
International Journal of Computer Applications (0975 – 8887)

Volume 164 – No 3, April 2017

42

Efficient Dynamic Multiple GPGPU Layer for OpenCV

Afshan Jafri
Information Technology Department

College of Computer and Information Sciences,
King Saud University,

P.O. Box 22452, Riyadh,
11495, Saudi Arabia

ABSTRACT
General purpose graphic processing unit (GPGPU) provides

high performance resource for computing. CUDA (Compute

Unified Device Architecture) and OpenCL (Open Computing

Language) permit writing of parallel computing programs that

utilize multiple central processing units (CPU) and GPGPUs.

The image processing library, OpenCV (Open Source

Computer Vision library), may benefit greatly from parallel

use of multiple GPGPUs, however, its CUDA implementation

is restricted to benefiting from a single GPGPU only. This

research develops an abstraction layer above OpenCV single

GPU module that enables multiple GPUs for single instruction

multiple data (SIMD) architecture. This approach has a

controller/parent thread which generates various worker

threads to operate on several GPU devices, to handle

balancing of work load on GPUs, as the task allocation is

dynamic for any number of GPUs. The experiments on

running bilateral filtering, color to gray conversion, fast

Fourier transform, and convolution on homogeneous and

heterogeneous sized images of scenery, objects, and faces,

indicate that: (1) threading reduces computation time by half

of sequential operation for GPU; (2) tuned static load

balanced GPU threading reduces computation time by up to a

fourth when compared to CPU threading; (3) performance of

dynamic load balancing approaches that of manually

iteratively balanced static operation.

General Terms

High performance computing, parallel computing, scientific

programming, computer vision

Keywords
GPGPU, OpenCV, SIMD, CUDA, OpenCL, Multiple GPU,

Load Balancing, Threading.

1. INTRODUCTION
General processing units (GPU) have been used for graphics

processing for the last three decades. With increased power,

programmability and flexibility, GPU functionality has been

extended from graphics only processing to general purpose

GPGPU to provide a flexible, high performance resource for

scientific processing applications [1]. Multiple GPGPU's

provide substantial improvements in performance with

suitable programming frameworks [2].

The standardized programming frameworks CUDA (Compute

Unified Device Architecture) and OpenCL (Open Computing

Language) permit writing of general purpose parallel

computing programs that utilize multiple central processing

units (CPU) and GPGPUs [3]. CUDA is specific to GPU built

by NVIDIA, whereas OpenCL is for heterogeneous devices

supported by consortium. As CUDA is constructed for a

homogeneous environment, it outperforms the portable

OpenCL for a standard programming, memory models and

optimization options [4, 5].

A toolkit that can benefit greatly from parallel use of multiple

GPGPUs is the image processing library, OpenCV (Open

Source Computer Vision library). It is collection of functions

written in C/C++ to provide simple-to-use real time computer

vision infrastructure [6].

With expansion of GPU to general purpose processing,

OpenCV built their library to support their function to run on

only a single GPU to utilize the high performance computing

of GPGPU [7]. In high performance computation, it is often

required to operate few functions on large chunk of data as

Single Instruction Multiple Data (SIMD). These requirements

typically get handled with parallel processing methodology.

Although GPU provides parallel computing architecture to

process tasks fast in parallel but with only single GPU support

of OpenCV. This provides the bottleneck in high performance

OpenCV computation.

This paper develops an abstraction layer above OpenCV

single GPU module that enables multiple GPUs for single

instruction multiple data architecture, as illustrated in Figure

1. The goal is to enable all single GPU OpenCV functions to

run on multiple GPU concurrently to handle single instruction

multiple data scenario. This objective is accomplished by

building an abstraction layer on OpenCV single GPU module

to enable multiple GPU implementation of OpenCV.

Figure 1: Hierarchy/abstraction of the layer

implementation

The construction of the software layer is in CUDA and is

applied to functions in OpenCV because of the large OpenCV

community of developers and users that can be directly

impacted by this work and the optimized CUDA environment

for GPU [8,9]. Appendix A provides a sample of the code

developed for multiple GPU abstraction layer.

The paper is organized as follows: Section 2 describes the

methodology; Section 3 presents the algorithms developed;

Section 4 explains the experiment setup to test the

performance of the algorithms and presents the results;

Section 5 provides the conclusions.

International Journal of Computer Applications (0975 – 8887)

Volume 164 – No 3, April 2017

43

2. METHODOLOGY
One of the methods in parallel processing is multiple

threading [10,11]. In order to process tasks in parallel,

multiple threads are generated. Each thread deals with its own

copy of data and function to be executed on that data. The

approach in this paper uses multiple threads on OpenCV

single GPU implementation to handle SIMD scenario. This

maximizes the usage of processing power.

This approach, as depicted in Figure 2, is based on having a

controller/parent thread that generates various worker threads

to operate on all available GPU devices. Each worker thread is

given data and task to execute on the data using particular

device. Each thread takes control of particular device,

performs computation and reports back the result to the main

thread. Parallel processing is achieved with multiple threading

as worker threads operate concurrently on their own with no

interdependence. Controller thread maintains the task

allocation and thread synchronization of worker (child)

threads before all of them terminate.

Figure 2: Framework of our methodology

3. LOAD BALANCING
The framework conducts load balancing to divide the

workload (data and processing) among the GPGPU devices

according to their capabilities or processing power, in order to

optimize the overall performance. Allocation of the data/load

for execution on the various devices requires algorithms for

distribution of data and load [12]. This paper develops two

methods of load balancing: static and dynamic. In the static

version, load distribution is pre-decided for each GPGPU

device, whereas in dynamic version, load/data is allocated to

the devices during the run time only (dynamically).

3.1 Static Balancing Algorithm
The static balancing algorithm consists of four parts: planner,

controller thread, worker thread, and synchronization &

termination as illustrated in Figure 3. The following

paragraphs explain the process flow for the static version

implementation of Multiple GPGPU OpenCV.

The planner phase detects the devices available and optimizes

task load for each device according to computational power of

the device. Experiments indicate that device computational

capability depends mainly on two factors: number of cores

(NC), and device clock rate (CR).

The load distribution is calculated as follows for two devices,

Dev1 and Dev2, and a total load of TL. Let NC1 and NC2

denote the number of cores available in the two devices, and

CR1 & CR2 represent the device clock rate of Dev1 and Dev2

respectively. Load L1 for Dev1 is calculated as follows:

  TL
CRCR

CR

NCNC

NC
L 















21

1

21

1
1 1 

Here  is a tuning parameter that allows the user to decide

on the relative weight of NC with respect to CR. A default

value of 0.5 give equal weight, a value above 0.5 favors

number of cores (NC) and a value below 0.5 gives preference

to the clock rate (CR). A user manually varies  around

default value based on GPGPU specification for optimal

performance of heterogeneous data processing.

Once load distribution is decided, worker threads are created

dynamically in the controller thread phase with one thread per

device. The main controller thread then assigns pre-decided

load/data and functions (single GPGPU OpenCV functions to

operate on the data) to each worker thread.

In the third phase, each worker thread takes control and runs

the user defined function on particular GPGPU device. When

worker threads are done with task assigned, controller thread

synchronizes and terminates them in the fourth phase.

Figure 3: Static load balancing

3.2 Dynamic Balancing Algorithm
The dynamic load balancing algorithm distributes load on

devices during runtime rather than pre-allocating the load

before execution [13]. It automatically queues tasks according

to the busy status of the device, as illustrated in Figure 4.

The following paragraphs explain the process for dynamic

load balancing on multiple GPUs. The algorithm reads user

defined directory for the data files, makes a list of filenames,

Controller

Thread

Worker Thread 0 Device 0

Worker Thread 1 Device 1

Worker Thread m Device m

International Journal of Computer Applications (0975 – 8887)

Volume 164 – No 3, April 2017

44

and conducts load allocation in three phases: controller thread,

worker thread, and synchronization / termination.

Figure 4: Dynamic load balancing

The controller thread phase detects the number of devices

available, forms load queue, and dynamically creates worker

threads (one thread per device). Each thread gets functions

(single GPU OpenCV functions) and one data at a time to

work on.

A thread has a flag to report the status of execution: busy or

ready, which is initialized by the controller thread to ready.

The thread operator loops on the data list to process and reads

the flag of each worker thread (one worker thread controls one

device). If the device is ready, it assigns (another) data from

the load queue to that thread to work on and writes flag as

busy; otherwise waits for some time. The thread operator

gives the ‘end’ signal to terminate execution.

The worker thread takes data from the Controller thread and

reads its flag. If the worker thread is flagged as busy by the

Controller thread, the task (user defined function with data) is

assigned to the device; otherwise it waits. It gives the thread

kill command on receiving the end signal from the Controller

thread. Finally, in the third phase, when the load queue is

empty, the controller thread synchronizes and terminates

worker thread.

4. EXPERIMENTATION AND RESULTS
Experimental design is conducted to investigate the

performance of the following: (E1) threading and sequential

computation; (E2) Static GPU threading and CPU threading;

and (E3) static and dynamic load balancing approach. A

variety of functions and data are used such as bilateral

filtering, color to gray conversion, fast Fourier transform, and

convolution; homogeneous and heterogeneous sized images of

scenery, objects, and faces.

The platform used for experimentation has Intel Xeon CPU

E5-2603 0 1.8GHz as CPU and two devices as GPU. Device 0

is "Tesla C2075", and Device 1 is "Quadro 2000". Details of

the hardware are provided in Appendix B. The software used

in the experiments is OpenCV 2.4.8, Microsoft visual studio

2008, and Pthread –POSIX 1003.1c (dynamic platform

independent thread management). The data used for the tests

are: test data from OpenCV extra from git-hub [14],

Caltech256 database [15], and Standard test images from

imageprocessing.com [16].

4.1 Threading and Sequential Operation
This study investigates the effects of threading in relation to

sequential operation in both GPU and CPU to form a baseline

for performance. The experiments utilize bilateral filtering

function of thirty high resolution image (4096x3072)

[14,15,16]. Table 1 presents computational time for: (1) GPU

threading, (2) GPU sequential, (3) GPU threading - load

distributed (4) CPU threading, (5) CPU sequential. The results

indicate that GPU sequential computation is four times faster

than CPU sequential. The computational time for GPU is

halved using threading when compared to sequential. In

contrast, CPU threading is less effective in improving

performance. The conclusion of the study is that using

multiple threading in multiple GPUs scenario with balanced

work load as per GPU capabilities provides the fastest

computation.

Table 1 Comparison between threading and sequential

operation in GPU and CPU

Task performed: Bilateral filtering of high resolution image

(4096x3072)

Number of images to process: 30

Approach Device

(GPUs)

Thread

number

No.

images

(work

load)

Computational

time (secs)

GPU

Threading

Device 0

(Tesla)
Thread 0 17

56.6
Device 1

(Quadro)
Thread 1 13

GPU

Sequential

Device 0 NA 30 91.52

Device 1 NA 30 117.72

GPU

Sequential

(load

distributed)

Device 0 NA 17

106.98
Device 1 NA 13

CPU

Threading

CPU 1 Thread 0 15
411.109

CPU 2 Thread 1 15

CPU

Sequential
CPU NA 30 479.493

4.2 Static Load Balanced GPU and CPU

Threading
This section compares the performance of tuned static load

balanced GPU threading and CPU threading. Three tasks are

performed on 30 to 50 high resolution images (4096x3072):

(1) bilateral filtering, (2) color to gray conversion followed by

International Journal of Computer Applications (0975 – 8887)

Volume 164 – No 3, April 2017

45

2D filtering, (3) Fast Fourier Transformation of high

resolution grayscale image. The OpenCV functions used are

bilateralFilter; cvtColor, filter2D; and dft, merge, split,

magnitude, log, and normalize. Table 2 presents

computational time for static load balanced GPU threading

and CPU threading for two devices. In all three tasks, GPU

threading significantly outperforms CPU threading, with

factors ranging from more than half to an eighth.

Table 2 Computation time of tuned static load balanced

GPU threading and CPU threading

4.3 Static and Dynamic Load Balancing
Experiments are conducted to compare computation time for

three load balancing methods: non-tuned static; optimized

static using manual tuning; and dynamic. Naturally, non-tuned

static is expected to have worst performance and the manually

optimized static load balancing to have the best performance.

The objective is to investigate how close is the practical

dynamic load balancing compared to the cumbersome

optimized static version.

Computation is investigated in the context of three tasks: (1)

bilateral filtering (OpenCV function is bilateralFilter); (2)

Fourier transformation (OpenCV functions being dft, merge,

split, magnitude, log, normalize); (3) color-to-gray conversion

followed by user defined 2D filtering (OpenCV functions

being cvtColor, filter2D). For each task, four sets of images

are used: (1) scenery consisting of 100 heterogeneous sized

images; (2) objects (e.g. guns and shoes) of 27 heterogeneous

sized images; (3) thirty facial images of heterogeneous sizes;

(4) ten gray scale heterogeneous sized images.

Table 3.1 Load balancing using Static and Dynamic

approach - Task 1: Bilateral Filtering

Images 1: Bilateral filtering of SCENERY images

Number of images to process: 100 (heterogeneous size)

Parameters: kernel size=-1, sigma color=50 and sigma space= 7

OpenCV functions used: bilateralFilter

Load

Balancing
Approach

Device

(GPUs)

Thread

number

Computational

time (secs)

Static

(manually

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
64.894

Device 1

(Quadro)

Thread

1

Static

(non-

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
67.361

Device 1

(Quadro)

Thread

1

Dynamic
GPU

Threading

Device 0

(Tesla)

Thread

0
65.458

Device 1

(Quadro)

Thread

1

Images 2: Bilateral filtering of OBJECT (guns, shoes, etc.,) images

Number of images to process: 27 (heterogeneous size)

Parameters: kernel size=-1, sigma color=50 and sigma space= 7

OpenCV functions used: bilateralFilter

Load

Balancing
Approach

Device

(GPUs)

Thread

number

Computational

time (secs)

Static

(manually

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
7.791

Device 1

(Quadro)

Thread

1

Static

(Non-

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
8.861

Device 1

(Quadro)

Thread

1

Dynamic
GPU

Threading

Device 0

(Tesla)

Thread

0
8.049

Device 1

(Quadro)

Thread

1

Images 3: Bilateral filtering of FACIAL images

Number of images to process: 30 (heterogeneous size)

Parameters: kernel size=-1, sigma color=50 and sigma space= 7

OpenCV functions used: bilateralFilter

Load

Balancing
Approach

Device

(GPUs)

Thread

number

Computational

time (secs)

Static

(manually

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
7.659

Device 1

(Quadro)

Thread

1

Static

(Non-

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
8.052

Device 1

(Quadro)

Thread

1

Dynamic
GPU

Threading

Device 0

(Tesla)

Thread

0
7.644

Device 1

(Quadro)

Thread

1

Images 4: Bilateral filtering of GRAYSCALE images

Number of images to process: 10 (heterogeneous size)

Parameters: kernel size=-1, sigma color=50 and sigma space= 7

OpenCV functions used: bilateralFilter

Load

Balancing
Approach

Device

(GPUs)

Thread

number

Computational

time (secs)

Static GPU Device 0 Thread 7.525

TASK 1:

Task Performed: Bilateral filtering of high resolution image

(4096x3072)

Parameters: kernel size=-1, sigma color=50, sigma space= 7

OpenCV functions used: bilateralFilter

Number of images to process: 30 (homogeneous size)

Approach
Device

(GPUs)

Thread

number

images

(work

load)

Computational

time (secs)

GPU

Threading

Device 0

(Tesla)
Thread 0 17

56.6
Device 1

(Quadro)
Thread 1 13

CPU

Threading

CPU 1 Thread 0 15
411.109

CPU 2 Thread 1 15

TASK 2:

Task Performed: Color to Gray conversion + user defined 2D filtering

of high resolution image (4096x3072)

Filter is 16x16 ones with normalization factor of 16*16

OpenCV functions used: cvtColor, filter2D

Number of images to process: 50 (homogeneous size)

Approach
Device

(GPUs)

Thread

number

images

(work

load)

Computational

time (secs)

GPU

Threading

Device 0

(Tesla)
Thread 0 28

58.297
Device 1

(Quadro)
Thread 1 22

CPU

Threading

CPU 1 Thread 0 25
139.202

CPU 2 Thread 1 25

TASK 3:

Task Performed: Fast Fourier Transformation of high resolution

grayscale image (4096x3072)

OpenCV functions used: dft, merge, split, magnitude, log, normalize

Number of images to process: 50(homogeneous size)

Approach
Device

(GPUs)

Thread

number

images

(work

load)

Computational

time (secs)

GPU

Threading

Device 0

(Tesla)
Thread 0 28

94.376
Device 1

(Quadro)
Thread 1 23

CPU

Threading

CPU 1 Thread 0 25
220.448

CPU 2 Thread 1 25

International Journal of Computer Applications (0975 – 8887)

Volume 164 – No 3, April 2017

46

(manually

tuned)

Threading (Tesla) 0

Device 1

(Quadro)

Thread

1

Static

(Non-

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
8.362

Device 1

(Quadro)

Thread

1

Dynamic
GPU

Threading

Device 0

(Tesla)

Thread

0
7.66

Device 1

(Quadro)

Thread

1

Table 3.2 Load balancing using Static and Dynamic

approach - Task 2: Fourier Transformation

Images 1: Fourier Transformation of SCENERY images

Number of images to process: 100 (heterogeneous size)

OpenCV functions used: dft, merge, split, magnitude, log, normalize

Load

Balancing
Approach

Device

(GPUs)

Thread

number

Computational

time (secs)

Static

(manually

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
86.471

Device 1

(Quadro)

Thread

1

Static

(Non-

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
95.769

Device 1

(Quadro)

Thread

1

Dynamic
GPU

Threading

Device 0

(Tesla)

Thread

0
87.067

Device 1

(Quadro)

Thread

1

Images 2: Fourier Transformation of OBJECT (guns, shoes, etc.,)

images

Number of images to process: 27 (heterogeneous size)

OpenCV functions used: dft, merge, split, magnitude, log, normalize

Load

Balancing
Approach

Device

(GPUs)

Thread

number

Computational

time (secs)

Static

(manually

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
7.8

Device 1

(Quadro)

Thread

1

Static

(Non-

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
9.142

Device 1

(Quadro)

Thread

1

Dynamic
GPU

Threading

Device 0

(Tesla)

Thread

0
8.331

Device 1

(Quadro)

Thread

1

Images 3: Fourier Transformation of FACIAL images

Number of images to process: 30 (heterogeneous size)

OpenCV functions used: dft, merge, split, magnitude, log, normalize

Load

Balancing
Approach

Device

(GPUs)

Thread

number

Computational

time (secs)

Static

(manually

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
7.659

Device 1

(Quadro)

Thread

1

Static

(Non-

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
9.329

Device 1

(Quadro)

Thread

1

Dynamic
GPU

Threading

Device 0

(Tesla)

Thread

0
8.05

Device 1

(Quadro)

Thread

1

Images 4: Fourier Transform of GRAYSCALE images

Number of images to process: 10 (heterogeneous size)

OpenCV functions used: dft, merge, split, magnitude, log, normalize

Load

Balancing
Approach

Device

(GPUs)

Thread

number

Computational

time (secs)

Static GPU Device 0 Thread 7.488

(manually

tuned)

Threading (Tesla) 0

Device 1

(Quadro)

Thread

1

Static

(Non-

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
8.767

Device 1

(Quadro)

Thread

1

Dynamic
GPU

Threading

Device 0

(Tesla)

Thread

0
7.724

Device 1

(Quadro)

Thread

1

Table 3.3 Load balancing using Static and Dynamic

approach - Task 3: Color-To-Gray Conversion

Images 1: Color to Gray conversion + user defined 2D filtering of

SCENERY images

Number of images to process: 100 (heterogeneous size)

OpenCV functions used: cvtColor, filter2D

User defined 2DFilter is 16x16 ones with normalization factor of

16*16

Load

Balancing
Approach

Device

(GPUs)

Thread

number

Computational

time (secs)

Static

(manually

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
45.817

Device 1

(Quadro)

Thread

1

Static

(Non-

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
50.653

Device 1

(Quadro)

Thread

1

Dynamic
GPU

Threading

Device 0

(Tesla)

Thread

0
46.52

Device 1

(Quadro)

Thread

1

Images 2: Color to Gray conversion + user defined 2D filtering of

OBJECT (guns, shoes, etc) images

Number of images to process: 27 (heterogeneous size)

OpenCV functions used: cvtColor, filter2D

User defined 2DFilter is 16x16 ones with normalization factor of

16*16

Load

Balancing
Approach

Device

(GPUs)

Thread

number

Computational

time (secs)

Static

(manually

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
7.785

Device 1

(Quadro)

Thread

1

Static

(Non-

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
8.705

Device 1

(Quadro)

Thread

1

Dynamic
GPU

Threading

Device 0

(Tesla)

Thread

0
7.925

Device 1

(Quadro)

Thread

1

Images 3: Color to Gray conversion + user defined 2D filtering of

FACIAL images

Number of images to process: 30 (heterogeneous size)

OpenCV functions used: cvtColor, filter2D

User defined 2DFilter is 16x16 ones with normalization factor of

16*16

Load

Balancing
Approach

Device

(GPUs)

Thread

number

Computational

time (secs)

Static

(manually

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
7.878

Device 1

(Quadro)

Thread

1

Static

(Non-

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
8.829

Device 1

(Quadro)

Thread

1

Dynamic
GPU

Threading

Device 0

(Tesla)

Thread

0 7.927

Device 1 Thread

International Journal of Computer Applications (0975 – 8887)

Volume 164 – No 3, April 2017

47

(Quadro) 1

Images 4: Color to Gray conversion + user defined 2D filtering of

GRAYSCALE images

Number of images to process: 10 (heterogeneous size)

OpenCV functions used: cvtColor, filter2D

User defined 2DFilter is 16x16 ones with normalization factor of

16*16

Load

Balancing
Approach

Device

(GPUs)

Thread

number

Computational

time (secs)

Static

(manually

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
7.145

Device 1

(Quadro)

Thread

1

Static

(Non-

tuned)

GPU

Threading

Device 0

(Tesla)

Thread

0
8.135

Device 1

(Quadro)

Thread

1

Dynamic
GPU

Threading

Device 0

(Tesla)

Thread

0
7.348

Device 1

(Quadro)

Thread

1

Tables 3.1, 3.2, and 3.3 present the computational times for

each of the three tasks with sub-tables showing the results for

each of the four sets of images. The results clearly indicate

consistently and in all tasks that dynamic load balancing is

closer in efficiency to manually tuned static balancing than to

non-tuned static load balancing. In many case, computational

time of dynamic load balancing is comparable to the

optimized manually tuned static load balancing. This is in

addition to dynamic balancing being automatic compared to

fine tuning which is manual, iterative, and cumbersome.

5. CONCLUSION
This paper has constructed an abstraction layer above

OpenCV single GPU module to enable multiple GPUs for

SIMD architecture, and developed static and dynamic load

balancing mechanisms. Multiple experiments are conducted

for a variety of tasks and images to compare computational

performance of various schemes. The conclusions are as

follows:

(1) Balanced workload on GPU provides the fastest

computation compared to CPU threading

(2) Static load balancing works well and makes full utilization

of GPUs only if the data of interest is homogeneous in nature

(of same size and type). However, it is cumbersome because

default value of alpha needs to be varied if same operation has

to be performed on machine of different capabilities. User

tuning is required for load balancing in case of heterogeneous

data type and size.

(3) Dynamic load balancing through dynamic load task

allocation works well and makes efficient utilization of GPUs

available for all kinds of data. It does not require tuning and

performs equally well making full utilization of GPUs even if

machine changes (as it automatically tunes itself to available

GPU capabilities).

(4) Dynamic load balancing provides ease of use, flexibility,

efficient GPU utilization to user as it automatically scales the

work to utilize all available resources.

Future work includes reformulation of the load balancing

problem as a knapsack problem in combinatorial optimization,

with an objective of allocation of tasks to each resource to

minimize time subject to an upper limit.

6. ACKNOWLEDGMENT
This project was funded by the National Plan for Science,

Technology and Innovation (MAARIFAH), King Abdulaziz

City for Science and Technology, Kingdom of Saudi Arabia,

Award Number (34/959).

7. REFERENCES
[1] Jespersen, D.C., 2010. Acceleration of a CFD code with

a GPU. Scientific Programming, 18(3-4), pp.193-201.

[2] Xu, R., Tian, X., Chandrasekaran, S. and Chapman, B.,

2015. Multi-GPU support on single node using directive-

based programming model. Scientific Programming.

[3] Lee, J.H., Nigania, N., Kim, H., Patel, K. and Kim, H.,

2015. OpenCL performance evaluation on modern

multicore CPUs. Scientific Programming, 2015, p.4.

[4] J., Varbanescu, A.L. and Sips, H., 2011, September. A

comprehensive performance comparison of CUDA and

OpenCL. In Parallel Processing (ICPP), 2011

International Conference on (pp. 216-225). IEEE.

[5] Karimi, K., Dickson, N.G. and Hamze, F., 2010. A

performance comparison of CUDA and OpenCL. arXiv

preprint arXiv:1005.2581.

[6] Bradski, G. and Kaehler, A., 2008. Learning OpenCV:

Computer vision with the OpenCV library. " O'Reilly

Media, Inc.".

[7] OpenCV, GPU Module Introduction. [online]

http://docs.opencv.org/modules/gpu/doc/introduction.ht

ml

[8] Sanders, J. and Kandrot, E., 2010. CUDA by Example:

An Introduction to General-Purpose GPU Programming,

Portable Documents. Addison-Wesley Professional.

[9] Kirk, D.B. and Wen-mei, W.H., 2010. Programming

massively parallel processor. Morgan Kaufmann.

[10] Nielsen, I. and Janssen, C.L., 2008. Multicore challenges

and benefits for high performance scientific

computing. Scientific Programming, 16(4), pp.277-285.

[11] Lan, Z., Taylor, V.E. and Bryan, G., 2002. Dynamic load

balancing of SAMR applications on distributed

systems. Scientific Programming, 10(4), pp.319-328.

[12] Parent, J., Verbeeck, K., Lemeire, J., Nowe, A.,

Steenhaut, K. and Dirkx, E., 2004. Adaptive load

balancing of parallel applications with multi-agent

reinforcement learning on heterogeneous

systems. Scientific Programming, 12(2), pp.71-79.

[13] OpenCV Test data. [online] Available at:

https://github.com/itseez/opencv_extra.

[14] Caltech 256 database, J2K and 256_object category,

http://www.csee.wvu.edu/~xinl/database.html

[15] Standard test Image, online

http://www.imageprocessingplace.com/root_files_v3/ima

ge_databases.html

International Journal of Computer Applications (0975 – 8887)

Volume 164 – No 3, April 2017

48

8. APPENDIX A: CODE SAMPLE
This appendix provides code sample of multiple GPU

abstraction layer for bilateral filteration of images.

void UserFunction(thread_data_t *data)

{ // 'Filename' is provided by the "data->name" ,

everything else is user defined

char ss[20]="out";

char *Inputpath=new char[400];

*Inputpath=NULL;

char *Outputpath=new char[400];

*Outputpath=NULL;

cout<< " Processing: "<< data->name << endl;

cout<<endl;

Mat src = imread(strcat(strcat(Inputpath, data->InputPath),

data->name) , CV_LOAD_IMAGE_COLOR);

if (!src.data)

{

 cout << "data is not read"<< endl;

 exit(1);

}

gpu::GpuMat d_src2(src);

gpu::GpuMat d_dst2;

gpu::bilateralFilter(d_src2,d_dst2,-1, 50,7);

Mat dst2(d_dst2);

imwrite(strcat(strcat(Outputpath, data->OutputPath),

strcat(ss, data->name)), dst2);

cout<<" End of Processing: "<<data->name<<endl;

cout<<endl;

};

9. APPENDIX B: HARDWARE

Specification
GPU device 0:

"Tesla C2075"

GPU device 1:

"Quadro 2000"

CUDA

Capability

Major/Minor

version number

2.0 2.1

Total amount of

global memory:

4096 MB

(4294967295

bytes)

1024 MB

(1073741824

bytes)

Multiprocessors:
(14) x (32) CUDA

Cores

(4) x (48) CUDA

Cores

GPU Clock rate:
1147 MHz

(1.15 GHz)

1251 MHz

(1.25 GHz)

Memory Clock

rate:
1566 MHz 1304 MHz

Memory Bus

Width
384-bit 128-bit

L2 Cache Size: 786432 bytes 262144 bytes

Max Texture

Dimension Size

(x, y, z)

1D=(65536),

2D=(65536,65535),

3D=(2048,2048,

2048)

1D=(65536),

2D=(65536,65535),

3D=(2048,2048,

2048)

Max Layered

Texture Size

(dim) x layers

1D=(16384) x

2048,

2D=(16384,16384)

x 2048

1D=(16384) x

2048,

2D=(16384,16384)

x 2048

Total amount of 65536 bytes 65536 bytes

constant

memory

Total amount of

shared memory

per block

49152 bytes 49152 bytes

Total number of

registers

available per

block

32768 32768

Warp size 32 32

Maximum

number of

threads per

multiprocessor

1536 1536

Maximum

number of

threads per

block

1024 1024

Maximum sizes

of each

dimension of a

block

1024x1024x64 1024x1024x64

Maximum sizes

of each

dimension of a

grid

65535x65535

x65535

65535x65535

x65535

Maximum

memory pitch
2147483647 bytes 2147483647 bytes

Texture

alignment
512 bytes 512 bytes

Concurrent copy

and kernel

execution

Yes with 2 copy

engine(s)

Yes with 1 copy

engine(s)

Run time limit

on kernels
No Yes

Integrated GPU

sharing Host

Memory

No No

Support host

page-locked

memory

mapping

Yes Yes

Alignment

requirement for

Surfaces

Yes Yes

Device has ECC

support
Enabled Disabled

CUDA Device

Driver Mode

(TCC or

WDDM)

TCC (Tesla

Compute Cluster

Driver

WDDM (Windows

Display Driver

Model

IJCATM : www.ijcaonline.org

