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ABSTRACT 

Scaling is one of the difficult operations in Residue Number 

System (RNS) and also one of the most important units and a 

necessary operation used to avoid overflow in RNS based 

systems. In this paper, a scaling algorithm for a new moduli 

set {22n+1 +1, 22n+1, 22n+1 - 1} using the Chinese Remainder 

Theorem (CRT) is presented. In the design of digital systems, 

the goal of designers is to increase performance and decrease 

the amount of hardware resources. In order to achieve this, a 

new moduli sets is proposed to obtain a larger dynamic range 

and less complex hardware architecture. The CRT is further 

simplified for the selected moduli set to reduce the hardware 

complexity of the scaling algorithm. The scaling algorithm 

does not introduce any scaling errors and thus is efficient. 

When compared with the state of the art scaling algorithm 

using the Unit- Gate model, the results show that, the 

proposed scaling algorithm outperforms the state of the art 

scaling algorithm in terms of dynamic range (DR), area 

consumption, and delay by 98%, 18.4% and 21.7% 

respectively.  

General Terms 

Moduli Set, Scaling Algorithm, Residue Number System, 

Chinese Remainder Theorem.  

Keywords 
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1. INTRODUCTION 
The advent of technology in the fields of embedded systems 

which has found wide spread uses in mobile telephony and 

tablet personal computers has generated the interest of many 

researchers in the areas of improving power consumption, 

speed and hardware resource requirements [1]. Through the 

quest of these researchers, Residue Number System (RNS) 

has been discovered to be the torch bearer in these fields [2]. 

As a result, RNS has over the years played an important role 

in championing the campaign in designing digital systems that 

require computational intensive arithmetic operations such as 

addition, subtraction, and multiplication.  

This advantage is as a result of the   carry propagation 

problem in binary number systems [3]. Performing 

calculations in an RNS based system leads to less delay in 

processing time (clock cycles), reduction in the cost of 

hardware resources and power consumption [4]. In RNS the 

carry propagation is limited in modular channels, while in 

other number systems distribution chain of the carry is long, 

which makes the process slow. Consequently in the RNS 

addition, subtraction and multiplication operations are very 

fast. This makes RNS to be applied in the areas of 

communications, digital signal processing, computer security, 

image processing, speech processing and transformation, error 

detection and correction algorithms, and encoding [1], [4], [5]. 

Also, RNS is used in designing Inner Product Step (IPS) 

processors. 

However, RNS has not found wide spread usage in general 

purpose computing due to the following difficult and costly to 

implement arithmetic operations: sign detection, division, 

reverse division, magnitude comparison, overflow detection, 

moduli selection and scaling. The two latter operations are 

more urgent to be solved because they are the gateway to 

designing a circuit for converting numbers from residue to 

binary systems. Reverse conversion is a costly and 

complicated operation, and scaling circuits are used for 

preventing overflow after each level of processing [6]. 

Complex operations are usually performed by employing 

algorithms that are used in reverse conversion such as Chinese 

Remainder Theorem (CRT) and Mixed Radix Conversion 

(MRC). The primary and most important parameter in 

designing an RNS based system is moduli set selection, in 

which the numbers are relatively prime Scaling therefore 

plays an important role in achieving universal application of 

RNS in general purpose computing but scaling within RNS is 

less efficient and this problem has long prevented wider 

adoption of RNS [7]. In this paper, a scaling algorithm for a 

new moduli set {22n+1 +1, 22n+1, 22n+1 – 1} is presented. 

1.1 Fundamental Principles of RNS 
 RNS is defined in terms of a set of relatively prime integer 

set           called the moduli set, such that the 

             for    , where gcd means the greatest 

common divisor of     and   , while 

      
 
   , is the dynamic range. The residues of a 

decimal number can be obtained as         
, thus X can be 

represented in RNS as   X= (x1, x2, x3, …., xk). This 

representation is unique for any integer X   [0, M-1] [8].    

2. RELATED WORKS 
The first scaling scheme ever to have been proposed is the one 

proposed in 1967 by Szabo and Tanaka [9]. They proposed a 

scalar that needed n clock cycles for n-bit moduli set. 

Although the scaled residues had errors, and the scheme did 

not provide correct scaled residues, it was a significant stage 

in the development of RNS-based systems. In another major 

study in 1973, O’keefe and Wright proposed a faster and more 

efficient scalar than Szabo. Again the results were not error-

free but their approach provided results closer to the correct 

scaled integers [10]. In 1978 Jullien was successful in 

designing an algorithm that needed fewer clock cycles, but 

provided faulty results [11]. In 1981, Taylor and Huang 

proposed a design based on the MRC. It was the first time a 

scaler based on the MRC was proposed [12]. Until then, all 

designs were based on CRT or base-extension. The CRT- 

based algorithms generally generated fractional errors due to 
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inherent assumptions, while the latter approach was error-free 

but computationally intensive.  

One year later, Taylor and Huang presented a scaler that used 

a special moduli set and LUTs. However, their design 

required n clock cycles to generate the scaled residues [13]. 

Miller and Polky proposed a design that needed (n+1) clock 

cycles but the scaled residues were closer to the correct results 

[14]. In other words, their design provided more accurate 

scaled residues at the cost of more clock cycles. Two scaling 

algorithms for the moduli set (2n-1, 2n, 2n + 1) using CRT 

were proposed in 1989 [15]. The first algorithm was based on 

the L-CRT algorithm for L- tuple RNS. The second algorithm 

was based on 22n - q CRT using an approximation of M = 23n 

and M1= 2q, q < 2n.  Both algorithms came with assumptions 

and errors. Later, Shenoy and Kumaresan proposed two 

scaling techniques (approximate and exact), where residues 

were scaled by the product of a subset of the moduli set [16]. 

The approximate technique used a redundant residue to 

eliminate modulo-(M) operation, while the exact technique 

used a modified version of CRT. The scaling error in the 

approximate technique was bounded by (i=2), where i is the 

number of moduli in the moduli set. Their design saved a 

considerable amount of delay and generated results in only 

log n clock cycles. The exact technique, however, generated 

an error of at most unity, and used a redundant channel to 

keep track of odd or even residues.  

Ulman published a modified version of the Szabo scaler in 

1993 [17], and since then, the results of all scalers have errors 

less than 1.5. Another CRT- based scaling scheme was 

presented in 1995 [18]. It used LUTs and log2 n clock cycles 

to generate scaled residues. The aim of the design was to 

achieve a precise result without using any redundant 

representation of numbers. The disadvantage was its worst 

case delay of n clock cycles. Two stages of look-up-cycle 

scaling, namely look-up calculation and look-up generation, 

were presented in [19]. The design was recommended for 5-

bit input and three moduli sets. It was cascadable to other 

algorithms for larger sets of moduli and reduced the bulk 

memory requirement for small moduli sets. In 2003, an 

alternative CRT- based scaler for up to 16-bit dynamic range 

was proposed [20]. The proposed scheme used only RNS 

operations within small-word-length channels. It was suitable 

for small-word-length applications and performed scaling 

directly on the residue digits rather than relying on residue-to-

binary conversion. From the implementation point of view, 

scaling algorithms are implemented either in LUT (look up 

table) based approaches [7], [15], [16], [17], [21], [22], [23], 

or adder-based approaches [5]. Generally, all the LUT-based 

designs in the literature are subject to poor pipeline-ability 

and high hardware complexity when the number of moduli 

increases. Adder-based designs are faster and provide huge 

savings in storage space. There are also other scaling circuits 

that benefit from both LUTs and full adders [6]. Most scaling 

schemes reported in the literature are based on LUTs, and 

none of the papers discussed the order of generation of scaled 

residues until 2007 [24]. Almost all publications have agreed 

that LUTs are more efficient for small inputs, as in image 

processing applications, while a FA-based structure is well 

suited for long inputs [3]. Extensive measurements in area, 

delay and hardware utilization for full-adder-based designs 

have been proposed.  

2.1 Mathematical Basis for Scalers 
Scaling in RNS is a special type of division in which a 

number is divided by a constant factor followed by truncation 

or rounding. It corresponds to the division of an integer (X) by 

a constant (K). It can be shown as: 

   
 

 
                                                                  (1) 

Where K is called the scaling factor, Y is the result of scaling 

X by K and     is the floor function.  

2.2 The Chinese Remainder Theorem 

(CRT) 
The Chinese Remainder Theorem is a very useful theorem 

used in the reverse conversion process and other operations in 

RNS [25]. With well selected moduli set, the CRT guarantees 

that a number within the legitimate range will have unique 

representation in RNS. The unique number represented in 

RNS can be derived through the use of the CRT. 

Given a set of pair wise relatively prime moduli set,     ,   , 

…    and a number X whose residue representation is 

(  ,   , …….,   ) in the system, where           
, the 

number X and its residue are related by the equation below;  

       
 
      

   
  

   
 
                                   (2) 

Where     
 

  
 and   

   
  

 is the multiplicative inverse of 

   with respect to               
, M     

 
      is the DR 

and     is the moduli set. 

 Equation (2) is the Chinese Remainder Theorem (CRT) [26], 

[27], and [28]. 

2.3 Moduli Set Selection 
The choice of moduli set affects both the representational 

efficiency and the complexity of the arithmetic of the 

algorithm. It is therefore critical to choose the moduli set 

carefully and strategically to ensure that efficiency is 

guaranteed [29]. First we demonstrate that the moduli set 

chosen are pairwise relatively prime. 

Theorem 1:  
The moduli set {                        contains pair 

wise relatively prime numbers.. 

Proof: 

From Euclidean theorem, we have gcd (a,b) = (b,      , 
where gcd refers to greatest common divisor.  Applying this 

to the moduli set pair wisely will yield the following; 

gcd(                          = gcd (      ,1) = 1 

gcd(                             = gcd(        , 2)= 1 

gcd(                           =gcd (        ,    )= 1   

 Hence the moduli are relatively prime.   

 

Example 1: Given n =1, the moduli set are {9, 8, 7}. gcd (9, 8) 

= 1, gcd (9, 7) = 1 and gcd (8, 7) = 1   

 

3.  PROPOSED SCALING ALGORITHM  

In RNS an integer X is represented by an N-tuple 

(                             ) with respect to a set of pairwise relatively.  

Hence the moduli set are relatively prime numbers 

{                       }, where            , 
i= 1, 2,  . . . ,N and 

       
is defined as X mod    . The dynamic range   is the 

number of representable numbers of a selected moduli set {m, 

m, ….. , m} is given by:  
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                                                                          (3) 

Based on the CRT, X is related to its residue digits by: 

       
 
      

   
  

   
 
                                                             

Where      
 

  
 and    

   
  

is the multiplicative inverse 

of     with respect to   . 

3.1 Formulation of Scaling Equation  
The proposed scaling algorithm is designed for the - moduli 

set                           using the above moduli set, 

equation (2) can be expressed as follows: 

          
     

           
     

  
         

     
    

                                

The following axioms are used for the derivation of the 

scaling equation. 

Axiom 1: A    B=     AB 

Axiom 2:       m =              

Axiom 3:       m =              

Lemma 1: Given      , where K is an integer,        
  

     

Proof: Based on the definition of modulo operation; 

                                                                        (6) 

Using Axioms 2 and 3, 

       
                             

 

Since p is divisible by           

       
                                                                       (7) 

3.2 The Scaling Process 
Scaling is a special type of division. By definition, scaling an 

integer variable X by a constant K can be obtained by 

dividing both sides of (5) by constant K and taking the floor 

value.  Let Y be the integer results of the scaling operation, 

we shall have: 

   
 

 
                                                                              (8) 

   
 

 
        

     
           

     
   

        
     

    
                                                                     (9) 

  

  
    

 
   

     
    

    

 
   

     
    

 
    

 
   

     
    

 

                                                             (10)                 

Let K be equal to    =       (This choice of K is crucial 

because it ensures that the truncation error becomes 

negligible). Substituting      into equation (10), we shall 

have the exact scaling equation below: 

 
 

 
         

     
   

    

  

   
     

  

      
     

      
    

                            

Using (11), the scaled integer can be computed directly from 

the RNS representation of X. 

 

3.3 Formulation of RNS Scaling Algorithm 

From the above deductions, the complexity of the modulus 

channels can be reduced with the proposed theorem. 

Theorem 2: 

Given the moduli set {                       , where 

                      =     

          , the following holds true 

   
 

 
  

  

=                                                              (12)     

  
 

 
  

  

                           
           

                                                                        

  
 

 
  

  

=                                                                           

 

The proof and formulation of this theorem is presented as 

follows. 

Using the exact scaling equation (9), RNS scaling can be 

performed in each channel independently by performing 

modulo reduction in each channel. This Results in the 

equation below. 

  
 

 
  

  

         
     

   
    

  

   
     

  

      
     

      
    

 
  

                      

Where i= 1, 2 and 3. 

For    and    channels, where i = 1 and 3 using lemma 1 on 

equation (12) we obtain: 

 

  
 

 
  

  

       
     

   
    

  

   
     

  

      
     

      
  

                                  

Each independently scaled residue of equation (13) can 

further be reduced respectively for    and    to; 

 

  
 

 
  

  

       
     

   
    

  

   
     

   
  

                

  
 

 
  

  

  
    

  

   
     

        
     

      
  

              

 

For the    channel, we have the following; 

  
 

 
  

  

         
     

   
    

  

   
     

  

      
     

      
    

 
  

                     

From equations (14) through to (16), it can be seen that there 

exists a common term 
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. To simplify the common term, the following 

theorem is proposed. 

Theorem 3:  

For the moduli set                         where; 

                      

                       

                    

The following holds true: 

   
     

                                                                               

   
     

                                                                            

 

   
     

                                                                                     

Substituting the parameters                         

                   
     

         

into the common term we simplify it as; 

    

  

   
     

   
                           

       

    

  

   
     

                                               (20) 

The least integer function   , justifies the truncation in (20). 

By substituting (20) into (14), (15) and (16) where    
        ,          , and             we obtain 

 

     
 

 
  

       
                                     

 

                                 
 

 
       

          

     
 

 
  

     
                                         

 

       
                                

 

                                  
 

 
    

 

     

     

     
 

 
  

        
                                  

 

                                 
 

 
        

             

Where              , applying axioms 1, 2, 3 and 

lemma 1 to (21), (22), and (23), we have the highly simplified 

equations presented in theorem 2. 

 

Illustrative Example 1: Given the moduli set 

{                      }, perform the scaling of an 

integer X= 89 for n=1. 

Solution 

Given the moduli set {                      }; When 

n=1, the moduli set is {9, 8, 7} and M= 9         , 

X=89     . 

  = X mod mi for i = 1, 2 and 3 as [8, 1, 5] and  

             
           

                              
           

                                              
              = 3 and 

                 
        = 4.  

2, 3, and 4 is the RNS representation of 11, the scaled results. 

This is summarized in table 1. 

Table 1. Numerical Example of Proposed Scaler for 

Moduli Set {9, 8, 7}, Scaling Factor K = 8, n =1, X = 89, 

and   = (8, 1, 5) 

     
 

 
  

  

=  
  

 
  

 
        9  = 2 

     
 

 
  

  

=  
  

 
  

 
                

               = 3 

     
 

 
  

  

=  
  

 
  

 
        7  = 4 

 

4.   HARDWARE IMPLEMENTATION  
The hardware realization of the proposed scaling algorithm is 

discussed below. We implement the algorithm for channels 

one, two and three. A general architecture is proposed for the 

proposed scaling algorithm. Given the moduli set 

{                       , the residue digits 

             relative to the moduli set are              
                     respectively. 

For the implementation of the   channel given by; y1 = 

  
 

 
  

  

=           
we shall have the following; 

   =            
                                                              (24)           

                                                                                       

Since    is a      bit and     a 2n+1 bit integers, then this 

can be written as  

  =                                      
    

   (25)                                                                                               

  =                                         
    

                                            (26)                                                                                                 

   =                                          
    

                                               (27)                                                                                                   

 

              =                         , where    is the  

complement of   .  

 

The two numbers to be added are of different bit lengths. To 

do so we ensure that they are of the same bit lengths. This can 

be done by adding a zero bit at the MSB position of   , and 

take the one’s complement of   . 
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The two numbers           are now of the same bit length 

that is      bit and can be added together. The generation 

of    requires two carry propagate adders (CPA). The two 

operands           are added by the first CPA with an End 

Around Carry (EAC) to produce a sum and a carry bit of 1. 

The second CPA adds the sum and carry bit in       
  modulo adder to produce a sum. 

             
                                                                         

 

                                                                                     

 

                                                       
    

                                       
    

 

        

      

 

The two numbers          are of the same bit length 

(     and so can be added together. To do so, the 

complement of    is taken, resulting in the following equation 

below. 

                

                                        
    

                                           
    

 

        

                                         

 

The result    can thus be generated using two 

operands          , a CPA, and an inverter. The inverter will 

generate the complement of    and the CPA will add the two 

operands            to generate the required results. 

The    channel can be implemented to generate     as 

follows. 

       
                                         
                                                                      

 

                                         
    

                                                 

 

                                         
    

                                                 

 

                                            
    

                                              

The negation of    will require the complement of (35). This 

is done below. 

                                               
    

                                                 

Now we expand equation (33) as follows: 

       

                                               
 

                           
                     

 

                                   
 

 

       

 

     

                                   

 

Let              ,           ,           ,    
         ,               , 

        ),              , and            

Now we define the following properties of modulo      

arithmetic proposed by [9]. 

Property 1: Multiplying an n-bit binary number x by r power 

of two in modulo      is equivalent to a circular left shift 

operation. 

                      , where           , denotes 

a circular left shift of n-bit binary number x by r bits to the 

left. 

Property 2:            =  
         =             where    is 

the one’s complement of x. 

Applying properties 1 and 2 to equation (38) will yield the 

following: 

                       =                    

 

                                     
    

                      
    

                                    

                     =                 

                                    
  

                      
    

                                    

                                                    
    

                                   

 

                       =                   

 

                                        
    

                        
    

                                

 

                        =                   

 

                                            
    

                        
    

                                

 

                  =                                           
    

               (43)                                                                            

                       =                   
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                     =                 

 

                                        
  

                        
    

                                 

 

G=                                                                          (46)                                                                                                             

H =     +     +                                                                  (47)                                                                                                                                                                                               

I =      +                                                                              (48)                                                                                                                           

Equation (38) can now be written as: 

                                                                            

 

The implementation of channel two will require a Carry Save 

Adder with End Around Carry (CSA EAC) to add G, H and I. 

This will generate a sum (  ) and a carry bit (   ). A Carry 

Propagate Adder (CPA) will be required to add the sum and 

the carry bit in modulo 22n+1 to obtain the desired result   . 

The proposed architecture of the algorithm is shown in figure 

1. 

 

Figure 1: Hardware architecture of proposed RNS scaling algorithm 

4.1 Performance Evaluation 
In order that we evaluate the performance of the proposed 

scaling algorithm, it is compared with similar scaling scheme 

proposed by Chip- Hong Chang and Jeremy Yung Shern Low 

in 2011.  

The Unit- Gate model which is used to analyze the delay and 

area consumption of the Chang Scaler is adapted to do the 

analysis. The model is adapted in order that we have the same 

terms for unbiased comparison. The proposed algorithm is FA 

based architecture. The Unit – Gate model asserts that, a two 

input monotonic gate such as AND or NAND gate is said to 

have one unit of area and one unit of delay. And a XOR gate 

consumes two units of area and two units of delay. An 

inverter is deemed to have a negligible fraction of a unit and 

therefore, has zero units of area and delay. Based on the 

model adapted, FA has seven units of area and four units of 

delay.  

The area and delay for each residue channel can 

independently be evaluated by analyzing the area and time 

complexity of the logic gate implementation adapted for the 

hardware architecture. According to [30], the area and delay 

for the diminished – one mod 2n +1 adder are 4.5n        + 

0.5n + 6 and 2        + 3 units respectively. From Fig.1, we 

require an inverter to complement    . The operands     and 

   are first added using a Carry Propagate Adder with End 

Around Carry. A sum and a carry bit is generated and then 

added by another Carry Propagate Adder with a constant carry 

- in bit of 1 to yield a sum. Since an inverter has zero units of 

area and delay, the focus is on the adders. The area and delay 

of the first channel are: 2(4.5n       +0.5n+6) and 

2(2       +3) respectively. The channel two shown in Fig 1 

requires 2n+1 bit CSA with EAC and modulo 22n+1 adder to 

implement. The CSA requires 2n+1 FAs to be implemented 

and a FA has seven units of area and four units of delay. The 

CSA will therefore require 7n units of area and 4 units of 

delay. The CPA will require 6n           + 24n units of 
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area and 2           of delay. The total area for the second 

channel would be 6         + 31n units. The total delay for 

the same channel would be 2       +4 units of clock cycles. 

Channel three will be implemented using an inverter, for the 

one’s complement of one operand and a Ling modulo 22n+1 -1 

adder. Based on the Ling modulo adder [31], estimated area 

and delay for channel three are 3n           + 12n and 

2          +3 respectively. We present the decomposition 

of area and delay of each channel in the tables 2 and 3 

respectively. 

Table 2: Estimation of Unit-Gate Model Area of Proposed 

(P) and State of the Art (C) Schemes(S) 

S Chan

nel 

ACPA Aother ATotal 

P    2(4.5n       +0.5n

+6) 

0 2(4.5n       +0.

5n+6) 

C    3n         +12n 0 3n       

  +12n 

P    6         + 24n 7n 6         + 31n 

C    6n         +24n 15n 6n         + 39n 

P    3n          + 

12n 

0 3n          + 

12n 

C    4.5n         

+0.5n+6 

7n+6 4.5n         

+7.5n+12 

 

Table 3: Estimation of Unit-Gate Model Delay of Proposed 

(P) and State of the Art(C) Schemes(S) 

S Chan

nel 

ACPA Aother ATotal 

P    2(2       +3) 0 2(2       +3) 

C    2         +3 0 2         +3 

P    2        +3 4 2       +7 

C    2        +3 5 2       +8 

P    2          +3 0 2          

+3 

C    2        +3 6 2        +9 

 

5.   CONCLUSION 
In this paper, an efficient RNS scaling algorithm based on the 

new moduli set {22n+1 +1, 22n+1, 22n+1-1} is proposed. The full 

adder based implementation is used. The proposed algorithm 

has been evaluated based on dynamic range (DR), area and 

delay and compared with the state of the art scheme [4]. The 

proposed Algorithm outperforms the scheme in [4] in terms of 

DR, area and delay with the percentages as 98%, 18.4% and 

21.7% respectively in favour of the proposed algorithm.  

 

6.  REFERENCES 

[1] Neha, S. 2008. An Overview of Residue Number 

System. National Seminar on Devices, Circuits and 

Communication. 

[2] Stouraitis, T. and Paliouras, V. 2001. Considering the 

Alternatives in low-power design,” Circuits and Devices 

Magazine, IEEE, Vol. 17, No. 4, Pp. 22–29. 

[3] Soudris, D., Dasygenis, M., Mitroglou, K., Tatas, K., and 

Thanailakis 2002. A Full adder Based Methodology for 

Scaling Operations in Residue Number System, 

Electronics, Circuits and Systems.  9th International 

Conference on Vol. 3, 891-894. 

[4] Molahosseini, A. S., Navi, K., Dadkhah, C., Kavehei, O., 

and Timachi 2010. Efficient Reverse converter Designs 

for the New 4- Moduli Sets and based on new CRTs 

Circuits and Systems I: Regular Papers, IEEE 

Transactionson Vol. 57 No. 4. 823-835. 

[5] Chang, C. H. and Low, J. 2011. Simple, Fast, and Exact 

RNS Scaler for the Three-Moduli Set, Circuits and 

Systems I: Regular Papers, IEEE Transactions on, Vol. 

58, No. 11, 2686–2697. 

[6] Safari, A. and Kong, Y. 2012. Simple, fast and 

synchronous hybrid scaling scheme for the 8-bit Moduli 

Set, Journal of Emerging Trends in Computing and 

Information Sciences, Vol. 3, No. 6, 949–956. 

[7] Kong, Y. and Philip, B. 2009. Fast Scaling in the 

Residue Number System, IEEE Trans. Very Large Scale 

Integer (VLSI) Syst. Vol. 17 No. 3, (Mar. 2009) 443- 

447. 

[8] Gbolagade, K. A. 2010. Efficient Reverse Conversion in 

Residue Number System Processors. PhD. Thesis Delft 

University of Technology the Netherlands. 

[9] Szabo N. S. and Tanaka R. I. (1967), Residue Arithmetic 

and its Applications to Computer Technology. McGraw-

Hill New York, 1967, Vol. 24. 

[10] O’Keefe, K. H. and Wright, J. L. 1973. Remarks on Base 

Extension for Modular Arithmetic. Computers, IEEE 

Transactions on, Vol. 100, No. 9, 833–835.  

[11] Jullien, G. A. 1978. Residue Number Scaling and Other 

Operations Using ROM Arrays, Computers, IEEE 

Transactions on, Vol. 100, No. 4, 325–336. 

[12] Taylor F. J. and Huang C. H (1981), a Floating-Point 

Residue Arithmetic Unit. Journal of the Franklin 

Institute, Vol. 311, No. 1, Pp. 33–53, 1981. 

[13] Taylor, F. J. and Huang, C. H. 1982. An Auto Scale 

Residue Multiplier. Computers, IEEE Transactions on, 

Vol. 100, No. 4, 321–325. 

[14] Miller, D. D. and Polky, J. N. 1984. An Implementation 

of the LMS Algorithm in the residue number system. 

Circuits and Systems, IEEE Transactions, Vol. 31, No. 5, 

Pp. 452–461. 

[15] Griffin, M. S. M. and Taylor, F. 1989. Efficient Scaling 

in the Residue Number System, in Int. Conf. Acoust. 

Speech, Signal Process, Glasgow, U.K. 1075–1078. 

[16] Shenoy, M. A. P and Kumaresan, K. 1989. A Fast and 

Accurate RNS Scaling Technique for high Speed Signal 



International Journal of Computer Applications (0975 – 8887) 

Volume 165 – No.10, May 2017 

28 

Processing. IEEE Trans. Acoust. Speech, Signal Process, 

Vol. 37, No. 6. (June 1989), 929 – 937. 

[17] Ulman, Z. D. Czyzak, M. and Zurida,  J. M. 1993. 

Effective RNS Scaling Algorithm with the Chinese 

Remainder Theorem Decomposition. in Proc. IEEE 

Pacific Rim Conf. Commun. Computers, Signal Process., 

Victoria, BC, (May 1993), 528-531. 

[18] Barsi, F. and Pinotti, M. C. 1995. Fast base extension and 

precise Scaling in RNS for Look- up Table 

implimentations. IEEE Trans. Systems and Process, Vol. 

43, No. 10, (October 1995), 2427- 2430. 

[19] Garcia, A. and Lloris, A. 1999. A look- up Scheme for 

Scaling in RNS. IEEE Transactions Comput. Vol. 48, 

No.7, (July1999), 748-751. 

[20] Meyer-Base, U. and Stouraitis, T. 2003. New Power -of -

2 RNS Scaling Scheme for Cell-based IC Design, IEEE 

Trans. Very Large Scale Integer, (VLSI) Syst., Vol. 11, 

No. 2, (April 2003), 280-283. 

[21] Benardson, P. 1985. Fast Memoryless, Over 64 bits, 

Residue-to-Binary converter. Circuits and Systems IEEE 

Transactions on Vol. 32. No. 3, (Mar. 1985), 298-300. 

[22] Mohan, P. V. A. 2007. RNS -To Binary Converter for a 

New Three-Moduli set. IEEE Transaction on Circuits 

and Systems-II, Vol. 54 No. 9, 775-779. 

[23] Dasygenis, M., Mitroglou, K., Soudris, D., and 

Thanailakis, 2008. A Full Adder Based Methodology for 

the Design of Scaling Operations in Residue Number 

System. Circuits and Systems I: Regular Papers, IEEE 

Transactions on Vol. 55, No. 2, (Mar. 2008), 546-558. 

[24] Bernocchi, G. L., Cardarili, G. C., Nannarelli, A., Re M. 

2007. Low Power Adaptive Filter Based on RNS 

Components. Proc. IEEE International Symposium 

Circuits Systems, New Orleans, LA, 3211-3214. 

[25] Bankas, E. K., and Gbolagade, K. A., 2013. An Effective 

New CRT Based Reverse Converter for     a Novel 

Moduli Set {22n+1- 1, 22n+1, 22n- 1}. International Journal 

of VLSI Design and Communication Systems 

(December, 2013), 4(6):1-11. 

[26] Omondi, A. and Premkumar, B. 2007. Residue Number 

System Theory and Implementation. Imperial College 

Press.  

[27] Gbolagade, K. A. and Cotofana, S.D. 2009b. A Reverse 

Converter for the new 4 – Moduli set {2n+3, 2n +2, 2n+1, 

2n}. Submitted to IEEE Newcastaisa Toulouse, France. 

(July, 2009). 

[28] Daabo, M. I. and Gbolagade, K. A. 2012. Overflow 

Detection Scheme in RNS Multiplication before Forward 

Convertion. Journal of computing. 4(12):13-16. 

[29] Bankas, E. K., and Gbolagade, K. A., 2015. New MRC 

Adder-Based Reverse Converter for the Moduli Set {2n, 

22n+1 − 1, 22n+2 − 1}. Oxford Journals, Science & 

Mathematics, Computer Journal Volume 58, Issue 7, 

1566-1572. 

[30] Dimitrakopoulos, G., Nikolos, D. G., Vergos, H. T., 

Nikolos, D., Efstathiou, C. 2005. New Architectures for 

modulo 2n - 1 Adders.  in Proc. IEEE Int. Conf. Electrn., 

Circuits, Syst., Gammarth, Tunisia. (Dec. 2005). 1- 4. 

[31] Vergos, H. T., Efstathiou, C., and Nikolos, D. 2002. 

Diminished – One Modulo 2n + 1 Adder Design. IEEE 

Transaction Computers, Vol. 51, No. 12, (Dec. 2002), 

1389-1399.  

 

IJCATM : www.ijcaonline.org 


