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ABSTRACT 

This paper presents Water Evaporation Optimization 

(WEO) algorithm for solving Economic Dispatch (ED) 

problem with multiple fuel options. The objective of the 

problem is to identify the most economical fuel for each 

generating unit in order to minimize the total fuel cost 

while satisfying system constraints. The valve point 

loading effects should also be considered to obtain a 

realistic and more accurate ED solution. The proposed 

WEO algorithm is based on the evaporation of a tiny 

amount of water molecules on the solid surfaces with 

different wettability which can be studied by molecular 

dynamics simulations. The proposed algorithm is 

implemented and tested on ten generating unit test 

system. The obtained results have shown that the 

proposed method is efficient for solving ED problem with 

multiple fuel options and favorable for implementation in 

large scale problems.  
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1. INTRODUCTION 
In certain fossil fire systems, the generation cost function 

is represented as a segmented piecewise quadratic cost 

function. The generating unit, supplied with multi – fuel 

sources like coal, natural gas or oil suffers with the 

problem of determining the most economic fuel to burn. 

The multi – fuel effects with valve point loading effects 

add non – linearity to the traditional ED problem. In order 

to solve non – smooth and non – convex ED problem an 

analytical method named Quadratically Constrained 

Programming (QAP) has been proposed [1]. Due to the 

huge constraints and nonlinear characteristics of the ED 

problem, the calculus based methods cannot perform 

satisfactorily and are trapped to local optimum. Therefore 

conventional mathematical approaches are difficult to 

handle such a non – linearities hence a new numerical 

approaches are needed to cope with these difficulties [2-

3]. 

The Hierarchical Method (HM) of Lagrangian multipliers 

to find the incremental fuel cost for subsystems 

comprising set units for solving ED with multiple fuel 

options has been proposed [4]. The solution searches for 

the optimal for various choices of fuel and generation 

range of the units iteratively. The major disadvantage of 

this method is assumption of initial lambda value. A 

Hopfield Neural Networks (HNN) [5], an improved 

adaptive HNN [6] has also been proposed to solve the ED 

with multiple fuel effects. The drawback of HNN method 

is slow convergence rate and more number of iterations. 

The Enhanced Augmented Lagrange Hopfield Network 

(EALHN) for solving economic dispatch with piecewise 

quadratic cost functions have been presented [7].  

Economic dispatch solutions with piecewise quadratic 

cost functions solved by an Improved Genetic Algorithm 

(IGA) has been discussed [8]. In order to improve the 

effectiveness of GA multi-stage algorithm and directional 

crossover methods are proposed and projection method is 

introduced to satisfy a linear equality constraint from 

power balance. An improved GA with multiplier updating 

(IGA-MU)  have been proposed to solve ED problem 

considering both valve – point loading effects and 

multiple fuels [9]. A real – coded version of GA has also 

been proposed to solve ED with non-smooth cost 

functions [10].   

In recent years several artificial intelligence techniques 

like Particle Swarm Optimization (PSO) [11], Taguchi 

Method (TM) [12], Evolutionary Programming (EP) and 

their improved version [13-14], Bio – Geography Based 

Optimization (BBO) [15], Artificial Bee Colony (ABC) 

algorithm[16], Backtracking Search Algorithm (BSA) 

[17], Grey Wolf Optimization (GWO) [18], Opposition – 

based Greedy Heuristic Search (OGHS) [19], Synergic 

Predator – Prey Optimization (SPPO) [20] has been 

applied to solve the ED with non-smooth cost functions.  

The algorithm based on the human understanding and 

searching capability for finding an optimum solution 

named Seeker Optimization Algorithm (SOA) developed 

and implemented to solve constrained economic load 

dispatch problem [21]. In this SOA, the search direction is 

based on empirical gradient by evaluating the response to 

the position changes and the step length is based on 

uncertainty reasoning by using simple fuzzy rule. An 

efficient Crisscross Optimization (CSO) solution to large 

– scale non – convex economic load dispatch with 

multiple fuel types and valve – point has been proposed 

[22]. The algorithm based on kinetic energy and the 

natural motions of gas molecules called Kinetic Gas 

Molecule Optimization (KGMO) have been presented to 

solve non convex economic dispatch problem [23]. 

The hybridized algorithm between Differential Evolution 

(DE) and PSO for solving economic load dispatch with 

multiple fuel effects has been discussed [24]. Recently, 

motivated by the shallow water theory, researchers have 

proposed Water Evaporation Optimization (WEO) 

algorithm for solving global optimization problem [25]. 

The WEO algorithm is conceptually simple and easy to 

implement. The WEO algorithmic search consists of both 

global and local search. This guarantees that the proposed 

algorithm is competitive with other efficient well-known 

meta-heuristics. The WEO algorithm is used for selection 

of fuel and economic dispatch for the selected fuels.   
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2.  PROBLEM FORMULATION 
The objective of the ED problem with multiple fuel 

options is to find a suitable fuel for each generating unit 

so as their total cost is minimized while satisfying 

different constraints including power balance and 

generation limits.  
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Where aik, bik and cik are the cost coefficients of the ith 

generator using the fuel type k. 

   Subject to  

(a) Power balance constraint 
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Where Pi is the output power of unit i (MW), PL is the 

total network loss of the system (MW) and PD is the total 

load demand of the system (MW), N is the number of 

online generating units. 

The power loss is approximately calculated by 
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Where Bij, Boi, Boo are the transmission loss coefficients.
 

(b) Generator operating limits 

NiPPP iii ,......2,1;max,min, 
        (2.5) 

Where Pi,min and Pi,max are the lower and upper generation 

limits of unit i (MW). 

To obtain an accurate and practical economic dispatch 

solution, the realistic operation of the ELD problem 

should consider the valve – point effects in the cost 

model. Therefore a sinusoidal function is incorporated in 

to the quadratic function. 

 

  

  

  




















 max,1

min2

212

min

222

2

222

1min,1

min

111

2

111

;,sin

.......

;2,sin

;1,sin

iiikikikikikiikiikik

iiiiiiiiiiii

iiiiiiiiiiii

ii

PPPkfuelPPfePcPba

PPPfuelPPfePcPba

PPPfuelPPfePcPba

PF

                        (2.6)
 

3. WATER EVAPORATION 

OPTIMIZATION 
The evaporation of water is very important in biological 

and environmental science. The water evaporation from 

bulk surface such as a lake or a river is different from 

evaporation of water restricted on the surface of solid 

materials. In this WEO algorithm water molecules are 

considered as algorithm individuals. Solid surface or 

substrate with variable wettability is reflected as the 

search space. Decreasing the surface wettability (substrate 

changed from hydrophility to hydrophobicity) reforms the 

water aggregation from a monolayer to a sessile droplet. 

Such a behavior is consistent with how the layout of 

individuals changes to each other as the algorithm 

progresses. And the decreasing wettability of surface can 

represent the decrease of objective function for a 

minimizing optimization problem. Evaporation flux rate 

of the water molecules is considered as the most 

appropriate measure for updating individuals which its 

pattern of change is in good agreement with the local and 

global search ability of the algorithm and make this 

algorithm have well converged behavior and simple 

algorithmic structure. The details of the water evaporation 

optimization algorithm are well presented in [25].   

In the WEO algorithm, each cycle of the search consists 

of following three steps (i) Monolayer Evaporation Phase, 

this phase is considered as the global search ability of the 

algorithm (ii) Droplet Evaporation Phase, this phase can 

be considered as the local search ability of the algorithm 

and (iii) Updating Water Molecules, the updating 

mechanism of individuals.  

3.1 Monolayer Evaporation Phase  
In the monolayer evaporation phase the objective function 

of the each individuals Fiti
t is scaled to the interval [-3.5, -

0.5] and represented by the corresponding Esub(i)
t inserted 

to each individual (substrate energy vector), via the 

following scaling function.  

 
    

     min
minmax E

FitMinFitMaX

FitMinFitEE
iE

t

it

sub 





 

(3.1) 

where Emax and Emin are the maximum and minimum 

values of Esub respectively. After generating the substrate 

energy vector, the Monolayer Evaporation Matrix (MEP) 

is constructed by the following equation.  
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Where MEPt
ij is the updating probability for the jth 

variable of the ith individual or water molecule in the tth 

iteration of the algorithm. In this way an individual with 

better objective function is more likely to remain 

unchanged in the search space.   

3.2 Droplet Evaporation Phase 
In the droplet evaporation phase, the evaporation flux is 

calculated by the following equation.  
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where Jo and Po are constant values. The evaporation flux 

value is depends upon the contact angle Ѳ , whenever this 

angle is greater and as a result will have less evaporation. 

The contact angle vector is represented the following 

scaling function.  
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Where the min and max are the minimum and maximum 

functions. The Ѳ min & Ѳ max values are chosen between -

50o < Ѳ < -20o is quite suitable for WEO.  After 

generating contact angle vector Ѳ(i)t the Droplet 

Probability Matrix (DEP) is constructed by the following 

equation. 
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Where DEPt
ij is the updating probability for the jth 

variable of the ith individual or water molecule in the tth 

iteration of the algorithm.  

3.3 Updating Water Molecules 
In the WEO algorithm the number of algorithm 

individuals or number of water molecules (nWM) is 

considered constant in all tth iterations, where t is the 

number of current iterations. Considering a maximum 

value for algorithm iterations (tmax) is essential for this 

algorithm to determine the evaporation phase and for 

stopping criterion. When a water molecule is evaporated 

it should be renewed. Updating or evaporation of the 

current water molecules is made with the aim of 

improving objective function. The best strategy for 

regenerating the evaporated water molecules is using the 

current set of water molecules (WM(t)). In this way a 

random permutation based step size can be considered for 

possible modification of individual as:
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Where rand is a random number in [0,1] range, 

permute1and permute 2 are different rows of permutation 

functions. i is the number of water molecule, j is the 

number of dimensions of the problem. The next set of 

molecules (WM(t+1)) is generated by adding this random 

permutation based step size multiplied by the 

corresponding updating probability (monolayer 

evaporation and droplet evaporation probability) and can 

be stated mathematically as: 
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Each water molecule is compared and replaced by the 

corresponding renewed molecule based on objective 

function. It should be noted that random permutation 

based step size can help in two aspects. In the first phase, 

water molecules are more far from each other than the 

second phase. In this way the generated permutation 

based step size will guarantee global and local capability 

in each phase.  

The WEO algorithm can be summarized as follows: 

Step 1: Initialize all the algorithm and problem 

parameters, randomly initialize all water molecules. 

Step 2: Generating water evaporation matrix 

Every water molecule follow the evaporation probability 

rules specified for each phase of the algorithm based on 

the Eqs (3.2) & (3.5). For t ≤ tmax /2, water molecules are 

globally evaporated based on monolayer evaporation 

probability MEP by using Eq (3.2). For t > tmax /2, 

evaporation occurs based on the droplet evaporation 

probability DEP by using Eq (3.5). It should be noted that 

for generating monolayer and droplet evaporation 

probability matrices, it is necessary to generate the 

correspondent substrate energy vector and contact angle 

vector by using Eqs (3.1) and (3.4) respectively. 

Step 3: Generating random permutation based step size 

matrix 

A random permutation based step size matrix is generated 

according to Eq. (3.6)   

Step 4: Generating evaporated water molecules and 

updating the matrix of water molecules 

The evaporated set of water molecules WM (t+1) is 

generated by adding the product of step size matrix and 

evaporation matrix to the current set of molecules WM (t) 

by using Eq. (3.7). These molecules are evaluated based 

on the objective function. For the molecule i (i = 1,2, 

....nWM) if the newly generated molecule is better than 

the current one, the latter should be replaced. Return the 

best water molecule as the output of the algorithm 

Step 5: Terminating condition check 

If the number of iteration of the algorithm (t) becomes 

larger than the maximum number of iterations (tmax), the 

algorithm terminates. Otherwise go to step 2. 

The detailed flowchart for the implementation of WEO 

algorithm for solving ELD with multiple fuel options is 

shown in Figure 1. 

4. EXAMPLES AND SIMULATION 

RESULTS 
The proposed methodology has been tested with 10 

generating unit system with multiple fuel options and the 

proposed algorithm is developed in Matlab environment 

and is implemented using Intel(R) Core(TM) i5-4200U 

CPU@1.60 GHz 2.30 GHz processor. The effectiveness 

of the proposed WEO algorithm for ELD problem with 

multiple fuel effects has been validated by comparing the 

simulation results obtained from the other methods which 

are available in literature. The WEO algorithm parameters 

for all test systems are chosen as the number of water 

molecules (nWM) = 10, maximum number of algorithm 

iteration (tmax) = 100, MEPmin = 0.03, MEPmax = 0.6, 

DEPmin = 0.6, DEPmax = 1. 

4.1 Test Case 1 
In this case the sample system consists of 10 generating 

units with multiple fuel options and valve point loading 

effect is not considered. The system particulars are 

available in the literature [9]. The load demand of 2700 

MW is considered. The optimum fuel of each generating 

unit and economic dispatch of selected fuel obtained by 

the proposed WEO algorithm in comparison with existing 

algorithms are presented in Table 1. The simulation 

results shows that all algorithms are satisfies the generator 
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limit constraint and except HNN all other algorithms are 

satisfies the load demand. The simulation results indicates 

that the optimum fuel selection obtained by the proposed 

WEO algorithm is similar to the existing algorithms 

OGHS [19], CGA – MU [10], IGA – MU [9]. From the 

comparison it is also clear that the proposed WEO 

algorithm alone achieve the minimum fuel cost of 

623.8079 ($/h) than HNN [5], AHNN [6], EP [4], CGA – 

MU [10], IGA – MU [9] and OGHS [19] algorithms. The 

objective value versus iterations curve is presented in 

Figure 2. The convergence curve implies that the 

objective value is minimized from larger value and it 

ensures that the proposed WEO algorithm is efficient and 

outperforms the existing algorithms in terms of achieve 

better results. 

 

Fig 2:  Objective value versus iterations of test case 1 

4.2 Test Case 2 
In this case the electric power test system consists of 10 – 

generating units considering multiple fuel options with 

valve point loading effect is studied for a load demand of 

2700 MW. The system particulars are available in the 

literature [9]. The simulation results obtained by the 

proposed WEO and existing algorithms are presented in 

Table 2. In this case a proposed as well as other algorithm 

satisfies the load demand and generator limit constraint. 

The most economic fuel for each generation plant 

obtained by the proposed as well as existing algorithms 

are same. The total fuel costs obtained by the proposed 

WEO algorithm are compared with new particle swarm 

optimization-local random search (NPSO-LRS) [19], 

constraint treatment particle swarm optimization 

(CTPSO) [19], chaotic sequences particle swarm 

optimization (CSPSO) [19], crossover operation particle 

swarm optimization (COPSO) [19], both chaotic 

sequences and crossover operation particle swarm 

optimization (CCPSO) [19] and opposition-based greedy 

heuristic search (OGHS) [19]. The comparison make 

clear that the proposed algorithm alone reach the 

minimum fuel cost of 623.8238 ($/h). The cost 

convergence characteristic curve is depicted in Figure 3. 

The converged results indicate that the proposed 

algorithm is highly competitive with recent techniques. 

 

Fig 3: Cost convergence characteristic of test case 2 

 

Table: 1 Simulation results obtained by the proposed WEO as well as existing algorithms for test case 1  

Unit HNN[5] AHNN[6] EP[4] CGA-MU[10] IGA-MU[9] OGHS[19] WEO 

 FT Pgi FT Pgi FT Pgi FT Pgi FT Pgi FT Pgi FT Pgi 

1 2 224.5 2 228.2 2 225.2 2 218.4572 2 218.1248 2 218.2648 2 218.4162 

2 1 215.0 1 214.8 1 215.6 1 211.5140 1 211.6826 1 211.7042 1 211.5543 

3 3 291.8 1 291.7 1 291.8 1 280.8987 1 280.8630 1 280.7813 1 280.8774 

4 3 242.2 3 242.3 3 242.1 3 239.6241 3 239.6533 3 239.6363 3 239.6242 

5 1 293.3 1 293.3 1 293.7 1 278.5036 1 278.6304 1 278.5239 1 278.5238 

6 3 242.2 3 242.2 3 241.9 3 239.6390 3 239.6140 3 239.6266 3 239.5261 

7 1 303.1 1 302.3 1 301.6 1 288.6201 1 288.5725 1 288.5204 1 288.4176 

8 3 242.2 3 242.3 3 242.8 3 239.6211 3 239.7057 3 239.6341 3 239.6840 

9 1 335.7 1 354.2 1 356.6 3 428.5760 3 428.4542 3 428.3894 3 428.3894 

10 1 289.5 1 288.9 1 288.7 1 274.5462 1 274.6995 1 274.9174 1 274.9840 

PD 2699.7 2700 2700 2700 2700 2700 2700 

Ft  626.12 626.24 626.26 623.8095 623.8093 623.8082 623.8079 
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Fig 1: Flowchart for the proposed WEO algorithm to solve ELD with multiple fuel effects 
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Table: 2 Simulation results obtained by the proposed WEO as well as existing algorithms for test case 2 

Unit 
NPSO-LRS[19] CTPSO[19] CSPSO[19] COPSO[19] CCPSO[19] OGHS[19] WEO 

FT Pgi FT Pgi FT Pgi FT Pgi FT Pgi FT Pgi FT Pgi 

1 2 223.3352 2 218.6807 2 219.6210 2 218.5940 2 218.5940 2 218.1046 2 218.5939 

2 1 212.1957 1 211.4642 1 210.9690 1 211.7117 1 211.7117 1 212.1547 1 211.7117 

3 1 276.2161 1 280.6545 1 279.6489 1 280.6571 1 280.6571 1 280.6580 1 280.6572 

4 3 239.4187 3 240.4457 3 239.5051 3 239.6394 3 239.6394 3 239.6864 3 239.6393 

5 1 274.6470 1 276.4034 1 279.8834 1 279.9345 1 279.9346 1 279.9067 1 279.9369 

6 3 239.7974 3 240.1769 3 239.6394 3 239.6394 3 239.5051 3 239.6610 3 239.6394 

7 1 285.5388 1 287.8657 1 289.9623 1 287.7275 1 287.7275 1 287.7285 1 287.7150 

8 3 240.6323 3 240.5800 3 239.9082 3 239.6394 3 239.6394 3 239.8208 3 239.6395 

9 3 429.2637 3 428.5886 3 425.0471 3 426.5883 3 426.7226 3 426.3710 3 426.5863 

10 1 278.9541 1 275.1403 1 275.8157 1 275.8686 1 275.8686 1 275.9072 1 275.8685 

PD 2700 2700 2700 2700 2700 2700 2700 

Ft($/h) 624.1273 623.8588 623.8420 623.8266 623.8266 623.8240 623.8238 

 

5.  CONCLUSION 
In practical conditions of power system operation, the fuel 

cost function of thermal generating units those are supplied 

with multiple fuel sources like coal, natural gas and oil 

may be segmented as piecewise quadratic cost function for 

representing different fuel types. The combined action of 

multiple fuel effects and valve point loading effects 

increases the degree of difficulty to solve the ELD 

problem. In this paper a new meta-heuristic technique 

named Water Evaporation Optimization algorithm is 

presented to solve an economic load dispatch problem 

considering multiple fuel effects, with and without 

considering valve point loading effects. To show the 

validity of the proposed WEO algorithm it has been 

implemented to solve an economic dispatch problem with 

piece wise quadratic cost function for a ten generating unit 

test system with load demand of 2700 MW with and 

without considering valve point loading effects. The 

simulation results are compared with many other methods 

available in the literature. The result comparison has 

indicated that the proposed WEO algorithm is efficient and 

effective than many other methods in terms of total cost. In 

future studies, the proposed WEO method can also be 

applied in other power system optimization problem such 

as unit commitment and generator maintenance scheduling 

in regulated and deregulated market.    
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