
International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.12, May 2017

29

An Efficient Cloud Computing Scaling on Internet

using Ant based Techniques

Bhavana Singh
M.Tech scholar

Department of Computer
Science and Engineering, T.I.T

(Excellence) Bhopal

Sandeep Rai
Assistant Professor

Department of Computer
Science and Engineering, T.I.T

(Excellence) Bhopal

Rajesh Boghey
Professor & HOD

Department of Computer
Science and Engineering, T.I.T

(Excellence) Bhopal

ABSTRACT

In this paper a new and efficient Hybrid Technique for the

Automatic Scaling of Internet Things in Cloud Computing is

proposed using Ant based techniques. The Proposed

methodology applied here is used for the load balancing over

cloud computing and hence scales over cloud for internet on

Things. The methodology performs better in terms of

Scalability and Decision Time and number of placements. The

Various Experimental Results Performed on Cloud

Environment proofs to be more efficient in terms of Decision

Time and Response Time in Comparison. . The Proposed

Methodology implemented here is based on Ant based

Clustering Techniques, where Scaling of Internets is done by

grouping the ants moving from one source Node to Another.

Keywords

Cloud Computing, Internet on Things, Data Centers, Virtual

Machines, Ant based techniques, service level agreement.

1. INTRODUCTION
Cloud computing is a model for enabling on-demand access to

a shared pool of computing resources. With virtually limitless

on-demand resources, cloud environments enable the hosted

Internet applications to quickly cope with the spikes in

workload. However, the overhead caused by the dynamic

resource provisioning exposes the Internet applications to

periods of under-provisioning and performance degradation.

Moreover, the performance interference, due to the

consolidation in cloud environments, complicates the

performance management of Internet applications. Internet

applications' usage is crucial part of everybody's cyber life.

Whether provided as profit (e.g., online retailer) or non-profit

services (e.g., Wikipedia), Internet applications are likely to

be delivered with a high quality of service (QoS). The

workload of an Internet application varies according to the

time of the day and rises sharply on occasions. Internet-

connected real-time applications which request the processing

of real-time tasks in remote application servers running in the

public cloud with metric based auto-scaling solutions. Our

target applications include remote patient monitoring systems

[9, 10], real-time traffic control systems, drone navigate cloud

platforms, and Internet of Things (IoT) devices requiring

transmission of deadline-sensitive data and periodic task

executions. We assume that the public cloud infrastructure

provides proper security and data backup solutions with a

Service Level Agreement (SLA) and mechanisms to fairly

share its virtual resources among all its running VMs. The last

few years have witnessed the emergence of cloud computing

as a rapid, limitlessly scalable, and cost-efficient alternative in

contrast to the in-house (i.e., on-premise) data centers. The

IaaS model delegates more control to the customers over the

provisioned resources. Hosting Internet applications in the

IaaS environment is an efficient way to start a new and a

sustainable business that expands the IT infrastructure

gradually with the business growth.

A simple architecture of cloud computing consist the data

centers servers for the web application as well as a switch

whose function is balancing the loud and distribute load

to set of application server also having set of backend storage

server. Fig. 1 shows the typical architecture of data center

servers for Internet applications. It consists of a load

balancing switch, a set of application servers, and a set of

backend storage servers. The front end switch is typically a

Layer 7 switch [5] which parses application level information

in Web requests and forwards them to the servers with the

corresponding applications running.

As each server machine can host multiple application so it is

important that application should be stateless because

every application store their state information in backend

storage servers, so that is why they can be replicated

safely but it may cause storage servers becomes

overloaded but the focus of this work is on application

tire presenting a architecture is representative of a large set

of internet services hosted in the cloud computing

environment even through providing infinite capacity on

demand.

Fig 1: Architecture of Internet application in cloud

computing [3]

Moreover, on-demand provisioning provides a cost-efficient

way for already running businesses to cope with unpredictable

spikes in the workload. Nevertheless, an efficient scalability

for an Internet application in the cloud requires a broad

knowledge of several areas, such as scalable architectures,

scalability components in the cloud, and the parameters of

scalability components. With the increase in numbers and size

of on-line communities there has been an increasing effort to

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.12, May 2017

30

exploit cross-functionalities across these communities.

However, application service providers have encountered

problems due to the unpredictable demand for their

application(s), especially when external events can lead to

unprecedented traffic levels to and from their application [13].

This dynamic nature of demand and traffic drives the need for

a massively scalable solution to enable the availability (and

reliability) of Internet-based applications.

Multi-tier architecture has been used for decades to provide

scalability for Internet applications. The emergence of the

IaaS model enriches the multi-tier architecture with

components (i.e., services) that help scaling resources

dynamically (based on the actual demand) to maintain the

Internet application performance. To automate the

performance management, IaaS's customers are provided with

tools that enable provisioning and terminating resources

remotely. Many approaches are developed to improve Internet

applications performance in the cloud [3-2]. Nevertheless, less

attention is given for evaluating the scalability

implementation in the current running production

environments. Thus, we evaluate the current implementation

of the scalability in the large-scale production environments,

namely, Amazon EC2. Modeling an application behavior is

crucial for maintaining the Internet application performance

and avoiding resource bottlenecks. Nevertheless, modeling an

Internet application is complex due to the nature of their

architecture. For instance, each tier in the Internet application

runs different software which itself has a different behavior.

Moreover, the dependency between the Internet application

tiers propagates the impact of resource bottlenecks from one

tier to the others [7] [12]. Moreover, work [14] has found that

the most efficient technique to conserve energy is to revolve

the whole server off. The application placement difficulty is

fundamental to accomplishing a high demand approval ratio

without wasting energy.

2. LITERATURE SURVEY
Here author has to present [1] a system that provides

automatic scaling for Internet applications in the cloud

environment. Here they encapsulate each application instance

within a virtual machine (VM) and make use of virtualization

technology to provide fault separation. We model it as the

Class Constrained Bin Packing (CCBP) problem where each

server is a bin and each class characterizes an application. The

class constraint replicates the convenient limit on the number

of applications a server can run concurrently. Here they

expand a proficient semi-online color set algorithm that

accomplishes good demand agreement ratio and saves energy

by reducing the number of servers used when the load is low.

Experiment analysis shows that our system can develop the

throughput by 180% over an open source accomplishment of

Amazon EC2 and restore the normal QoS five times as fast

during flash crowds. Experiments also show that their system

can restore the normal QoS five times as fast when a flash

crowd happens and this demonstrate that their algorithm is

extremely efficient and scalable which can accomplish high

demand agreement ratio, low placement change frequency,

short request response time and good energy saving.

In this paper author has to present [5] new concept based on

the Cloud Operating System (COS), a middleware framework

to support autonomous workload flexibility and scalability

based on application-level migration as a reconfiguration plan.

While other scalable structures (e.g., MapReduce or Google

App Engine) force application developers to write programs

following specific APIs, COS make available scalability in a

general-purpose programming structure based on an actor-

oriented programming language. When they are all executing

VMs are highly operated, COS extents a workload up by

migrating mobile actors over to recently dynamically formed

VMs. When VM utilization drops, COS scales the workload

down by combining actors and finishing unoccupied VMs.

Application-level migration is beneficial evaluated to VM

migration particularly in hybrid clouds in which migration

costs over the Internet are critical to scale out the workloads.

Here they show the general purpose programming approach

using a tightly-coupled computation.

As they compare the performance of autonomous (i.e., COS-

driven) vs. ideal reconfiguration in addition to the impact of

granularity of reconfiguration, i.e., VM migration vs.

application-level migration. Their results [5] demonstrate

assure for potential fully automated cloud computing resource

management systems that proficiently allow truly expandable

and scalable general-purpose workloads.

In this paper author [8] has addressing the emergence of

virtualization technologies and cloud computing, the

admission control, the service differentiation, the service

degradation, and sometimes combinations of them have been

practical techniques for maintaining Internet applications

performance during overloading periods of time. Admission

control technique maintains the availability and performance

of a server by controlling the number of admitted requests to

the server. At specific threshold of utilization, any additional

requests are dropped to keep the server utilization within the

threshold. Typically, computing systems have different

performance thresholds that are importantly measured by the

system administrator for maintaining the system performance.

In contrary to admission control, service differentiation

technique differentiates customers into classes and provides

different QoS for each class. For example, at overloading

time, an online retailer can give more priority (i.e., dedicate

more resources or decline other classes) for buying request

over browsing requests. Actually, admission control is a

special case of the service differentiation technique [8].

Desell et al. [11] investigates component-level malleability

using the SALSA programming language. They both support

dynamic granularity change by splitting and merging of

processes and application components respectively; however,

they require users to implement how to split and merge. The

middleware presented in this paper does not need cooperation

from application programmers when the number of actors is

larger than the number of VMs, but when the number of

actors is smaller than the number of VMs, an actor has to split

or make a clone to properly balance the load. We plan to keep

working to improve the performance of COS-driven workload

reconfigurations. Here they also plan to experiment with more

heterogeneous and practical workloads. They also try to

develop a model to understand high-level policies such as

time-constrained, budget-constrained, and energy-constrained

with QoS parameters (such as throughput or dead-lines) [4] to

constrain reconfigurations in hybrid clouds.

Despite the emergence of the cloud computing model, which

assures a virtually limitless scalability, the traditional

techniques are still needed for the following reasons: First,

resources in the cloud are limited per an account (e.g., 20 EC2

instances limit associated with each Amazon AWS account).

On the other hand, the user can ask for raising this limit.

Second, if the system scalability is not limited by the

resources, it will be limited by a definite budget [6]. Finally,

raising the resources' limit does not defend the Internet

application from the denial of service attack (DoS). It also

representations the company budget to an unexpected

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.12, May 2017

31

enhance. To save from harm the Internet application from

attacks that target the service availability, performance, or

budget, Go Grid load-balancer for example limits the number

of accepted connections per a client.

3. PROPOSED METHODOLOGY
The model is fully distributed, i.e. every node behaves

separately as well as each ant or agent, and this denotes that

every node or ant is autonomous. Figure represents the table

attached to each node or ant. In the model, each node contains

a table that includes information about other nodes in the

system. At the initial state, the table entries are Null. In each

ant tour, the ant will carry the updated information about all

nodes that the ant has been passed throughout. Upon arrival of

the ant at every node, the following events will be done:

Assume a network is setup and a number of packets send from

source to destination and the value of pheromone deposited at

each nodes and shortest path is selected using Max-Min, Rank

based and Fuzzy System.

1. Suppose ‘N’ of packets to be send from Source ‘S’ to

destination ‘D’.

2. Initialize all the pheromone table of the node to zero.

3. When first packet is send from one node to another

pheromone value is updated accordingly at that node and

update all the tables of the network.

4. Proposed methodology uses the limitation s of the

existing ant based techniques; hence at each node of the

network the possibility of various paths from that node to

next node is computed and updated.

5. After first iteration the value of the value of pheromone

is calculated at each node of the network.

6. More value of pheromone attracts more ants; hence the

next packet is send to that particular node where

pheromone value is maximum.

If N  pkts send from one node to other nodes

Compute next node based on Max-min ();

Compute next node based on Rank();

Compute next node based on Fuzzy();

Repeat till ‘N’ packets send from source to destination

For each N  pkt to traverse from nod1-> nod2

If Vpher  nod2 == Vpher  nod3v && If Rnod2 > Rnod3

&& Rnod4<Rnod3

Stores the path from nod2  nod3

End

End

Repeat for each N  pkt from ‘S’ to ‘D’

Call Max-Min();

Call Rank();

Call Fuzzy();

Traverse the nod1  nod2 based on stored path.

End

End

End

Here in the proposed methodology the shortest route from

source to destination will depends on the stored routes from

Max-Min, Rule based and Fuzzy based System.

At each step of the node in the network instead of checking of

only two nodes the next possible path from 3 ant based

techniques is checked and if the chances of traversing fails to

apply then the next traversing path is stored, which is then

used in the proposed methodology.

The proposed methodology uses the wrong traversed routes

from one to another where the decision is based on only

values from one node to another.

The proposed algorithm implemented here for the shortest

path between source to destination with various notations are

given as:

N No. of packets to be send from source to

destination

P Total pheromone to be deposited during the

transmission of packets

E Total Evaporation rate Rate

T Total time for the evaporation

Tmax-min Total value of pheromone to be deposited or

evaporated during Max-Min algorithm in the

pheromone Table.

Trank Total value of pheromone to be deposited or

evaporated during Rank based algorithm in

the pheromone Table.

Tfuzzy Total value of pheromone to be deposited or

evaporated during Fuzzy algorithm in the

pheromone Table.

P Packet to be send from source to destination

Sht Shortest Path between Source to Destination

Tp Total Pheromone deposited during the

shortest path

Tsp Total time to send the packet

N1  N2 Node 1 to Node 2

Initial Node Starting or Source Node

Table 1 Various Notations Used in the algorithm

The methodology starts with the initialization of the existing

methodologies such as Max-Min algorithm and Rank based

algorithm and Fuzzy algorithm. Each of the technique

implemented provides shortest path between sources to

destination and hence on the basis of the existing

methodologies proposed algorithm is implemented.

Input: No. of Packets to be Send (N)

 Value of Pheromone Deposition (P)

 Value of Pheromone Evaporated (E)

 Time of Evaporation (T)

 Pheromone Table of Max-Min, Rank based and Fuzzy

Logic (Tmax-min, Trank,Tfuzzy)

Output: Shortest Path between Source to Destination (Sht)

 Total Pheromone Deposited in Shortest Path (Tp)

 Time to send Packets (Tsp)

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.12, May 2017

32

Algorithm

1. Initialize all the parameters.

2. If ‘N’ number of packets send from source to

destination.

3. For every Packet ‘P’ send from Node ‘N1’  ‘N2’.

4. Count initial Tsp

5. Deposit the value of pheromone value at Node ‘N1’

& ‘N2’.

6. Tp =Tp + P;

7. If there are ‘Npath’ from one node ‘N1’  ‘N2’

8. Check the pheromone table of Tmax-min and Trank

and Tfuzzy.

9. If for every algorithm shortest path from one node

to next node is same

10. Choose that node as the next node.

11. Sht = Initail Node + Sht;

12. Tp= Tp +p;

13. Else

14. Check the two best algorithms having shortest path

from one node to next as same.

15. Choose that node as the next node.

16. Sht =Previous node + Sht;

17. Tp=Tp+p;

18. End

19. Count Time after sending ‘N’ packets Tsp1;

20. TotalTime= Tsp1-Tsp;

4. RESULT ANALYSIS

Response Time (ms)

Time Existing Work
Proposed

Work

0 0 0

10 1000 670

20 500 340

30 450 210

40 500 337

50 5 2

60 6 1

Table 2: Analysis of Response Time

No. of APM

Demand Ratio Existing Work Proposed Work

0 0 0

0.2 280 340

0.4 580 670

0.6 800 950

0.8 900 1030

1 1000 1200

Table 3: Analysis of No. of APM as Demand Increase

Decision Time

Demand Ratio Existing Work Proposed Work

0 0 0

0.2 0.18 0.1

0.4 0.2 0.12

0.6 0.22 0.16

0.8 0.24 0.18

1 0.26 0.2

Table 4: Analysis of Decision Time

Figure 2. Comparison of Response Time

Figure 3. Comparison of No. of APM

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (min)

Comparison of Response Time (ms)

Existing
Work

Proposed
Work

0

200

400

600

800

1000

1200

1400

0 0.2 0.4 0.6 0.8 1

N
o

. o
f

A
P

M

Demand Ratio

Comparison of Active Physical
Machines

Existing
Work

Propose
d Work

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.12, May 2017

33

Solution

Construction

Global Pheromone

Updating

Iter < MaxIter

Result

Begin

Initialize the

Algorithm

with the
Cloud Set up

Initialize All

Ants

Step=i

Selection of

Each Task

Pheromone

Updating based

on VM’s

Step 1=i

Select Next task

Step 1=i+1

Step < N

Figure: Flow Diagram of Proposed Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.12, May 2017

34

Figure 4. Comparison of Decision Time

5. CONCLUSION
Cloud Computing has been widely adopted by the industry,

though there are many existing issues like Load Balancing,

Server Consolidation, Virtual Machine Migration, Energy

Management, etc. Central to these issues is to find shortest

route from source to destination by using different

methodology, which is required to distributing the excess

dynamic local workload evenly to all the nodes in the whole

Cloud to achieve a high user satisfaction and resource

utilization ratio. The Proposed Methodology implemented

here provides better Request and Response time as compared

to the existing methodology. It also provides efficient

Decision Time and Stability Probability.

6. REFERENCES
[1] Zhen Xiao, , Qi Chen, and Haipeng Luo, “Automatic

Scaling of Internet Applications for Cloud Computing

Services” IEEE Transactions On Computers, Vol. 63,

No. 5, May 2014.

[2] Jack Li, Qingyang Wang, Deepal Jayasinghe, Simon

Malkowski, Pengcheng Xiong, Calton Pu, Yasuhiko

Kanemasa, and Motoyuki Kawaba. Profit-Based

Experimental Analysis of IaaS Cloud Performance:

Impact of Software Resource Allocation. In 2012 IEEE

Ninth International Conference on Services Computing,

pages 344-351. IEEE, jun 2012.

[3] Rui Han, Li Guo, Moustafa Ghanem, and Yike Guo.

Lightweight Resource Scaling for Cloud Applications. In

CCGRID, pages 644-651.IEEE, 2012.

[4] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and

R. Buyya, “The aneka platform and qos-driven resource

provisioning for elastic applications on hybrid clouds,”

Future Generation Comp. Syst., pp. 861-870, 2012.

[5] Shigeru Imai, Thomas Chestna, Carlos A. Varela,

“Elastic Scalable Cloud Computing Using Application-

Level Migration”, IEEE/ACM Fifth International

Conference on Utility and Cloud Computing 2012.

[6] Linlin Wu, Saurabh Kumar Garg, and Rajkumar Buyya.

SLA- based admission control for a Software-as-a-

Service provider in Cloud computing environments.

Journal of Computer and System Sciences, 78[5]:1280-

1299, sep 2012.

[7] Waheed Iqbal, Matthew N. Dailey, and David Carrera.

SLA-Driven Dynamic Resource Management for Multi-

tier Web Applications in a Cloud. In 2010 10th

IEEE/ACM International Conference on Cluster, Cloud

and Grid Computing, pages 832-837. IEEE, May 2010.

[8] Jordi Guitart, Jordi Torres, and Eduard Ayguad e. “A

survey on performance management for internet

applications. Concurrency and Computation: Practice

and Experience, 22[1]:68-106, 2010.

[9] D. Niyato, E. Hossain, and S. Camorlinga, “Remote

patient monitoring service using heterogeneous wireless

access networks: architecture and optimization,” IEEE

J.Sel. A. Communication, vol. 27, no. 4, pp. 412–423,

May 2009.

[10] A. Whitchurch, J. Abraham and V. Varadan, “Design

and development of a wireless remote point-of-care

patient monitoring system,” IEEE Region 5 Technical

Conference, Fayetteville, AR, pp. 163-166, 2007.

[11] T. Desell, K. E. Maghraoui, and C. A. Varela,

“Malleable applications for scalable high performance

computing,” Cluster Computing, pp. 323–337, June

2007.

[12] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy,

Mike Spreitzer, and Asser Tantawi. An analytical model

for multi-tier internet services and its applications. ACM

SIGMETRICS Performance Evaluation Review,

33[1]:291-302, jun 2005.

[13] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash

crowds and denial of service attacks: characterization

and implications for CDNs and web sites,” in

Proceedings of the 11th international conference on

World Wide Web, New York, NY, USA, 2002, pp. 293–

304.

[14] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat,

and R. P. Doyle, “Managing energy and server resources

in hosting centers,” in Proc. ACM Symp. Oper. Syst.

Princ. (SOSP’01), Oct. 2001, pp. 103–116.

[15] A. Cohen, S. Rangarajan, and H. Slye, “On the

performance of tcpsplicing for url-aware redirection,” in

Proc. 2nd Conf.USENIX Symp.Internet Technol. Syst.,

199.

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6

D
e

ci
si

o
n

 T
im

e
 (

s)

Demand Ratio

Comparison of Decision Time (s)

Existing
Work

Proposed
Work

IJCATM : www.ijcaonline.org

