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ABSTRACT
This paper addresses target localization problem in a cooperative 3-
D wireless sensor network (WSN). We employ a hybrid system that
fuses distance and angle measurements, extracted from the received
signal strength (RSS) and angle-of-arrival (AoA) information, re-
spectively. Based on range measurement model and simple geom-
etry, we derive a novel convex estimator based on Jarv’s scan . The
network is said to be uniquely localizable if there is a unique set
of locations consistent with the given data.This paper presents an
improved localization algorithm with high accuracy in large-scale
Sensor networks with a large number of sensor nodes based on the
Jarvis’ March ,called SLSNJ. the Jarvis’ March adapted here for
our approximation technique to determining the convex hull of a
set of sensors used instead of the Grid-Scan method,to take into ac-
count the requirements in memory, to make it scalable and rapidly
convergent with small location estimation error.We verify our al-
gorithm in various scenarios and compare it with AT-Dist method.
Our simulation results show that the new estimators have excellent
performance in terms of the estimation accuracy and convergence,
and they confirm the effectiveness of combining two radio mea-
surements in large-scale.

General Terms
Wireless Sensor Network (WSN), Routing

Keywords
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1. INTRODUCTION
In recent years wireless sensor networks (WSNs) have been
used in various areas, like event detection (fires,floods) , mon-
itoring (health care, industrial, agricultural, environmental) ,
energy-efficient routing , exploration (underground, deep water,
outer space) , and surveillance , to name a few. A key element
in many practical applications is to accurately determine the
locations of sensors , namely in search and rescue missions or
to enhance the network coverage. Although global positioning
system (GPS) receivers can be used to locate the sensors, GPS
is ineffective in indoor, dense urban and forest environments

or canyons . Besides, installing a GPS receiver in each sensor
would be extremely expensive in large-scale WSNs, which would
restrict its applicability . Hence, development of localization
strategies from different terrestrial radio frequency (RF) sources
is of great practical interest. A wireless sensor network have been
discussed for more than 30 years [1], but the vision of wireless
sensor networks (WSNs) has been brought into reality only by
the recent advances in wireless communications and electronics,
which have enabled the development of low-cost, low-power and
multi-functional sensors that are small in size and communicate
over short distances. Existing researches for sensor localization
mainly fall into two categories: range-based approaches and
range-free approaches in [10],[13]. Range-free approaches locate
nodes using network connectivity information instead of accurate
distance measurements between nodes.
This paper presents range-based method called Slsnj an improved
of AT-Dist [17]. This method proposes a set of three rules and
an approximation technique in order to assign either an exact
position or an estimated position for each sensor node. The
rules and the approximation technique use the data correlation
between anchor positions and distances from nodes to anchors.
As soon as a sensor node can apply one of rules, it obtains an
exact position. Otherwise, by the approximation technique, it
obtains an estimated position. With this approximation technique,
using Jarvis’ March [11] each sensor node defines a convex
hull containing itself, according to the anchor positions and
distances from it to anchors. To be located, this node computes
an estimated position being the center of gravity of this convex hull.

Three important properties : first, a node can detect when its esti-
mated position is relatively close to its real position. In this case
this node becomes an estimated anchor and will be used by others
nodes to obtain their positions. Second, some wrong informations
(e.g. due to measure errors) can be eliminated related to defined
sensor convex hull. These properties allow to obtain very good sim-
ulation results related to the methods described in [15],[18] , [20]
,[17], even if measure errors are introduced.third,Jarvis’ March [11]
fallowed us to reduce the consumption of CPU time (and therefore
energy),But also allowed us to optimize including consumption of
the memory,focusing not on the overall interpretation of network
such as a type algorithm March-line but only on points of convex
hull. consequently, We get to keep the functional properties of our
localization technique despite change in network size with a mini-
mum convergence time.
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The rest of the paper is organized as follows: In Section 2, intro-
duces basic notions for this problem.In Section 3, we summarize
related work on localization algorithms. In Section 4, we present
our new localization algorithm Slsnj. In Section 5, we evaluate the
proposed scheme through comprehensive simulation studies and
compare it with other localization techniques. We conclude the pa-
per in Section 6.

2. MODEL
Extensive approaches have been proposed to locate sensor nodes
in WSNs.In this paper ,we focuse on static networks. Moreover,
it assumes that all sensors have identical reachability radius r.
However, it is easy to adapt our method to sensors having different
reachability radius. A wireless sensor networks is represented
as a bidirectional graph G(V,E) where V is the set of n nodes
representing sensors and E is the set of m edges representing
communication links. If two nodes u, v ∈ V are neighbors, then
they are linked that means distance between u and v is smaller
than r. The set of neighbors for a node u ∈ V is noted N(u).
Anchor nodes have knowledge of their location through some
other means, such as GPS or simply explicit programming. The
set of anchors is noted Λ. The set of neighbor anchors for a
node u is noted NΛ(u)(NΛ(u) = N(u) ∩ Λ) and the set of
non-neighbor anchors is noted NΛ(u)(NΛ(u) = Λ/NΛ(u)).
Note that all identical nodes (anchors or others nodes) have the
same capabilities (energy, processing, communication, ...). The
coordinate of a position of node u is noted (xu, yu).P is the set
of all possible positions in a network. Our method construct the
convex hull of a point cloud Su for each node u,this convex hull
is noted conv(Su). The localization modules (eg, GPS or Galileo)
are expensive and consumers of energy,for this our method seeks
to use the least possible anchors with the Nodes can use technology
measures distances as ToA, RSSI, AoA. So, when it receives a
signal from a transmitter, a node deduces that it is located on the
circle centered on the transmitter. The exact distance between two
nodes u and v is noted duv . Two neighbor nodes u, v know duv
(via ToA, ...). The estimated distance is noted d̂uv . The following
section explains how to obtain these estimated distance. the set
of circles built from the knowledge of anchor neighbors is noted
CNΛ

,the set of circles built from the knowledge of non-anchor
neighbors is noted CNΛ

.

ε is the distance between the estimated position (xuestmi
, yuestmi

)

of the sensor u and the summit furthest from convex hullConv(S).
Let derr being the distance between the estimated position of a
node and its real position, representing the position error. The node
knows that derr . By using a predefined threshold, if derr ≤
threshold then the node has an estimation close to its real position.
In this case the node becomes an estimated anchor and broadcasts
its position .

3. RELATED WORKS
Many methods assume that some sensors in networks know their
exact positions (by human intervention, GPS, ...). These sensors
are called anchors. There are two categories among these meth-
ods : first, the range-free localization schemes which deduce es-
timated positions for all nodes in the network with only coordi-
nates of anchors. Techniques described in [10], [14],[9] are exam-
ples of these methods. Second, the range-based localization which
use techniques allowing to calculate distances between two neigh-
bor sensors. The most popular methods in order to compute the

range with two neighbor nodes are RSSI, ToA and TDoA [19] and
AoA [7] : RSSI (Received Signal Strength Indicator) measures the
power of the signal at the receiver. With the power transmission in-
formation, the effective propagation loss can be calculated and ei-
ther theorical or empirical models are used to translate this loss into
distance. ToA / TDoA (Time of arrival / Time difference of arrival)
translates directly the prapagation time into distance if the signal
propagation speed is known. For example, the most basic localiza-
tion system using ToA techniques is GPS in [21]. AoA (Angle of
arrival) estimates the angle at which signals are received and uses
simple geometric relationships to calculate node positions.
Among localization methods in wireless sensor networks, the most
popular are the methods of Niculescu and Nath APS in [15] , Sav-
vides,al [20] and Savarese,al [18]. These methods use the same exe-
cution scheme. This plan contains three steps : first, anchors broad-
cast their position. Second, each node estimates distances with an-
chors. Each node derives an estimation of its position from its an-
chor distances. Finally, a refinement process is performed in order
to improve accuracy of estimations. In [12] , Langendoen and Rei-
jers provide a detailed comparative survey for each step of these
methods. After the distance estimation step, there are two tech-
niques in order to calculate node position : either multilateration,
described above, used by [18] et [15] , or Min-Max technique, used
by [20] : the main idea is to construct, for each node, a bounding
box related to anchor positions and estimated distances, and then
to determine the intersection of these boxes. . in AT-Dist [17],This
method based on the method for estimating distance Sum-Dist used
by [20] and on a method based on the intersection of the disc cen-
tered by anchors nodes for each sensor that seeks its position,the
intersection of these disc provided an area and the center of gravity
of this area considered as the estimated position.AT-Dist method
exploits the location error when the error is below certain threshold
the sensor is also starting to broadcast its position estimated accom-
panied by localization error as the anchor.The implementation uses
by this method to represent the network and areas constructed is
Grid-Scan described in section 3.0.1.

3.0.1 AT-Dist. In [17], authors present an interesting localization
method. In a first time, nodes determine their positions with a po-
sition error bound using anchors positions, and when this position
error bound goes below a given threshold on a node, this node is
considerated as an estimated anchor and other nodes uses this in-
formation to improve the knowledge of their positions. Resulting
localization information are provided with a position error bound,
which is interesting as it can be used for geographical routing for
example [16]. Simulation results show that AT-dist method per-
forms accurate localization of the nodes when distance measure-
ment errors are small results are clearly less accurate in large scal
. Each node represents the network by a grid. The length of a grid
side is set of 0.1r in order to guarantee that estimation accuracy is
not noticeably compromised. When a node receives an anchor po-
sition, it increments the cases in the grid that may be its position
:

—if the node and the anchor are not neighbors : all cases between
the two circles : one with radius equals to r and the other with
radius equals to estimated distance returned by Sum-Dist.

—if the node and the anchor are neighbors : all cases on the circle
having as center the anchor of radius equals to the range.

Figure 1 represents an example of Grid-Scan : when node X re-
ceives the position of B (resp. C, D), it increments all cases being
between the two circles centered in B (resp. C, D). The zone con-
taining X is defined by the area composed by the cases with the

2



International Journal of Computer Applications (0975 - 8887)
Volume 165 - No.3, May 2017

maximum score. In figure 6 this zone is defined by cases equal to
3. X calculates the center of gravity of this zone and obtains an
estimated position.

Fig. 1. Grid-Scan

3.0.1.1 Advantages and Drawbacks . Moreover, in an initial
phase,each sensor must keep in its memory the field of interest of
a sampled mannerusing grid Marchmethod,and anchors needs to
flood the whole network, and then additional communications are
added to improve sensors localization. This leads to an important
exchange of messages.

4. SCALABLE LOCALIZATION SENSOR
NETWORK BASED ON JARVIS MARCH

4.1 Description
Initially, each anchor broadcasts its position. A node can there-
fore be deduced the distance between each of the anchors We use
the technique SumDist (Savvides et al., 2002) for estimating dis-
tances adding the distances between separated sensor nodes of an
anchor.Upon receiving the position of a anchor, a node considers
the following cases:

—if it receives directly the position of the anchor, he deduces they
are neighbors and therefore it located on the circle centered at
the anchor or radius of a circle is r (this Circle belongs to).

—if it receives the position by an intermediate node, it concluded
that it is not neighbor of the anchor and therefore it is not inside
the circle of radius r centered in anchor (this Circle belongs to).

So,when a node u receives a position of an anchor A, it estimates
the distance to this anchor with Sum-Dist and draws one or two
circles. In fact, if (A ∈ NΛ(u)), u knows dAu and deduces that it
is on the circle CAu of radius equals to dAu and centered in A. If
(A /∈ NΛ(u)) then u knows that it is not inside the circle of center
A and radius r otherwise A and u would be neighbors. Moreover,
u knows the estimated distance toA, d̂Audeduced by Sum-Dist. By
triangular inequality, d̂Au ≤ dAu . u applies this technique to each

received anchor position. So, u is inside the circle CAu of center A
and radius d̂Au . Thus, the intersection of circles defines a cloud
of points Su. the center of gravity of the convex hull of this cloud
conv(Su) represents the estimated position of u.
To summarize, for each node u ∈ V/Λ, the envelope obtained as
follow : Initialization of the algorithm:

S0 = P (1)

CNΛ(u)0 = CNΛ(u)0
= {∅} (2)

When a node u receives a message controle P from anchor node ai
neighbor:
If ai ∈ NΛ(u):
The circle centered at ai and of radius d2

uai
:

Cuai
= {(xi, yi) ∈ P|(xi − xa)2 + (yi − ya)2 = duai

} (3)

Construction of intersection points of a circle Cuai
with the old

circles C(u)i−1
,keeping only the points inside a circle centered at u

and of radius εui−1
:

Wui
= {(xi, yi) ∈ (C(u)i−1

∩Cuai
)|(xi−xuestmi

)2+(yi−yuestmi
)2 ≤ ε2ui−1

}
(4)

Cleaning the old cloud of points Si−1,keeping only the points
inside a circle centered at u and of radius duai

:

Zui
= {(xi, yi) ∈ Si−1|(xi − xa)2 + (yi − ya)2 ≤ d2

uai
} (5)

New cloud of points Si:

Si = Zui
∪Wui

, i ≥ 3 (6)

The circle Cuai
joins the old circles CNΛ(u)i−1

:

CNΛ(u)i = Cuai
∪ CNΛ(u)i−1

(7)

Same effect occurs when a node u receives a message cont-
role P from anchor node ai not neighbor :
if ai /∈ NΛ(u):

Cuai
= {(xi, yi) ∈ P|(xi − xa)2 + (yi − ya)2 = d̂2

uai
} (8)

Wui
= {(xi, yi) ∈ (C(u)i−1

∩Cuai
)|(xi−xuestmi

)2+(yi−yuestmi
)2 ≤ ε2ui−1}

(9)

Zui
= {(xi, yi) ∈ Si−1|r2 ≤ (xi − xa)2 + (yi − ya)2 ≤ d̂2

uai
}

(10)

Si = Zui
∪Wui

, i ≥ 3 (11)

CNΛ(u)i
= Cuai

∪ CNΛ(u)i−1
(12)

C(u)i = CNΛ(u)i ∪ CNΛ(u)i
(13)
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The end for each node we will have a set of points Su of the cloud:

Su = {p1, p2, p3, · · · , pn} (14)

Calculate the convex hull Su based on Jarvis’ March:

conv(Su) = {
n∑

n=0

αipi|αi ≥ 0,
∑
i

αi = 1} (15)

The new estimation error εui
:

εui
= max

p∈conv(S)
d(p, uestmi

) (16)

Fig. 2. State machine diagram for Sensor node not estimated

The main design of the Slsnj, which is a simple finite state machine.
As shown in figure 2, a node running Slsnj is in one of four states
at any time: (i) Sensor not estimated, (ii) Sensor estimated, (iii) es-
timated Anchor,and (iv) improve the accuracy. Transitions between
the states are triggered by events. After the Slsnj protocol is initi-
ated, the node enters the Sensor not estimated state,Whenever the
node receives a broadcasting ProbePacket packet, the node enters
the Sensor not estimated state and uses this packet to estimate its
postion,after this stage of estimation the node switches to another
state is depending on the value of the estimation error found,if es-
pilon¡threshold the node enters in estimated Anchor state else it
enters in Sensor estimated state .In the latter two states a node is
still waiting of probpacket packet from anchor or estimated Anchor
nodes to enter in improve the accuracy state and improve its accu-
racy.when there will be no more ProbePacket, the node switches to
the state final and considered as estimated with an error of preci-
son.
An example is illustrated in figure 1. X receives positions of an-
chors A,B and C. It estimates distances d̂AX , d̂BX , d̂CX with
Sum-Dist. Since all an- chors are not neighbors of X then X is not
inside circles centered respectively in A,B,C with a radius equals
to r but it is inside circles with radius equal to d̂AX , d̂BX , d̂CX

. The intersection of these circles defines the cloud points SX for
a node X .X computes the center of gravity of the convex hull
conv(SX) of this cloud and estimates its position in G2 .

4.2 Slsnj properties
Our localization technique meets three very important properties
who have a significant impact on its performance:

—First, a node knows if its estimated position is close to its real
position. Let ε be the distance between the center of gravity and
the point, in the zone, furthest away from the center of gravity.
Let derr being the distance between the estimated position of a
node and its real position, representing the position error. The
node knows that derr ≤ ε. By using a predefined threshold, if
ε ≤ threshold then the node has an estimation close to its real
position. In this case the node becomes an estimated anchor and
broadcasts its position and its ε . When a node applies the ap-
proximation technique with an estimated anchor radius, it takes
into account ε.
Consider a sensor X calculating its position with an estimated
anchor A. If they are neighbors, X trace two circles (belongs
to CNΛ

) centered in A of radius dAX ± ε and deduce that it is
between these two circles. If they are not neighbors, X deduces
that it is not inside the circles centered at A of radius r − εand
belongs to a circle of radius dAX + ε,the definitions (4),(6),(9)
and (11) become :
si ai ∈ NΛ(u):

Cuai
= {(xi, yi) ∈ P|(xi−xa)2+(yi−ya)2 = (duai

± εui
)2}

(17)

Zui
= {(xi, yi) ∈ Si−1|(xi−xa)2+(yi−ya)2 ≤ (duai

± εui
)2}

(18)
if ai /∈ NΛ(u):

Cuai
= {(xi, yi) ∈ P|(xi − xa)2 + (yi − ya)2 = (d̂uai

± ε)2}
(19)

Zui
= {(xi, yi) ∈ Si−1|(r − ε)2 ≤ (xi−xa)2+(yi−ya)2 ≤ (d̂uai

+ ε)2}
(20)

—Second, a node can detect if some informations are wrong. This
case is illustrated in esxpresion Wui

.With its bound error ε ,
nodes reject the cloud points that are outside of circle centered at
its estimated position and of radius ε.for example, when a node
u detects a point of its cloud Su it outside in the circle centered
at u of radius ε will not take it into account . This property is
defined by the expressionWui

.

—Third, Jarvis’ March [11] allowed us to calculate the convex hull
conv(S) a cloud of points with a very optimum complexity ,
of order O(n log(n)) with n the number of points of the cloud,
which allowed us to reduce consumption of CPU time (and there-
fore energy), but also allowed us to optimize particularly the
consumption of memory storage ,focusing not on global inter-
pretation of the network as in an algorithm of type Grid-Scan
presented in 3.0.1, but only on points of the cloud. The improve-
ment made allowed us to retain the properties functional Our
localization technique despite the change in network size, and
efficiently localize the nodes (continuously) and with a certain
level of quality in different scales.
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Fig. 3. Estimated position for X at the reception of localization information from C anchor

5. EXPRIMENTATIONS ET RSULTATS
5.1 Environnement de simulation
Experiments were built upon the J-Sim simulator [9] dedicated to
WSN simulations. It is a compositional, component-based simula-
tion environment. It is built upon the concept of autonomous com-
ponent programming model. J-Sim is developed entirely in Java.
The signal attenuation due to obstacles or other factors (e.g. use
of unidirectional antennas) is simulated in J-Sim. Therefore, the
vicinity of a node in terms of transmission range is not necessarily
spherical.Note that there several simulators in the literature such as
GlomoSim[4] , OMNET++[5] , OPNET[3] , NS-2[2] . The MAC
layer is considered perfect and the transmission of messages are
without loss in our simulation.
In the field of localization in of wireless sensors networks and ser-
vices,The scalability was analyzed as a problem of performance
where enough variety of metrics were considered. These metrics
are concentrated around the measurement of response time, , Con-
sumption of resources and the number of messages exchanged be-
tween nodes.the factor scale most considered in the literature is
the number of nodes.This section analyzes the performance of our
method Slsnj following three metrics: :accuracy, storage space,
complexity,In order for us show the good performance of our pro-
tocol in large networks. In order to allow easy comparison between
different scenarios, range errors as well as errors on estimated po-
sitions are normalized to the radio range. For example, 50% of po-
sition error means a distance of half the range of the radio between
the real and estimated positions. The percentage of range errors is
noted δ.

5.2 Results
In figure 4 When the value of confidence is equal to 3, the ob-
tained error mean is the best. In fact, when the value of confidence
is higher than 3, the voting process is very strict and nodes cannot
deduce their positions. Conversely, when the value of confidence
is lower than 3, the voting process assigns in some times bad posi-
tions to sensors because it uses a few number of anchor positions
and some wrong informations can be used. This comment is con-
firmed when increases. But, it is possible that this value increases
when the percentage of range errors is higher than 15. In the next
experiences the value of confidence is equal to 3.
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0.3

0.4

0.5

0.6

confidence

er
ro

rm
ea

n

δ = 5%

δ = 10%

δ = 20%

Fig. 4. Slsnj : impact du seuil confidence

5.2.1 The accuracy. We compared our algorithm Slsnj with
the distributed method AT-Dist ,The positions to estimate are
generated randomly on a surface A = L × L with dimensions of
experimentation varying between 100 × 100 to 800 × 800 and a
density of anchor d = 20, each configuration obtained is repeated
for each of the two methods.the range of the sensors was set at 14.

Globally, the positions determined by a localization algorithm
represent a geometrical layout of the physical positions of the
sensors. This layout must be compared to the ground truth, or
known layout of the sensors. It is important therefore that not only
the error between the estimated and real position of each node is
minimised, but also that the geometric layout determined by the
algorithm matches well the original geometric layout. In order to
have a unified approach for evaluate the accuracy of our technique
and a solid frame for analysis of the scalability,we propose to use
two metrics.
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—MAE(Mean Absolute Error): The simplest way to describe local-
ization performance is to determine the residual error between
the estimated and actual node positions for every node in the
network, sum them and average the result. Broxton et al in [8]
do this using the mean absolute error metric (MAE), which, for
each of n nodes in the network, calculates the residual between
the nodes estimated and actual coordinates.

MAE =

∑n
i=1(xi − x̂i)2 − (yi − ŷi)2

n
(21)

avec (xi, yi) Positions relles et (x̂i, ŷi) les postillons estims.
—GDE (Global Distance Error): As discussed briefly at the start

, it is important for the accuracy metric to reflect not only the
positional error in terms of distance, but also in terms of the ge-
ometry of the network localization result. GDE in [6] takes the
RMS error over the network of n nodes and normalises it using
the constant R. In Ahmed et als context, R represents average
radio range, meaning the localization results are represented as a
percentage of the average distance nodes can communicate over.

GDE =
1

r

√√√√∑n
i=1

∑n
j=i+1(

d̂ij−dij
dij

)2

n(n− 1)/2
(22)

avec d̂ij La distance estime entre i et j et dij La distance relle
entre i et j .

Subsequently, the simulations will highlight the influence of fol-
lowing parameters on the performance of our method:

—The density network and dimension of the network;
—Measurement errors δ that will take the values 0%,5%,10% ;
—The percentage of anchors noted α,are selected randomly among

the network nodes .

The simulations for α ∈ {2, 4, · · · , 18, 20} representing density of
anchors from 0.12 to 1.23 and δ equals to 0 (the ideal case) and
dimensions L = 200. the Corresponding graphs are represented in
figures 14 and 15.
The graph of figure 5 represents the performance respectively Slsnj
and AT-Dist in a small scale (L ≤ 400) , when range errors are in-
troduced, the behavior of average error rate MAE of our method
related to percentage of anchors. These curves indicate the accu-
racy of localizations when δ is equal to δ = {0, 5, 10}% . Without
surprise, performances of Slsnj decrease when range errors increase
as the method AT-Dist (with L = 200 ). But, our method keeps a
good estimation of positions. Note also that after 10% of anchors
the average error rate decreases slowly.
For underline the capacity of the methods to localize sensors with

precision,reference should be made to the graph of Figure 6 and 7.
The graph represents the percentage of nodes locatedof Slsnj and
AT-Dist for a percentage of anchors varies from 0%to20% without
errors δ = 0%. The anchors located by GPS are not taken into ac-
count. In others words, the percentage of new exactly located nodes
is only considered. For Slsnj, the results are very clear and stable
when we move to large scale (L ≥ 400) with α = 20% : for Slsnj
The percentage of nodes located with a position error less than 20%
clearly exceeds the 86% but does not exceed 75% for AT-Dist.
Figure 8 shows the impact of density of nodes in small large
((L ≥ 400))on the behavior of average error rate MAE. When the
density of nodes increases, the average error rate decreases. In fact,
with low density, nodes do not often use rules but only the approx-
imation technique. Therefore, a few number of anchors (estimated
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Fig. 5. Slsnj and AT-Dist rate of the average error (MAE) with a dimension
L = 200
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Fig. 6. Slsnj and AT-Dist: Percentage of localized nodes with a position
error less than 20% with δ = 0% and L = 200, 400

or not) are added. The opposite phenomenon occurs when density
of nodes increases. Note that after a density of nodes equals to 12,
the behavior of average error rate is not significative.
Figure 9 shows the impact of the dimension of network on the be-
havior of average error rate GDE. When the dimension of network
increases, the average error GDE remained stable for Slsnj and in-
creases for AT-Dist. In fact, a large scale, the comportemente of
our technique based on Jarvis’ss Marchremains stable and capable
of operating,but the method AT-Dist based on March-line stabilizes
do it that are incapable of representing the network in its memory
by the method March-line.

5.2.2 The memory consumption. We also measure the amount of
memory allocated before the end of the simulation. The memory
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Fig. 8. Slsnj and AT-Dist : impact of the density with a dimension L=200

usage before the end of the simulation represents the amount of
memory allocated to complete the 300 s simulation. As shown in
figure 10 and figure 11, Slsnj use less memory than AT-Dist in
large-scal. This demonstrates that the data structures are used in
a more scalable manner in Slsnj to represent different classes and
their interaction in the WSN framework. and the Jarvis’s method
used by our technique Slsnj to reduce the memory used.

5.2.3 Algorithmic Complexity. Standard notions of computa-
tional complexity in time and space (i.e. big O notation) can be
used as comparison metrics for the relative cost of localization al-
gorithms. For example, as a network increases in size, a localization
algorithm with O(n3) complexity is going to take a longer time
to converge than an O(n2) algorithm. The same is true for space
complexity as the number of nodes increases, the amount of RAM
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Fig. 9. Slsnj and AT-Dist:Global Distance Error with δ = 0% and density
of anchors α = 15%
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Fig. 10. Slsnj and AT-Dist: rate of consumption of the memory with δ =

0% and density of anchors α = 20% and dimension L=400

needed (either per node, or centrally) is going to increase at a par-
ticular rate; algorithms which require less memory (comparatively)
at a given scale may be preferable.
Which makes the protocol Slang converges faster than AT-dist
it is the use of Jarvis’ March that it has a complexity of order
O(n log(n)) with n is the number of points in the cloud,instead
of using the grid Marchmethod used by AT-Dist of complexity of
order O(n2) with n the number of subdivisions of the network.
Figures 13 and 12 show the evolution the location accuracy con-

vergence. depending on the size of networks. in first graph, the con-
vergence time increases linearly with the dimension, and in the sec-
ond graph represents the evolution of convergence time that is the
time when the Metric MAE is stabilized over time. convergence
time with our method in a dimension 400 × 400 corresponds to
65s and 190s with at-dist . In fact, the main particularity of our
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Fig. 11. Slsnj and AT-Dist: rate of consumption of the memory with δ =

0% and density of anchors α = 20% and L varied from 100 to 800
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Fig. 12. Mean Absolute Error with δ = 0% , α = 20% and L=200

protocol is that the complexity does not depend on the dimension
of networks,but the number of nodes constructing the convex hull.
.

6. CONCLUSION
In this work, we proposed novel distributed algorithm to solve the
RSS/AoA localization problem for known in large scale transmit
powers based on Jarvi’s march relaxation technique . The pro-
posed SLSNJ algorithm provides exceptional localization accuracy
in just a few iterations. Our algorithm based on GTRS framework
is solved via a simple bisection procedure, and it represents an
excellent alternative to our SLSNJ algorithm, since its somewhat
lower accuracy is the simulation results confirmed the robustness
of the proposed algorithms to the imperfect knowledge , which is
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Fig. 13. Slsnj and AT-Dist:Convergence time with δ = 0% and density of
anchors α = 20%

a very important practical scenario. SLSNJ presents three impor-
tant advantages : first, this technique eliminates some wrong prop-
agated informations. These wrong informations are due to range
errors or attackers who have the control of sensors. Second, a node
knows if its estimated position is close to its real position and in
this case, it becomes an estimated anchor. Third, Jarvis’ March al-
lowed us to reduce the consumption of CPU time (and therefore
energy,memory).
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