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ABSTRACT 
General purpose graphic processing unit (GPGPU) provides 

high performance resource for computing. CUDA (Compute 

Unified Device Architecture) and OpenCL (Open Computing 

Language) permit writing of parallel computing programs that 

utilize multiple central processing units (CPU) and GPGPUs. 

The image processing library, OpenCV (Open Source 

Computer Vision library), may benefit greatly from parallel 

use of multiple GPGPUs, however, its CUDA implementation 

is restricted to benefiting from a single GPGPU only.  This 

research develops an abstraction layer above OpenCV single 

GPU module that enables multiple GPUs for single instruction 

multiple data (SIMD) architecture. This approach has a 

controller/parent thread which generates various worker 

threads to operate on several GPU devices, to handle 

balancing of work load on GPUs, as the task allocation is 

dynamic for any number of GPUs. The experiments on 

running bilateral filtering, color to gray conversion, fast 

Fourier transform, and convolution on homogeneous and 

heterogeneous sized images of scenery, objects, and faces, 

indicate that: (1) threading reduces computation time by half 

of sequential operation for GPU; (2) tuned static load 

balanced GPU threading reduces computation time by up to a 

fourth when compared to CPU threading; (3) performance of 

dynamic load balancing approaches that of manually 

iteratively balanced static operation. 

General Terms 

High performance computing, parallel computing, scientific 
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Keywords 
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1. INTRODUCTION  
General processing units (GPU) have been used for graphics 

processing for the last three decades. With increased power, 

programmability and flexibility, GPU functionality has been 

extended from graphics only processing to general purpose 

GPGPU to provide a flexible, high performance resource for 

scientific processing applications [1]. Multiple GPGPU's 

provide substantial improvements in performance with 

suitable programming frameworks [2]. 

The standardized programming frameworks CUDA (Compute 

Unified Device Architecture) and OpenCL (Open Computing 

Language) permit writing of general purpose parallel 

computing programs that utilize multiple central processing 

units (CPU) and GPGPUs [3]. CUDA is specific to GPU built 

by NVIDIA, whereas OpenCL is for heterogeneous devices 

supported by consortium. As CUDA is constructed for a 

homogeneous environment, it outperforms the portable 

OpenCL for a standard programming, memory models and 

optimization options [4, 5]. 

A toolkit that can benefit greatly from parallel use of multiple 

GPGPUs is the image processing library, OpenCV (Open 

Source Computer Vision library). It is collection of functions 

written in C/C++ to provide simple-to-use real time computer 

vision infrastructure [6].  

With expansion of GPU to general purpose processing, 

OpenCV built their library to support their function to run on 

only a single GPU to utilize the high performance computing 

of GPGPU [7]. In high performance computation, it is often 

required to operate few functions on large chunk of data as 

Single Instruction Multiple Data (SIMD). These requirements 

typically get handled with parallel processing methodology. 

Although GPU provides parallel computing architecture to 

process tasks fast in parallel but with only single GPU support 

of OpenCV. This provides the bottleneck in high performance 

OpenCV computation.  

This paper develops an abstraction layer above OpenCV 

single GPU module that enables multiple GPUs for single 

instruction multiple data architecture, as illustrated in Figure 

1. The goal is to enable all single GPU OpenCV functions to 

run on multiple GPU concurrently to handle single instruction 

multiple data scenario. This objective is accomplished by 

building an abstraction layer on OpenCV single GPU module 

to enable multiple GPU implementation of OpenCV.  

 

Figure 1: Hierarchy/abstraction of the layer 

implementation 

The construction of the software layer is in CUDA and is 

applied to functions in OpenCV because of the large OpenCV 

community of developers and users that can be directly 

impacted by this work and the optimized CUDA environment 

for GPU [8,9]. Appendix A provides a sample of the code 

developed for multiple GPU abstraction layer. 

The paper is organized as follows: Section 2 describes the 

methodology; Section 3 presents the algorithms developed; 

Section 4 explains the experiment setup to test the 

performance of the algorithms and presents the results; 

Section 5 provides the conclusions.  
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2. METHODOLOGY 
One of the methods in parallel processing is multiple 

threading [10,11]. In order to process tasks in parallel, 

multiple threads are generated. Each thread deals with its own 

copy of data and function to be executed on that data. The 

approach in this paper uses multiple threads on OpenCV 

single GPU implementation to handle SIMD scenario. This 

maximizes the usage of processing power. 

This approach, as depicted in Figure 2, is based on having a 

controller/parent thread that generates various worker threads 

to operate on all available GPU devices. Each worker thread is 

given data and task to execute on the data using particular 

device. Each thread takes control of particular device, 

performs computation and reports back the result to the main 

thread. Parallel processing is achieved with multiple threading 

as worker threads operate concurrently on their own with no 

interdependence. Controller thread maintains the task 

allocation and thread synchronization of worker (child) 

threads before all of them terminate. 

 

Figure 2: Framework of our methodology 

3. LOAD BALANCING  
The  framework conducts load balancing to divide the 

workload (data and processing) among the GPGPU devices 

according to their capabilities or processing power, in order to 

optimize the overall performance. Allocation of the data/load 

for execution on the various devices requires algorithms for 

distribution of data and load [12]. This paper develops two 

methods of load balancing: static and dynamic. In the static 

version, load distribution is pre-decided for each GPGPU 

device, whereas in dynamic version, load/data is allocated to 

the devices during the run time only (dynamically). 

 

3.1 Static Balancing Algorithm  
The static balancing algorithm consists of four parts: planner, 

controller thread, worker thread, and synchronization & 

termination as illustrated in Figure 3. The following 

paragraphs explain the process flow for the static version 

implementation of Multiple GPGPU OpenCV. 

The planner phase detects the devices available and optimizes 

task load for each device according to computational power of 

the device. Experiments indicate that device computational 

capability depends mainly on two factors: number of cores 

(NC), and device clock rate (CR).  

The load distribution is calculated as follows for two devices, 

Dev1 and Dev2, and a total load of TL. Let NC1 and NC2 

denote the number of cores available in the two devices, and 

CR1 & CR2 represent the device clock rate of Dev1 and Dev2 

respectively. Load L1 for Dev1 is calculated as follows: 
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Here    is a tuning parameter that allows the user to decide 

on the relative weight of NC with respect to CR. A default 

value of 0.5 give equal weight, a value above 0.5 favors 

number of cores (NC) and a value below 0.5 gives preference 

to the clock rate (CR). A user manually varies  around 

default value based on GPGPU specification for optimal 

performance of heterogeneous data processing. 

Once load distribution is decided, worker threads are created 

dynamically in the controller thread phase with one thread per 

device. The main controller thread then assigns pre-decided 

load/data and functions (single GPGPU OpenCV functions to 

operate on the data) to each worker thread.  

In the third phase, each worker thread takes control and runs 

the user defined function on particular GPGPU device. When 

worker threads are done with task assigned, controller thread 

synchronizes and terminates them in the fourth phase. 

 

Figure 3: Static load balancing 

3.2 Dynamic Balancing Algorithm  
The dynamic load balancing algorithm distributes load on 

devices during runtime rather than pre-allocating the load 

before execution [13]. It automatically queues tasks according 

to the busy status of the device, as illustrated in Figure 4.  

The following paragraphs explain the process for dynamic 

load balancing on multiple GPUs. The algorithm reads user 

defined directory for the data files, makes a list of filenames, 
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Worker Thread 0 Device 0 

Worker Thread 1 Device 1 
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and conducts load allocation in three phases: controller thread, 

worker thread, and synchronization / termination. 

 

Figure 4: Dynamic load balancing 

The controller thread phase detects the number of devices 

available, forms load queue, and dynamically creates worker 

threads (one thread per device). Each thread gets functions 

(single GPU OpenCV functions) and one data at a time to 

work on.  

A thread has a flag to report the status of execution: busy or 

ready, which is initialized by the controller thread to ready. 

The thread operator loops on the data list to process and reads 

the flag of each worker thread (one worker thread controls one 

device). If the device is ready, it assigns (another) data from 

the load queue to that thread to work on and writes flag as 

busy; otherwise waits for some time. The thread operator 

gives the ‘end’ signal to terminate execution. 

The worker thread takes data from the Controller thread and 

reads its flag. If the worker thread is flagged as busy by the 

Controller thread, the task (user defined function with data) is 

assigned to the device; otherwise it waits. It gives the thread 

kill command on receiving the end signal from the Controller 

thread. Finally, in the third phase, when the load queue is 

empty, the controller thread synchronizes and terminates 

worker thread.  

 

4. EXPERIMENTATION AND RESULTS 
Experimental design is conducted to investigate the 

performance of the following: (E1) threading and sequential 

computation; (E2) Static GPU threading and CPU threading; 

and (E3) static and dynamic load balancing approach. A 

variety of functions and data are used such as bilateral 

filtering, color to gray conversion, fast Fourier transform, and 

convolution; homogeneous and heterogeneous sized images of 

scenery, objects, and faces. 

The platform used for experimentation has Intel Xeon CPU 

E5-2603 0 1.8GHz as CPU and two devices as GPU. Device 0 

is "Tesla C2075", and Device 1 is "Quadro 2000".  Details of 

the hardware are provided in Appendix B. The software used 

in the experiments is OpenCV 2.4.8, Microsoft visual studio 

2008, and Pthread –POSIX 1003.1c (dynamic platform 

independent thread management). The data used for the tests 

are: test data from OpenCV extra from git-hub [14], 

Caltech256 database [15], and Standard test images from 

imageprocessing.com [16]. 

4.1 Threading and Sequential Operation 
This study investigates the effects of threading in relation to 

sequential operation in both GPU and CPU to form a baseline 

for performance. The experiments utilize bilateral filtering 

function of thirty high resolution image (4096x3072) 

[14,15,16]. Table 1 presents computational time for: (1) GPU 

threading, (2) GPU sequential, (3) GPU threading - load 

distributed (4) CPU threading, (5) CPU sequential. The results 

indicate that GPU sequential computation is four times faster 

than CPU sequential. The computational time for GPU is 

halved using threading when compared to sequential. In 

contrast, CPU threading is less effective in improving 

performance.  The conclusion of the study is that using 

multiple threading in multiple GPUs scenario with balanced 

work load as per GPU capabilities provides the fastest 

computation. 

Table 1 Comparison between threading and sequential 

operation in GPU and CPU 

Task performed: Bilateral filtering of high resolution image 

(4096x3072)  

Number of images to process: 30 

Approach Device 

(GPUs) 

Thread 

number 

No. 

images 

(work 

load) 

Computational 

time (secs) 

GPU 

Threading 

Device 0 

(Tesla) 
Thread 0 17 

56.6 
Device 1 

(Quadro) 
Thread 1 13 

GPU 

Sequential 

Device 0 NA 30 91.52 

Device 1 NA 30 117.72 

GPU 

Sequential 

(load 

distributed) 

Device 0 NA 17 

106.98 
Device 1 NA 13 

CPU 

Threading 

CPU 1 Thread 0 15 
411.109 

CPU 2 Thread 1 15 

CPU 

Sequential 
CPU NA 30 479.493 

4.2 Static Load Balanced GPU and CPU 

Threading 
This section compares the performance of tuned static load 

balanced GPU threading and CPU threading. Three tasks are 

performed on 30 to 50 high resolution images (4096x3072): 

(1) bilateral filtering, (2) color to gray conversion followed by 
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2D filtering, (3) Fast Fourier Transformation of high 

resolution grayscale image. The OpenCV functions used are 

bilateralFilter; cvtColor, filter2D; and dft, merge, split, 

magnitude, log, and normalize. Table 2 presents 

computational time for static load balanced GPU threading 

and CPU threading for two devices.  In all three tasks, GPU 

threading significantly outperforms CPU threading, with 

factors ranging from more than half to an eighth.  

Table 2 Computation time of tuned static load balanced 

GPU threading and CPU threading 

 

4.3 Static and Dynamic Load Balancing   
Experiments are conducted to compare computation time for 

three load balancing methods: non-tuned static; optimized 

static using manual tuning; and dynamic. Naturally, non-tuned 

static is expected to have worst performance and the manually 

optimized static load balancing to have the best performance. 

The objective is to investigate how close is the practical 

dynamic load balancing compared to the cumbersome 

optimized static version.  

Computation is investigated in the context of three tasks: (1) 

bilateral filtering (OpenCV function is bilateralFilter); (2) 

Fourier transformation (OpenCV functions being dft, merge, 

split, magnitude, log, normalize); (3) color-to-gray conversion 

followed by user defined 2D filtering (OpenCV functions 

being cvtColor, filter2D). For each task, four sets of images 

are used: (1) scenery consisting of 100 heterogeneous sized 

images; (2) objects (e.g. guns and shoes) of 27 heterogeneous 

sized images; (3) thirty facial images of heterogeneous sizes; 

(4) ten gray scale heterogeneous sized images. 

Table 3.1 Load balancing using Static and Dynamic 

approach - Task 1: Bilateral Filtering 

Images 1: Bilateral filtering of SCENERY images 

Number of images to process:  100 (heterogeneous size) 

Parameters: kernel size=-1, sigma color=50 and sigma space= 7 

OpenCV functions used: bilateralFilter 

Load 

Balancing 
Approach 

Device 

(GPUs) 

Thread 

number 

Computational 

time (secs) 

Static 

(manually 

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
64.894 

Device 1 

(Quadro) 

Thread 

1 

Static 

(non-

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
67.361 

Device 1 

(Quadro) 

Thread 

1 

Dynamic 
GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
65.458 

Device 1 

(Quadro) 

Thread 

1 

Images 2: Bilateral filtering of OBJECT (guns, shoes, etc.,) images 

Number of images to process: 27 (heterogeneous size) 

Parameters: kernel size=-1, sigma color=50 and sigma space= 7 

OpenCV functions used: bilateralFilter 

Load 

Balancing 
Approach 

Device 

(GPUs) 

Thread 

number 

Computational 

time (secs) 

Static 

(manually 

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
7.791 

Device 1 

(Quadro) 

Thread 

1 

Static 

(Non-

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
8.861 

Device 1 

(Quadro) 

Thread 

1 

Dynamic 
GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
8.049 

Device 1 

(Quadro) 

Thread 

1 

Images 3: Bilateral filtering of FACIAL images 

Number of images to process: 30 (heterogeneous size) 

Parameters: kernel size=-1, sigma color=50 and sigma space= 7 

OpenCV functions used: bilateralFilter 

Load 

Balancing 
Approach 

Device 

(GPUs) 

Thread 

number 

Computational 

time (secs) 

Static 

(manually 

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
7.659 

Device 1 

(Quadro) 

Thread 

1 

Static 

(Non-

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
8.052 

Device 1 

(Quadro) 

Thread 

1 

Dynamic 
GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
7.644 

Device 1 

(Quadro) 

Thread 

1 

Images 4: Bilateral filtering of GRAYSCALE images 

Number of images to process: 10 (heterogeneous size) 

Parameters: kernel size=-1, sigma color=50 and sigma space= 7 

OpenCV functions used: bilateralFilter 

Load 

Balancing 
Approach 

Device 

(GPUs) 

Thread 

number 

Computational 

time (secs) 

Static GPU Device 0 Thread 7.525 

TASK 1: 

Task Performed: Bilateral filtering of high resolution image 

(4096x3072) 

Parameters: kernel size=-1, sigma color=50, sigma space= 7 

OpenCV functions used: bilateralFilter 

Number of images to process: 30 (homogeneous size) 

Approach 
Device 

(GPUs) 

Thread 

number 

# 

images 

(work 

load) 

Computational 

time (secs) 

GPU 

Threading 

Device 0 

(Tesla) 
Thread 0 17 

56.6 
Device 1 

(Quadro) 
Thread 1 13 

CPU 

Threading 

CPU 1 Thread 0 15 
411.109 

CPU 2 Thread 1 15 

TASK 2: 

Task Performed: Color to Gray conversion + user defined 2D filtering 

of high resolution image (4096x3072) 

Filter is 16x16 ones with normalization factor of 16*16 

OpenCV functions used: cvtColor, filter2D 

Number of images to process: 50 (homogeneous size) 

Approach 
Device 

(GPUs) 

Thread 

number 

# 

images 

(work 

load) 

Computational 

time (secs) 

GPU 

Threading 

Device 0 

(Tesla) 
Thread 0 28 

58.297 
Device 1 

(Quadro) 
Thread 1 22 

CPU 

Threading 

CPU 1 Thread 0 25 
139.202 

CPU 2 Thread 1 25 

TASK 3: 

Task Performed: Fast Fourier Transformation of high resolution 

grayscale image (4096x3072)  

OpenCV functions used: dft, merge, split, magnitude, log, normalize 

Number of images to process: 50(homogeneous size) 

Approach 
Device 

(GPUs) 

Thread 

number 

# 

images 

(work 

load) 

Computational 

time (secs) 

GPU 

Threading 

Device 0 

(Tesla) 
Thread 0 28 

94.376 
Device 1 

(Quadro) 
Thread 1 23 

CPU 

Threading 

CPU 1 Thread 0 25 
220.448 

CPU 2 Thread 1 25 
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(manually 

tuned) 

Threading (Tesla) 0 

Device 1 

(Quadro) 

Thread 

1 

Static 

(Non-

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
8.362 

Device 1 

(Quadro) 

Thread 

1 

Dynamic 
GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
7.66 

Device 1 

(Quadro) 

Thread 

1 

 

Table 3.2 Load balancing using Static and Dynamic 

approach - Task 2: Fourier Transformation 

Images 1: Fourier Transformation of SCENERY images  

Number of images to process: 100 (heterogeneous size) 

OpenCV functions used: dft, merge, split, magnitude, log, normalize 

Load 

Balancing 
Approach 

Device 

(GPUs) 

Thread 

number 

Computational 

time (secs) 

Static 

(manually 

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
86.471 

Device 1 

(Quadro) 

Thread 

1 

Static 

(Non-

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
95.769 

Device 1 

(Quadro) 

Thread 

1 

Dynamic 
GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
87.067 

Device 1 

(Quadro) 

Thread 

1 

Images  2: Fourier Transformation of OBJECT (guns, shoes, etc.,) 

images 

Number of images to process: 27 (heterogeneous size) 

OpenCV functions used: dft, merge, split, magnitude, log, normalize 

Load 

Balancing 
Approach 

Device 

(GPUs) 

Thread 

number 

Computational 

time (secs) 

Static 

(manually 

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
7.8 

Device 1 

(Quadro) 

Thread 

1 

Static 

(Non-

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
9.142 

Device 1 

(Quadro) 

Thread 

1 

Dynamic 
GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
8.331 

Device 1 

(Quadro) 

Thread 

1 

Images 3: Fourier Transformation of FACIAL images 

Number of images to process: 30 (heterogeneous size) 

OpenCV functions used: dft, merge, split, magnitude, log, normalize 

Load 

Balancing 
Approach 

Device 

(GPUs) 

Thread 

number 

Computational 

time (secs) 

Static 

(manually 

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
7.659 

Device 1 

(Quadro) 

Thread 

1 

Static 

(Non-

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
9.329 

Device 1 

(Quadro) 

Thread 

1 

Dynamic 
GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
8.05 

Device 1 

(Quadro) 

Thread 

1 

Images 4: Fourier Transform of GRAYSCALE images 

Number of images to process: 10 (heterogeneous size) 

OpenCV functions used: dft, merge, split, magnitude, log, normalize 

Load 

Balancing 
Approach 

Device 

(GPUs) 

Thread 

number 

Computational 

time (secs) 

Static GPU Device 0 Thread 7.488 

(manually 

tuned) 

Threading (Tesla) 0 

Device 1 

(Quadro) 

Thread 

1 

Static 

(Non-

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
8.767 

Device 1 

(Quadro) 

Thread 

1 

Dynamic 
GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
7.724 

Device 1 

(Quadro) 

Thread 

1 

 

Table 3.3 Load balancing using Static and Dynamic 

approach - Task 3: Color-To-Gray Conversion 

Images 1: Color to Gray conversion + user defined 2D filtering of 

SCENERY images 

Number of images to process: 100 (heterogeneous size) 

OpenCV functions used: cvtColor, filter2D 

User defined 2DFilter is 16x16 ones with normalization factor of 

16*16 

Load 

Balancing 
Approach 

Device 

(GPUs) 

Thread 

number 

Computational 

time (secs) 

Static 

(manually 

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
45.817 

Device 1 

(Quadro) 

Thread 

1 

Static 

(Non-

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
50.653 

Device 1 

(Quadro) 

Thread 

1 

Dynamic 
GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
46.52 

Device 1 

(Quadro) 

Thread 

1 

Images 2: Color to Gray conversion + user defined 2D filtering of 

OBJECT (guns, shoes, etc) images 

Number of images to process: 27 (heterogeneous size) 

OpenCV functions used: cvtColor, filter2D 

User defined 2DFilter is 16x16 ones with normalization factor of 

16*16 

Load 

Balancing 
Approach 

Device 

(GPUs) 

Thread 

number 

Computational 

time (secs) 

Static 

(manually 

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
7.785 

Device 1 

(Quadro) 

Thread 

1 

Static 

(Non-

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
8.705 

Device 1 

(Quadro) 

Thread 

1 

Dynamic 
GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
7.925 

Device 1 

(Quadro) 

Thread 

1 

Images 3: Color to Gray conversion + user defined 2D filtering of 

FACIAL images 

Number of images to process: 30 (heterogeneous size) 

OpenCV functions used: cvtColor, filter2D 

User defined 2DFilter is 16x16 ones with normalization factor of 

16*16 

Load 

Balancing 
Approach 

Device 

(GPUs) 

Thread 

number 

Computational 

time (secs) 

Static 

(manually 

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
7.878 

Device 1 

(Quadro) 

Thread 

1 

Static 

(Non-

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
8.829 

Device 1 

(Quadro) 

Thread 

1 

Dynamic 
GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 7.927 

Device 1 Thread 
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(Quadro) 1 

Images 4: Color to Gray conversion + user defined 2D filtering of 

GRAYSCALE images 

Number of images to process: 10 (heterogeneous size) 

OpenCV functions used: cvtColor, filter2D 

User defined 2DFilter is 16x16 ones with normalization factor of 

16*16 

Load 

Balancing 
Approach 

Device 

(GPUs) 

Thread 

number 

Computational 

time (secs) 

Static 

(manually 

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
7.145 

Device 1 

(Quadro) 

Thread 

1 

Static 

(Non-

tuned) 

GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
8.135 

Device 1 

(Quadro) 

Thread 

1 

Dynamic 
GPU 

Threading 

Device 0 

(Tesla) 

Thread 

0 
7.348 

Device 1 

(Quadro) 

Thread 

1 

Tables 3.1, 3.2, and 3.3 present the computational times for 

each of the three tasks with sub-tables showing the results for 

each of the four sets of images. The results clearly indicate 

consistently and in all tasks that dynamic load balancing is 

closer in efficiency to manually tuned static balancing than to 

non-tuned static load balancing. In many case, computational 

time of dynamic load balancing is comparable to the 

optimized manually tuned static load balancing. This is in 

addition to dynamic balancing being automatic compared to 

fine tuning which is manual, iterative, and cumbersome. 

5. CONCLUSION 
This paper has constructed an abstraction layer above 

OpenCV single GPU module to enable multiple GPUs for 

SIMD architecture, and developed static and dynamic load 

balancing mechanisms. Multiple experiments are conducted 

for a variety of tasks and images to compare computational 

performance of various schemes. The conclusions are as 

follows:  

(1) Balanced workload on GPU provides the fastest 

computation compared to CPU threading 

(2) Static load balancing works well and makes full utilization 

of GPUs only if the data of interest is homogeneous in nature 

(of same size and type). However, it is cumbersome because 

default value of alpha needs to be varied if same operation has 

to be performed on machine of different capabilities. User 

tuning is required for load balancing in case of heterogeneous 

data type and size. 

(3) Dynamic load balancing through dynamic load task 

allocation works well and makes efficient utilization of GPUs 

available for all kinds of data. It does not require tuning and 

performs equally well making full utilization of GPUs even if 

machine changes (as it automatically tunes itself to available 

GPU capabilities). 

(4) Dynamic load balancing provides ease of use, flexibility, 

efficient GPU utilization to user as it automatically scales the 

work to utilize all available resources. 

Future work includes reformulation of the load balancing 

problem as a knapsack problem in combinatorial optimization, 

with an objective of allocation of tasks to each resource to 

minimize time subject to an upper limit. 
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8. APPENDIX A:  CODE SAMPLE 
This appendix provides code sample of multiple GPU 

abstraction layer for bilateral filteration of images. 

void UserFunction(thread_data_t *data) 

{ // 'Filename' is provided by the "data->name" , 

everything else is user defined 

    

char ss[20]="out"; 

char *Inputpath=new char[400]; 

*Inputpath=NULL; 

char *Outputpath=new char[400]; 

*Outputpath=NULL; 

cout<<  " Processing: "<< data->name << endl; 

cout<<endl; 

 

Mat src = imread(strcat(strcat(Inputpath, data->InputPath), 

data->name) , CV_LOAD_IMAGE_COLOR); 

 

if (!src.data)  

{ 

 cout << "data is not read"<< endl;  

  exit(1);  

} 

gpu::GpuMat d_src2(src);  

gpu::GpuMat d_dst2; 

gpu::bilateralFilter(d_src2,d_dst2,-1, 50,7);  

Mat dst2(d_dst2);  

 

imwrite(strcat( strcat(Outputpath, data->OutputPath),  

strcat(ss, data->name)), dst2); 

 

cout<<" End of Processing: "<<data->name<<endl; 

  

cout<<endl; 

}; 

 

9. APPENDIX B:  HARDWARE 

Specification 
GPU device 0: 

"Tesla C2075" 

GPU device 1: 

"Quadro 2000" 

CUDA 

Capability 

Major/Minor 

version number 

2.0 2.1 

Total amount of 

global memory: 

4096 MB 

(4294967295 

bytes) 

1024 MB 

(1073741824 

bytes) 

Multiprocessors: 
(14) x (32) CUDA 

Cores 

(4) x (48) CUDA 

Cores 

GPU Clock rate: 
1147 MHz  

(1.15 GHz) 

1251 MHz  

(1.25 GHz) 

Memory Clock 

rate: 
1566 MHz 1304 MHz 

Memory Bus 

Width 
384-bit 128-bit 

L2 Cache Size: 786432 bytes 262144 bytes 

Max Texture 

Dimension Size 

(x, y, z) 

1D=(65536), 

2D=(65536,65535), 

3D=(2048,2048, 

2048) 

1D=(65536), 

2D=(65536,65535), 

3D=(2048,2048, 

2048) 

Max Layered 

Texture Size 

(dim) x layers 

1D=(16384) x 

2048, 

2D=(16384,16384) 

x 2048 

1D=(16384) x 

2048, 

2D=(16384,16384) 

x 2048 

Total amount of 65536 bytes 65536 bytes 

constant 

memory 

Total amount of 

shared memory 

per block 

49152 bytes 49152 bytes 

Total number of 

registers 

available per 

block 

32768 32768 

Warp size 32 32 

Maximum 

number of 

threads per 

multiprocessor 

1536 1536 

Maximum 

number of 

threads per 

block 

1024 1024 

Maximum sizes 

of each 

dimension of a 

block 

1024x1024x64 1024x1024x64 

Maximum sizes 

of each 

dimension of a 

grid 

65535x65535 

x65535 

65535x65535 

x65535 

Maximum 

memory pitch 
2147483647 bytes 2147483647 bytes 

Texture 

alignment 
512 bytes 512 bytes 

Concurrent copy 

and kernel 

execution 

Yes with 2 copy 

engine(s) 

Yes with 1 copy 

engine(s) 

Run time limit 

on kernels 
No Yes 

Integrated GPU 

sharing Host 

Memory 

No No 

Support host 

page-locked 

memory 

mapping 

Yes Yes 

Alignment 

requirement for 

Surfaces 

Yes Yes 

Device has ECC 

support 
Enabled Disabled 

CUDA Device 

Driver Mode 

(TCC or 

WDDM) 

TCC (Tesla 

Compute Cluster 

Driver 

WDDM (Windows 

Display Driver 

Model 
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