
International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 8, April 2017

46

An Efficient Scheme for the Single Source Shortest Path

Problem based on Dijkstra and SPFA Methodologies

G. L. Prajapati, PhD
Dept. of Comp. Engg.

IET-Devi Ahilya University
Indore

Pulkit Singhal
Dept. of Comp. Engg.

IET-Devi Ahilya University
Indore

Ayush Ranjan
Sharma

Dept. of Comp. Engg.
IET-Devi Ahilya University

Indore

Neelesh Chourasia
Dept. of Comp. Engg.

IET-Devi Ahilya University
Indore

ABSTRACT

This paper presents detailed comparisons and analysis of

various single source shortest path algorithms. The paper

proposes comparison among these algorithms on the basis of

execution time taken by the algorithms to completely find the

shortest path to all the nodes from a starting node. The

algorithms have been analyzed on the various parameters:

number of vertices, number of edges, and structure of the

graph. This analysis will help in selecting the appropriate

algorithm to be used in solving a particular real-life problem.

This paper also proposes an algorithm that works efficiently

over all types of the graph.

General Terms

Shortest Path, Algorithms, Theoretical Computer Science.

Keywords

Single Source Shortest Path, Execution Time, Performance

Analysis

1. INTRODUCTION
Shortest path problem [1] is the problem of finding a path

between two vertices in a graph such that the sum of the

weights of its constituent edges is minimized. Without the use

of shortest path algorithms, the naïve approach for finding the

shortest path between two vertices is to enumerate all possible

paths between the vertices and select the shortest one i.e. brute

force. However for the various domain specific applications

of the shortest path problem, brute force approach is not

feasible and hence require more optimal solution i.e. the

shortest path algorithms. The aim of shortest path algorithms

is to find the shortest path among all paths available between

the pair of vertices. Some shortest path algorithms works only

over the non-negative weighted graphs while some can works

with negative weighted graphs too. Also the distinction

between the algorithms is made by whether these are single

source shortest path (SSSP) or all pair shortest path algorithm

(APSP). This paper focuses on single source shortest path

algorithms for the non-negative weighted graphs. Some of the

shortest path algorithms are greedy in nature while some uses

the dynamic programming. The shortest path algorithms

works over the principle of relaxation. In such algorithms,

optimization is based on the number of times relaxation is

performed during the execution. Various real life applications

of shortest path algorithms are finding the shortest route

between the two places, social network analysis (SNA) to

calculate degree of separation between two users on a social

networking medium and so on. This paper compares the set of

algorithms among themselves on the basis of execution time

on datasets of different types.

2. SET OF SHORTEST PATH

ALGORITHMS UNDER ANALYSIS

2.1 Bellman-Ford Algorithm
Bellman-Ford algorithm [2] uses the principle of edge-based

relaxation. In every iteration it relaxes all the edges and these

iterations are done V-1 times as the maximum number of

edges in the shortest path between two vertices are V-1, where

V is the number of vertices in the graph. If the relaxation can

be done more than V-1 times, it indicates the presence of the

negative cycles. The worst case complexity of this algorithm

is O(VE).

2.2 Dijkstra Algorithm
Dijsktra algorithm [3] uses the same principle of relaxation as

Bellman-Ford algorithm. It works over the graph with non-

negative weighted edges only. In every iteration, it greedily

chooses the vertex which is not selected before and has

minimum cost. It tries to relax vertices through the selected

vertex. Selection of vertex with minimum cost primarily

affects the complexity of algorithm. In case of binary heap,

worst case complexity of this algorithm is O(E logV). We are

also considering an implementation of Dijkstra [4] which

fastens the performance in case where the number of distinct

weighted edges is less.

2.3 Pape-Levit Algorithm
Pape-Levit [5] is an incremental graph algorithm, where the

two sets of vertices are maintained. One set of vertices

contains those vertices which are scanned at least once while

the second set contains those vertices which have never been

scanned. The priority is given to first set for selection of

vertex. The worst case complexity of this algorithm is O(VE).

It works quite fast on the randomly weighted graphs.

2.4 SPFA
The Shortest Path Faster Algorithm (SPFA) [6] is an

improvement of the Bellman–Ford algorithm which computes

single-source shortest paths in a weighted directed graph. The

algorithm is believed to work well on random sparse graphs

and is particularly suitable for graphs that contain negative-

weight edges. The performance of the algorithm is strongly

determined by the order in which candidate vertices are used

to relax other vertices.

2.5 Proposed Algorithm
As the performance of some algorithms highly depends over

the order in which candidate vertices are used to relax the

other vertices, we can see the linear time performance over the

various type of graph structures while it also goes to O(VE)

worst case time complexity. On the other hand, algorithms

like the Dijkstra gives O(E logV) time complexity on every

type of graph structure. This proposed algorithm harnesses the

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 8, April 2017

47

power of both the algorithms. Proposed solution uses SPFA

upto a certain limit of operations and if the shortest path is not

found it moves to Dijkstra algorithm and the intermediate

information produced by SPFA can be used to fasten the

computation of Dijkstra algorithm. Let the transition factor be

µ. Proposed solution uses SPFA till µ*(V+E) operations, after

this it transits to Dijkstra. The value of transition factor (µ)

will decide how fast the transition between these two

algorithms happens. This algorithm will reduce the average

time for finding the shortest path on a general graph.

Proposed Algorithm :

Input : Adjacency list of graph and source vertex.

Output : Distance array containing length of shortest path

from source to every other vertex.

transitionOperationCount := µ*(V+E)

for i : = 1 to V,

 distance(i) := ∞
operationCount := 0

while operationCount <= transitionOperationCount,

 perform SPFA

 for each en-queuing operation,

 operationCount++

if shortest path is not found,

 perform Dijkstra

end

Description of the algorithm –

„:=‟ denotes the assignment operation, while x++ denotes

incrementing value of x by 1. This algorithm has an important

factor (µ) which we termed as the transition factor. This

transition factor decides how fast it moves from SPFA to the

Dijkstra. If this factor is small then it moves to the Dijkstra

quite fast, but if this factor is high it ends up using SPFA all

the time. So a moderate value is required for this factor. Our

algorithm runs SPFA algorithm for the µ*(V+E) operations,

after that if it does not able to find the shortest path it moves

to the Dijkstra algorithm. In best case it finds the shortest path

in the time of SPFA itself, while in the worst case it ends up

using both the algorithms. So asymptotically best case of this

proposed algorithm is O(µ*(V+E)) while worst case is

O((V+E)*(logV+µ)). In general case it is assumed that µ is a

small constant value. In the experimental analysis three

different values of µ are considered.

3. ANALYSIS

3.1 Experiment Specifications
The tests were run on Intel Core i33217U @1.80 GHz CPU

(CPU family 6, Model A, Stepping 9). Number of CPU(s) and

socket is 1 having 2 Thread(s) per core and 2 Core(s) per

socket. The algorithms were tested in presence of 64K L1d

cache, 64K of L1i cache, 512K of L2 cache, 3072K of L3

cache, and 4GB DDR3 RAM. The system had Intel HD 4000

Graphics with 349MHz GPU clock. Byte Order of CPU used

is Little Endian. The computer was running Windows 10 64-

bit. All programs were written in C++ programming language

with g++ compiler 4.8.4 producing x86_64 “64-bit” code.

3.2 Analysis Specification
The types of datasets used for the analysis of algorithms were:

Some random datasets that were generated using the Prüfer

sequence [7] consisting of various vertices and edge count.

With the use of Prüfer sequence [7], generation of test data for

trees can be done in equi-probable manner. In the random

datasets we generated different structures like trees and graph,

having vertices count from 10,000 to 10,000,000. For

complete graphs, vertices count is varied from 100 to 5000.

Along with random graph structures, some special graphs [8]

are also generated which lead to the worst case for various

algorithms. Experiments uses some datasets from DIMACS

Implementation Challenge - Shortest Paths [9] (Northeast

USA) containing 1,524,453 nodes and 3,897,636 edges.

Along with this datasets from Stanford Large Network

Dataset [10] Collection were included; one is the YouTube

online social network containing 1,134,890 vertices and

2,987,624 edges, other one is the Amazon product co-

purchasing network from June 1 2003 containing 403,394

vertices and 3,387,388 edges. The analysis report is based on:

the execution time taken by algorithms on all the above

mentioned datasets.

4. EXPERIMENTAL RESULTS
This analysis report is based on the execution time taken by

algorithms on all the above mentioned parameters working

with the above mentioned datasets. The resultant execution

time is calculated as shown in Table 1 along with its graphical

representation in Figure 1. Datasets were taken from 9th

DIMACS implementation: shortest path – Northeast USA,

Stanford large network dataset collection – YouTube

community, Amazon sales co-purchasing network from June

1, 2003.

4.1 Analysis on Trees
Table 1 shows analysis of various algorithms on trees with

different number of nodes. Figure 1 shows graph of execution

time on different number of vertices in tree.

4.2 Analysis on Randomistic graphs
Table 2 shows analysis of various algorithms on randomistic

graphs with different number of nodes and edges.

4.3 Analysis on Complete graphs
Table 3 shows analysis of various algorithms on complete

graphs with different number of nodes. Figure 2 shows graph

of execution time on different number of vertices in complete

graph.

4.4 Analysis on Special graphs
Table 4 shows analysis of various algorithms on Special

graphs with different number of nodes. Figure 3 shows graph

of execution time on different number of vertices in special

graph.

4.5 Analysis on Benchmarking Datasets
Table 5 shows analysis of various algorithms on

benchmarking graphs. Figure 4 shows execution time on

DIMAC distance based dataset. Figure 5 shows execution

time on DIMAC time based dataset. Figure 6 shows execution

time on Amazon co-purchasing dataset. Figure 7 shows

execution time on YouTube community dataset.

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 8, April 2017

48

Table 1: Showing the execution time of the algorithms on tree

Figure 1: Graph showing execution time vs. number of vertices in tree

Table 2: Showing the execution time of the algorithms on graphs

 Set of algorithms

E
x
ec

u
ti

o
n
 t

im
e

(i
n

se
co

n
d
s)

Number

of vertices

Number

of edges

Bellman-

Ford

Dijkstra

(Binary

Heap)

Dijkstra

(Edge

based)

Pape-

Levit SPFA

Proposed

Algorithm

(µ = 1)

Proposed

Algorithm

(µ = 2)

Proposed

Algorithm

(µ = 3)

10000 30000 0.0200 0.0770 0.3060 0.1900 0.0370 0.1150 0.1150 0.0850

10000 40000 0.0240 0.0750 0.2620 0.2820 0.0300 0.0960 0.0820 0.0730

0

5

10

15

20

25

30

35

40

45

50

Ex
e

cu
ti

o
n

 T
im

e
(i

n
 s

e
co

n
d

s)

Number of vertices

Bellman-Ford

Dijkstra (Binary Heap)

Dijkstra (Edge based)

Pape-Levit

SPFA

Proposed Algorithm (µ = 1)

Proposed Algorithm (µ = 2)

Proposed Algorithm (µ = 3)

 Set of algorithms

Ex
ec

u
ti

o
n

 t
im

e
(i

n
 s

ec
o

n
d

s)

 Bellman-

Ford

Dijkstra

(Binary

Heap)

Dijkstra

(Edge

based)

Pape-

Levit

SPFA Proposed

Algorithm

(µ = 1)

Proposed

Algorithm

(µ = 2)

Proposed

Algorithm

(µ = 3)

10000 0.0400 0.0350 0.1380 0.0020 0.0050 0.0060 0.0070 0.0040

50000 0.4510 0.1220 0.6020 0.0420 0.0210 0.0260 0.0240 0.0300

100000 0.7970 0.2880 0.8540 0.0880 0.0490 0.0560 0.0550 0.0620

500000 6.6220 1.6870 3.1460 0.3700 0.3280 0.3490 0.3190 0.3310

1000000 23.5760 3.5230 5.8320 0.7990 0.6770 0.7040 0.6970 0.7230

5000000 80.4500 22.8310 34.3050 5.0920 4.2270 3.6200 4.3780 4.5780

10000000 - 50.5150 - 13.5350 10.9730 13.3140 11.6240 10.6110

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 8, April 2017

49

10000 50000 0.0310 0.0810 0.3030 0.4980 0.0360 0.1210 0.1060 0.1000

100000 300000 0.2110 0.8330 1.7370 15.6010 0.5730 1.2670 1.2520 1.1550

100000 400000 0.2900 0.7560 1.9650 33.4720 1.0100 1.5580 1.6560 1.8150

100000 500000 0.5030 1.0560 1.9810 33.9610 0.8640 1.3890 1.4270 1.3800

1000000 3000000 2.2170 8.2320 13.1330 - 8.0270 14.5790 12.5150 15.7310

1000000 4000000 4.5570 9.2260 14.0800 - 8.9250 15.6860 16.8670 15.9590

1000000 5000000 4.2640 10.4900 19.8210 - 15.2440 17.3900 13.0030 13.3360

Table 3: Showing the execution time of the algorithms on complete graphs

 Set of Algorithms

E
x
ec

u
ti

o
n
 t

im
e

(i
n
 s

ec
o
n
d
s)

Number of

Vertices

Bellman-

Ford

Dijkstra

(Binary

Heap)

Dijkstra

(Edge

based) Pape-Levit SPFA

Proposed

Algorithm

(µ = 1)

Proposed

Algorithm

(µ = 2)

Proposed

Algorithm

(µ = 3)

300 0.0160 0.0000 0.0160 0.0620 0.0310 0.0160 0.0000 0.0000

600 0.0310 0.0160 0.0780 0.7500 0.1100 0.0320 0.0250 0.0250

1000 0.1090 0.0510 0.2190 5.0910 0.5320 0.1530 0.1150 0.1150

3000 2.0720 0.4870 2.8640 134.8480 6.5170 0.5060 0.8270 0.8270

5000 4.8120 0.7860 5.9740 - 16.2580 1.8700 2.2150 2.2150

Figure 2: Graph showing execution time vs. number of vertices in complete graph

0

5

10

15

20

25

300 600 1000 3000 5000

Ex
e

cu
ti

o
n

 T
im

e
 (

in
 s

e
co

n
d

s)

Number of vertices

Bellman-Ford

Dijkstra (Binary Heap)

Dijkstra (Edge based)

Pape-Levit

SPFA

Proposed Algorithm (µ = 1)

Proposed Algorithm (µ = 2)

Proposed Algorithm (µ = 3)

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 8, April 2017

50

Table 4: Showing the execution time of the algorithms on special graphs

 Set of Algorithms

E
x
ec

u
ti

o
n
 t

im
e

(i
n
 s

ec
o
n
d
s)

Number of

Vertices

Bellman-

Ford

Dijkstra

(Binary

Heap)

Dijkstra

(Edge based) Pape-Levit SPFA

Proposed

Algorithm (µ

= 1)

Proposed

Algorithm (µ

= 2)

Proposed

Algorithm (µ

= 3)

100 0.0000 0.0190 0.0400 0.0200 0.0160 0.0040 0.0020 0.0010

300 0.0030 0.2260 0.6460 0.4430 0.5200 0.0400 0.0080 0.0090

600 0.0100 0.8100 4.7360 3.5010 3.4940 0.1970 0.0370 0.0470

1000 0.0340 2.3880 20.1700 18.5500 16.2490 0.5530 0.0850 0.0950

3000 0.2880 28.1930 - - - 4.6220 0.5950 0.7190

5000 2.7350 88.9080 - - - 19.7420 2.2980 2.9660

Figure 3: Graph showing execution time vs. number of vertices in special graph

Table 5: Showing the execution time of the algorithms on benchmarking datasets

Set of algorithms

E
x
ec

u
ti

o
n
 t

im
e

(i
n
 s

ec
o
n
d
s)

Dataset
Bellman-

Ford

Dijkstra

(Binary

Heap)

Dijkstra

(Edge

based)

SPFA

Proposed

Algorithm (µ

= 1)

Proposed

Algorithm (µ

= 2)

Proposed

Algorithm (µ

= 3)

DIMAC (NE

USA) Distance

Based

103.380 5.3560 8.0350 110.432 22.2670 22.0450 22.8000

DIMAC (NE

USA) Time

Based

72.6840 6.9900 6.7190 47.7770 20.5570 23.1440 20.3710

0

5

10

15

20

25

30

35

40

100 300 600 1000 3000 5000

Ex
e

cu
ti

o
n

 t
im

e
 (

in
 s

e
co

n
d

s)

Number of vertices

Bellman-Ford

Dijkstra (Binary Heap)

Dijkstra (Edge based)

Pape-Levit

SPFA

Proposed Algorithm (µ = 1)

Proposed Algorithm (µ = 2)

Proposed Algorithm (µ = 3)

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 8, April 2017

51

Youtube

Communties
3.6290 12.2210 16.935 4.5170 13.1500 9.8760 9.5000

Amazon

Purchasing

Network

1.2730 3.3360 4.3660 2.3650 5.9210 5.1170 4.4140

Figure 4: Graph showing execution time on the DIMAC

(NE USA) distance based dataset

Figure 6: Graph showing execution time on the SNAP

Amazon co-purchasing network based dataset

Figure 5: Graph showing execution time on the DIMAC

(NE USA) time based dataset

Figure 7: Graph showing execution time on the SNAP

YouTube Communities based dataset

0

20

40

60

80

100

120

Ex
e

cu
ti

o
n

 T
im

e
 (

in
 s

e
co

n
d

s)

0

1

2

3

4

5

6

7

Ex
e

cu
ti

o
n

 T
im

e
 (

in
 s

e
co

n
d

s)

0

10

20

30

40

50

60

70

80

Ex
e

cu
ti

o
n

 T
im

e
 (

in
 s

e
co

n
d

s)

0

2

4

6

8

10

12

14

16

18

Ex
e

cu
ti

o
n

 T
im

e
 (

in
 s

e
co

n
d

s)

International Journal of Computer Applications (0975 – 8887)

Volume 163 – No 8, April 2017

52

5. CONCLUSIONS
It can be seen from the aforementioned analysis that for

different datasets, all algorithms under analysis perform

differently i.e. certain algorithms perform better as compared

to others. For random graphs, SPFA outperforms all the other

algorithms while for the general graphs the performance

degrades. Performance of algorithms like SPFA highly

depends upon the order in which candidate vertices are used

to relax other vertices. While processing a vertex, which can

be relaxed further increases the time overhead of the

algorithm. In case of random graph, this overhead is quite low

which make the SPFA performs better in comparison to other

algorithms. In case of special graph and benchmarking

datasets, this overhead becomes quite high which results in

poor performance of SPFA. For all type of graphs the

performance of Dijkstra does not depends over the structure

of graph, which makes it faster on special graphs. For

harnessing the power of both the algorithms our proposed

scheme proved to perform better over every kind of graph.

6. REFERENCES
[1] ShortestPathProblem,http://en.wikipedia.org/wiki/Shorte

st_path_problem

[2] Bellman ford (1958). “On a routing problem”. Quarterly

of Applied Mathematics. 16: 87-90.Dijkstra, E. W.

(1959). "A note on two problems in connexion with

graphs". Numerische Mathematik.

[3] Faster Dijkstra on Special Graphs,

http://codeforces.com/blog/entry/43508.

[4] Boris V. Cherkassky , Andrew V. Goldberg , Tomasz

Radzik, Shortest paths algorithms: theory and

experimental evaluation, Mathematical Programming:

Series A and B, v.73 n.2, p.129-174, May 31, 1996.

[5] Shortest Path Faster Algorithm,

http://codeforces.com/blog/entry/16221.

[6] Prüfer, H. "Neuer Beweis eines Satzes über

Permutationen." Arch. Math. Phys. 27, 742-744, 1918.

[7] Construction of Special Graphs for poor performance of

SPFA,

http://codeforces.com/blog/entry/16221?#comment-

211370

[8] 9th DIMACS Implementation Challenge - Shortest

Paths,

http://www.dis.uniroma1.it/challenge9/download.shtml

[9] Stanford Network Analysis Project,

https://snap.stanford.edu/

IJCATM : www.ijcaonline.org

