectral band of the alfalfa 

class thus lowering the accuracy to 99.7%. Both the models 

are highly comparable with a negligible difference (see Figure 

24). 
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Fig 24: Classification accuracy (%) achieved: FSIDR Vs 

FTIDR for the hyperspectral - Indian Pines data  

Nonetheless, the traditional DR also achieves 99.7% 

classification accuracy indicating that the proposed approach 

achieves at least what a traditional DR can achieve. This 

further supports the IDR model to be perfectly in sync with 

the traditional DR model. The IDR model scores  over the 

traditional DR as it allows decision making in the middle of 

streaming data, requires lesser attributes to capture the same 

knowledge. Hence, the proposed approach is both functionally 

and computationally more effective.  

6. CONCLUSION  
Given that data is being generated at a faster pace than ever, 

the necessity to reduce the features regularly in order to 

maintain the system performance and to extract useful 

knowledge for decision making is becoming more evident. In 

such a scenario, an incremental approach to reduce the feature 

space, to accumulate the knowledge without looking back at 

the previous data, will be a remarkable one. In domains where 

massive feature space builds up in volume within no time as 

in hyperspectral images, the proposed IDR approach will not 

only aid in compacting the knowledge globally but also 

provides a local and optimal knowledge  to make decisions in 

the interim as necessary. The local optimal knowledge will be 

in line with the unseen data and will be built upon the 

compacted knowledge accumulated thus far, completely 

eliminating the need to look back at the previous data. Hence 

the collection of data space and generation of knowledge from 

the features gathered at a given point can function in parallel 

with IDR.  

IDR approach can be further applied with association rules to 

incrementally build the association of features .The 

association rules obtained thus will aid to statistically measure 

and identify methods to discover patterns in the feature space. 

The knowledge thus obtained will aid to determine the 

implied features, enhance decision making capabilities and 

identify critical dependencies for risk management and 

mitigation. 
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