Abstract

The aim of this paper is to inform both healthcare practitioners and software solutions creators about the ways in which the Hospital Information Systems (HIS) can and should be extended, both in terms of managing, processing and learning from the data, keeping in mind the sustainable modern technologies available for automation and machine learning. The paper provides details on how ensembles can be implemented and integrated into HIS and also provide the details for the necessary hardware and integrating that hardware to facilitate automation. The paper's target audience is primarily developing countries where these systems, which are yet to become sophisticated, could have a huge social impact.

References

1. David A. Clifton, Jeremy Gibbonsy, Jim Daviesy, Lionel Tarassenko, "Machine Learning and Software Engineering in Health Informatics"


6. Jyoti Soni, Ujma Ansari, Dipesh Sharma, Sunita Soni, "Predictive Data Mining for Medical Diagnosis: An Overview of Heart Disease Prediction"

7. Milan Kumari, Sunila Godara, "Comparative Study of Data Mining Classification Methods in Cardiovascular Disease Prediction"


9. Luz Rello, Miguel Ballesteros, "Detecting Readers with Dyslexia Using Machine Learning with Eye Tracking Measures"

10. Rakesh Agrawal, Ramakrishnan Srikant, "Privacy-Preserving Data Mining"


12. Isabelle Guyon, Jason Weston, Stephen Barnhill, Vladimir Vapnik, "Gene Selection for Cancer Classification using Support Vector Machines"

13. Mohammed Hassan abdel majeed alsheikh,"Classification of Breast cancer using Back Propagation neural network algorithms"


23. Medical error—the third leading cause of death in the US, http://www.bmj.com/content/353/bmj.i2139

24. Wen Yao, Chao-Hsien Chu, Zang Li, "The Use of RFID in Healthcare: Benefits and
Modern Extensions to Hospital Information Systems


Index Terms

Computer Science

Information Systems

Keywords