
International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.7, May 2017

39

Implementation of a Smart Network Communications

Interface for Home and Small Office

Mudgerikar Aditya, More Chaitanya, Palkar Soham and Mokashi Rohit

ABSTRACT

The Smart Home bug has bitten nearly everyone. In this

project, we develop a way to form a communications interface

between the different smart devices in your home or small

office. This eliminates, from future developers the issues of

Compatibility, Network Communication, Protocol

management, thereby focusing only on the core functionality.

We present to you a base interface which deals with the

underlying protocols, communication over different interfaces

and compatibility between the different components: namely

your Raspberry Pi, Sensors, cameras and other peripherals and

your base computers. The developer focuses solely on the

functionality of the system without the usual headaches.

General Terms

Home Automation, Human Interface Devices.

Keywords

Raspberry Pi 2, Arduino, Debian based Ubuntu Server, GPIO,

TCP Hole Punching, IOT, Human Interface Devices, Home

Automation..

1. INTRODUCTION
There exist various solutions for automation in the market, but

none exists with such ease of use that the normal lay home

user may be able to use it. With huge costs of deployment,

maintenance and close systems, these solutions become

inappropriate for home use. In our system we propose a

solution which is reliable, cheap, and easy to use and

maintain. This is an excellent solution for the avg. home

tinkerer who can install self-made DIY solutions to operate

his home successfully. With the advent of the multitude of

various electronic devices it is imperative, the existence of

such a system which can bridge the gap between the

communication of these various devices with each other.

In our system, we propose a simple solution to solve all these

problems with ease of use the main priority. So let’s begin.

Some features of our system include:

1) Entire Home automation system

2) Wireless Router

3) Unlimited Drives (up to 16)

4) miniDLNA server

5) Active media transcoding for upto 2 clients and a

Plex miniDLNA server.

Comparing this to other systems, we get:

1) Cost of Home system : 18000

2) Wireless Drive: 1 for 9900 per 500 GB

3) Limited usability

4) Closed upgrade paths

5) Security concerns, since such an open source

community is not involved.

Some concerns, if they may exist:

1) Why USB 2.0 does not matter: Each USB 2.0 has a

speed of 480mbps while the fastest protocol: Wireless N

has a speed of 150mbps.

2. DESIGN COMPONENTS:

2.1 Hardware Components

2.1.1 Raspberry Pi 2:
The Raspberry Pi 2 is the core component of our system. It

takes commands from the server, manages authentication, and

processes the signals to be sent to the relay, based on server’s

commands. This core circuit provides us with the ability to

monitor our home devices, power them on/off and send them

commands over a network. This system`s extensions include:

An NAT Service, a core Firewall, A MiniDLNA Server, an

NAS box, a USB Device management service and so on.

2.1.2 Server:
The Server is the center of our system. You do not need a

discrete server, but it is a good to have. The server extends

your system beyond one room, which helps you deploy

multiple Raspberry Pi 2`s for extensibility.

2.1.3 Relay:
The Relay actually powers the components. When the

Raspberry Pi 2 sends the power on signal through the GPIO,

the Relay closes the connection making the circuit to be

complete allowing the device to power on.

2.1.4 Gateway:
A Gateway is required so as to provide access to the web.

Figure 1: Hardware Components

2.2 Software Components:

2.2.1 Ubuntu Mate armfh:
Ubuntu Mate armfh is desktop code modified to run on the

Raspberry Pi 2’s ARM Cortex-A7 CPU’s. It has floating point

and hexadecimal operations available. The Ubuntu developer

team has managed to successfully port most of the

functionality and the libraries, so that programmers can code

the same code on the ARM platform. This saves a lot of

headaches when developing for the armfh platform.

2.2.2 Ubuntu:
Ubuntu is a Linux operating system. It is based on Debian.

Ubuntu contains the .deb files. Ubuntu Touch is used by

personal computers, tablets, etc. Ubuntu is very much secure

operating system. In our system we have used the Ubuntu as

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.7, May 2017

40

server. It can run on most popular architectures such as ARM

based architecture.

2.2.3 Lex and Yacc:
Lex and Yacc are used for compiling a language. For

compiling a language there are total 7 steps. Among those 7

steps Lexical Analysis and Syntax Analysis are the first 2

steps which includes Lex and Yacc respectively.

2.2.4 A Server Side Scripting Language:
The Server is essential in managing all the connections. It

aggregates the data. Sends it to the required Server, and parses

all the incoming connections. It is an integral part of our

project. [1]

Figure 2: Software Components

3. DESIGN IMPLEMENTATION:

3.1 Preparing the Raspberry Pi 2:

3.1.1 Software Required:

 MiniDLNA:

MiniDLNA is a lightweight server software which

is compliant with DLNA/UPnP clients. This

daemon serves media files like music, pictures, and

video, etc. to the requesting clients on given

network. MiniDLNA has a rich set of configuration

options which can easily be accessed by editing a

text file.

 Samba:

Samba is a network configuration software. It is

based on the Windows network share protocol. Its

main purpose lies in File System conversion

between incompatible protocols for network shares

between two separate OS’s on different hardware

over different communication protocols.

 GPIO Headers (For Include files):

 The GPIO (General Purpose

Input/Output) is a set of

generic pins on the circuit

board of Raspberry Pi

controlled by a micro

controller whose functions

can be accessed by the C/C++

header file “GPIO.h”.

 This avoids the need of

separate digital circuitry to

provide for digital

Input/Output lines to emulate

given sample macro circuitry.

 The GPIO pins are controlled

by the micro controller

Broadcom BCM2835 SoC

which provides us a set of 26

GPIO pins for use with

computer components.

Figure 3: GPIO set for the

Raspberry Pi used

3.1.2 Setting it up:
Installation of the components:

 MiniDLNA:

sudo apt-get install miniDLNA

 Samba:

sudo apt-get install samba smbfs

3.2 Preparing the Server:

3.2.1 Software Required:

 Ubuntu Server:
Ubuntu server is the server edition of Ubuntu. It

uses the same APT repositories as desktop version

of Ubuntu. The main difference between them

being, that the server edition does not include GUI

environment of Ubuntu in its default installation.

 PHP:
PHP is a server side scripting language which stands

for Hypertext Pre-Processor, earlier called as

personal homepage. In this system we use PHP

above the Apache server for HTML page access as

well as in CLI.

 Apache 2:
In our system we use an Apache server to enable

hosting of PHP code for server side computations.

The PHP code is the backbone of our system to

which Apache enables access to all the platform

independent libraries for efficient server execution.

 SSH client:
SSH is an acronym for Secure Shell. SSH is used to

login to our Raspberry Pi so that the end client need

not worry about security until the end server is

hacked.

3.2.2 Setting it up:
 Ubuntu server:

sudo apt-get install tasksel

Download the image from

http://cdimages.ubuntu.com

 PHP:

sudo apt-get install php5 libapache2-mod-php5

 Apache:

sudo apt-get install apache2

 SSH:

apt-get install openssh

Figure 4: Software Stack

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.7, May 2017

41

3.3 Preparing the Connections:

3.3.1 Hardware Setup Required

 Ethernet cable:
Ethernet cable is mostly popular for connection

wired network. It is connects devices on LAN like

PCs, routers, switches.

 Switch:
To receive, process and forward data to its

particular destination device switches are used. It is

a computer networking device. Above three

processes are done by using packet switching.

 Power Source:
o For Raspberry Pi: a 5V 2.5A Power

supply
o For GPIO: A 5V 2.5 A Power supply
o For Server (If required): A 450W Power

supply.

Figure 5: Hardware Stack

3.4 Setting it all together:

3.4.1 Hardware Setup Required:
 Raspberry Pi 2

 Server: Any Machine running a minimal OS, for

running a server.

 Relay

 Male to Female cables

 Breadboard.

 AC Power Source

 An Extension Board with Switches.

3.4.2 Setting it up:
To set up the system,

 We power on the Raspberry Pi and the Server.

 Test the ssh connectivity and User`s permissions on

the Raspberry Pi.

 Connect the Server to the Router.

 Enable DMZ Host on the router: To make the

incoming requests point to the server.

 Connect the devices to the Relay.

 Check the connection of each device using an

Arduino. (Very Important!)

 Connect the 8-channel/6channel/4channel relay to

the Raspberry Pi 2.

 Test the code from the Raspberry Pi 2. (Before

connecting the server).

 Test the connections from the server side: By

sending random Device Power ON Requests as

required from the server.

 Then test the connection from the client side.

 Then check the connection with multiple Raspberry

Pi`s powered ON and Connected to the network,

with their multiple relays.

 The test from the client side from the GUI.

 Regressively test the system in various connections

like: Internet, Local Wi-Fi Hotspot, LAN, Local

Network, extending to a few cities, etc.

 After the System is working, declare it as complete

and test it at the actual client devices: Like web

GUI, Admin Pages, and the Android App (If

necessary). [2]

3.5 Testing the system:

3.5.1 Testing Methodology:

 Regression testing:

After the addition of each feature, the system was

tested manually by software testers and programmers

alike, to find bugs in the software.

 Penetration Testing/Security Testing:

The system was tested against various security flaws,

none of which were enough to compromise the

system. The Penetration testing was done by Hackers

and programmers alike.

 Stress Testing:

The system responded well to various scenarios of

differing load, well adhering to the protocols and

standards of security.

The Testing performed on the system revealed that the

packages and the code was efficient to run and that the

custom Ubuntu Distribution has done no defect to the

overall maintainability of the system under load.

The System performed well under the Stress testing.

3.5.2 Scenarios and Components:
The System was tested under various scenarios and differing

load:

The system performed well under being pushed to its max

limits, and did not fail in any of the tests.

The scenarios considered were:

 Only a single Raspberry Pi with no Server:

o In case of a small room, no server is required.

o The Raspberry Pi handles the load well, without

the need of a special server, thereby omitting

Electricity usage and General Maintenance. [3]

 A Single Raspberry Pi with no Server

communicating with an App:

o In case of a single Raspberry Pi 2 with no server

communicating with an App directly, there is no

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.7, May 2017

42

need for an end to end server side scripting

language like PHP. This system can be run

directly under a C++ program with an

Additional code for a Socket Connection.

4. RESULTS AND ANALYSIS

4.1 Results:
After a Successful implementation of the system, we get the

following results:

Figure 6: Command Flow

The Flow of the system is as follows:

 The User clicks a button to perform an action.

 The data is sent to the Server over the Connection.

 The Server sends the Data to Lex for Tokenizing.

 The Tokens are sent to YACC for Parsing and

generating Command strings.

 The generated Command Strings are sent to the

Raspberry Pi for Execution.

 The Raspberry Pi sends a signal to the GPIO

Microcontroller for outputting a signal to the Relay.

 A Signal is sent from the GPIO to the Respective

Header on the Relay.

 The Relay receives the signal, and depending on

whether it is active Low or Active High, it switches

ON/OFF the current.

 On receiving the current, the device turns ON.

 If the device s capable, it sends a signal back to the

Raspberry Pi via the GPIO or any other Headers: (Like

USB Port or Ethernet).

 The Raspberry Pi sends this signal back to the server.

 The server then acts on the command (on whether

parsing is required), and sends the output back to the

Client.

Alternatively: without LEX and YACC:

 The Client sends regular signals to the server.

 But, the server (PHP), instead of Parsing, directly sends

the command to the Raspberry Pi for execution, based

on the if-else conditions, or the loops, in

C/C++/PHP/Java.

 The Raspberry Pi then executes this command, and if

the device returns an error, sends it to the server.

 The server, on receiving it, parses it based on if-loop

conditions, and sends the output back to the client.

4.2 Analysis of speed:

4.2.1 Latency
Latency is nothing but the response time for particular

transforming devices. That is after getting request from any

device, the current device has a particular response time and

this response time is known as Latency. In our system there

are various devices that have their particular latency as shown

in the table:

Table 1. Latency of various components

Sr.

No.

Device Latency(in ms)

1 Client Side:

 1.1 Client Side

Architecture

~ 10ms

 1.2 Cell Tower ~ 110ms

 1.3 Client ISP (3G,4G) 10ms~100ms

2 Internet Route: 10ms ~ 100ms ~

10s

3 Physical Layer:

 3.1 LAN Wire (CAT 5e) 1ms(per 15meters)

4 Server Side:

 4.1 Router/Gateway 2ms

 4.2 Main

Server(UBUNTU

Core)

2ms response time

+ process(~ 5ms)

 4.3 Raspberry Pi 2ms response time

+ process =~ 5ms

 4.4 GPIO + Relay response time

=350 ms

 Client Side:
There are basic sub points in it, first one is Client Side

Architecture, next is the Cell Tower and Client

Internet Service Provider (ISP).In client side there is

basically mobile like device so that anyone can operate

the electrical appliances through that device. It sends

request to the cell tower and then to client ISP which

is also called as 3G provider. There is latest version of

it is the 4G provider which is actually faster than 3G

provider.

 Internet Route:

There are multiple hops over the internet which have

latency between 10ms to 10s.These can be discovered

using the “traceroute” command.

Figure 7: Tracert command

 Physical Layer:
For physical layer basic thing we use is the LAN Wire.

There are three types of LAN wires:

 1) CAT 5, 2) CAT 5e, 3) CAT 6, where CAT 5 is

used for the transformation data up to 10Mbps, CAT

5e is for 100Mbps and CAT 6 is for 1000Mbps. The

Latency for this wire is measured per meter.

 Server Side:
The server contains the router, main server (UBUNTU

core), Raspberry Pi (RPi), relay. In sever it has

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.7, May 2017

43

response time and process time for calculating latency.

There is particular latency for each every device in

server. Here, router, Raspberry Pi and relay are the

actual devices whereas main server (core UBUNTU)

is an operating system.

A Graphical Representation can be shown as follows:

Figure 8: Latency diagram for various components

4.2.2 Speed of Various Components:
We tested the speed of various components by using

commonly used free benchmarks. [4]

The results and details are as below:

 Ethernet speed: 100mbps/1GBps

 Ethernet Switch: 100mbps/1GBps per connection

 Router: 255*255 simultaneous connections each at

100mbps

 Server: Core ix processor 1.9GHz~5GHz

 Raspberry Pi: 900MHz quad-core ARM Cortex-A7

CPU, 1GB RAM, GPU: VideoCore IV @ @ 400

MHz

4.3 Analysis of Bottlenecks:

4.3.1 Possible Bottlenecks:
 Raspberry Pi 2 Ethernet connection:

Offers a maximum of 100mbps connection. This

bottlenecks all other components, such as the multiple

drives attached, the miniDLNA Service, the NAS

Service and the Wireless router service, since the max

net speed is restricted up to a 100mbps or (10MBps in

real time).

 Raspberry Pi 2 power:

The Raspberry Pi 2 supplies a limited power to its

USB Devices, limiting the capacity of the drives

attached to it. If we increase the power limit, the

devices and the components on the Raspberry Pi 2

would burn out.

4.3.2 Bypassing the Possible Bottlenecks:
 Raspberry Pi 2 Ethernet connection:

Using a USB to Ethernet adapter would give us a

theoretical speed of 480mbps (60MBps), which would

be enough for our daily needs.

 Raspberry Pi 2 power:

Supplying additional power to the USB Devices (e.g.:

Commercial Devices such as a USB hub which has

external Power source). Care must be taken that the

external power source does not have latency, which

would possibly cause burn out in the devices.

5. Enhancements:

5.1 Performance Enhancements:

5.1.1 Use of a Solid Storage Device:
 Since network speeds are low, low access time is of

highest priority.

 Along with low power usage, SSD‘s have much lower

access time as compared to traditional Mechanical

HDD‘s.

5.1.2 Use of Class 10 Memory Card or an SSD to

Store the OS:

 A Class 10 Memory card greatly improves the Access

Speed of the OS. This improves Boot up time.

5.2 Longevity Enhancements:

5.2.1 Replaced all Mechanical Drives with Solid

State Storage:
 Despite their low price tag, HDDs prove to be

expensive in the long term, due to their high speed

running mechanical parts, which wear out over time.

 This wear and tear causes HDDs to lose performance

over time. To reduce this we use SSD`s instead of

hard Disk Drives, which have no mechanical storage,

and therefore, cause no wear and tear that is

noticeable to cause instant failure.

 SSD`s generally fail with a lot of warning signs in

their SMART data.

5.2.2 Check all the SMART Data Regularly:
 All Storage level deices have a SMART attribute

which stores all the reliability information.

5.2.3 Use of Trusted PSU for Dependable Power

Supply:

 Major causes of failure of components in this system

include:
o HDD Mechanical Faults.
o Electrostatic interference.

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.7, May 2017

44

o Electrical spikes
 Of these, we can minimize the electrical spikes, by

using a dependable Power supply.

 A dependable Power supply also reduces the

chances of electronic spikes that occur internally

during the breaking and closing of a connection,

which is common in electronic circuits.

6. SUMMARY
6.1 End Architecture:

Figure 9: The End Architecture of the system [5] [6] [7]

The End Architecture of the system includes:

 Client Side ISP

 Client side Cell Tower:

For Connection when Client is roaming.

 A Possible CGNAT: Due to the depletion of the

IPv4 Addresses, many ISP`s are implementing the

NAT feature, which saves cost of multiple IP

addresses in IPv4 format, but in CGNAT, may

cause IPv6 connectivity to be broken (and also

resulting in a huge latency).

 Server Side Router: With DMZ Host Enabled: This

for directly forwarding incoming requests to the

Server, for direct access to the Apache Server.

 The Server: Running PHP code on Apache Server

on The Ubuntu Server Desktop OS, by the Ubuntu

developers.

 The Raspberry Pi 2: Possibly running its own

custom OS, or the Desktop Ubuntu Mate code

ported to the MATE Platform for the armfh.

 8- Channel relay.

7. CONCLUSION
Automation of home appliances has taken further step to

become popular and being widely adopted and here fits the

Raspberry Pi with which we want to customize and configure

control of the devices with cheap tools. For Raspberry Pi

system there are many option can explore. Automation of

home appliances use raspberry pi controller with the help of

android interface. It uses WLAN and connects controller to

android interface. LAN is limited within the range of Wi-Fi is

the limitation of this system. Our proposed wireless based

home automation system reduces installation cost and effort,

and enhance system flexibility and scalability.

We have designed a very basic application for automation of

home appliance with the help of Raspberry Pi through the

specific commands for specific operation. The system

described allows for a user to control appliances by sending

appropriate codes to the system. This could be very difficult if

the number of devices increases as the user must either

remember or have a catalogue of all the codes for each

appliance on him/her all the time. The proposed system

effectively removes this obstacle with the help of a custom

designed web page that has user friendly button interface to

control the appliance. A novel architecture for a home

automation system is proposed using the raspberry pi board,

Weaved services and electromagnetic relay. Raspberry pi

micro-controller board is used to control the switches of

appliances through internet. A website has been created using

weaved services for acquiring user input. As the GPIO pin of

the Raspberry pi activates, relay closes the switch which

controls the appliance. The implemented home automation

system provides an efficient, flexible and also comfortable

user interface for controlling electric appliances from remote

location.

8. SOCIOECONOMIC IMPACT
The home automation increases efficiency of daily usage

home appliances. Their functionality utilized completely. We

are mainly concerned with the small offices and homes. They

have limited appliances but usability can result in safety,

convenience, increased awareness. Home automation also

helps to keep look at sensitive areas in home. Using home

automation for appliances for example, ACs can be started

before you reach home. This can save the time in case of all

daily used appliances. In case of small offices only some

computers can be kept on and we can check their status from

remote place. User can use this automation setup in affordable

price. Gaining more internet speed makes homes and small

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.7, May 2017

45

offices smarter. The scalability of the setup is marginally

higher and devices can be connected disconnected as

necessary. You also make sure that you are using only

resources you need. Raspberry Pi proves to be a smart,

economic and efficient platform for implementing the home

automation. Its running cost is ~₹130 per year it can be

redeemed from. In following way we can calculate average

power usage of Raspberry pi 2 B: 1.8A*5V=9W.Yearly

usage: ₹ ((9W*10Hrs*365)/1kWh)*4Rs/Unit=130Rs.Easy

implementation and efficient use. The merit of code is that it’s

generic and flexible. [8] [9] [10]

9. ACKNOWLEDGMENTS
With due respect and gratitude we take the opportunity to

thank all those who have helped us directly and indirectly. We

convey our sincere thanks to Dr. P. N. Mahalle, HoD,

Computer Dept. and Prof A. M. Pawar for their help in

selecting the seminar topic and support. Our guide Prof. A. M.

Pawar has provided us with immense support and guidance

for the same. She has always encouraged us and given us the

motivation to move ahead. She has put in a lot of time and

eff ort in this project along with us and given us a lot of

confidence. We wish to extend a very big thanks to her for the

same. We wish to thank her for the same. Also we wish to

thank all the other people who in any smallest way have

helped us in the successful completion of this project.

10. REFERENCES
[1] AI-Ali A. R. and AI-Rousan M., "Java-based home

automation system", IEEE Transactions on Consumer

Electronics, vol. 50, no. 2, pp. 498- 504, 2004.

[2] Md. Nasimuzzaman Chowdhury, Md. Shiblee Nooman,

Srijon Sarker, “Access Control of Door and Home

Security by Raspberry Pi Through Internet”,

International Journal of Scientific & Engineering

Research, Volume 4, Issue 11, November-2013 ISSN

2229-5518.

[3] Kushiro N., Suzuki S., Nakata M., Takahara H. and

Inoue M., "Integrated home gateway controller for home

energy management system", IEEE International

Conference on Consumer Electronics, pp. 386-387, 2003.

[4] Vladimir Vujović and Mirjana Maksimović, “Raspberry

Pi as a Wireless Sensor Node Performances and

Constraints”.

[5] Markus Jung, Jurgen Weidinger, Wolfgang Kastner,

Alex Olivieri, “Building automation and smart cities: An

integration approach based on a service-oriented

architecture”, The IoT6 project is supported by funding

under the Seventh Research Framework Program of the

European Union, with the grant agreement FP7-ICT-

2011-7-288445.

[6] Sarthak Jain, Anant Vaibhav, Lovely Goyal, “Raspberry

Pi based Interactive Home Automation System through

E-mail”, 2014 International Conference on Reliability,

Optimization and Information Technology ICROIT

2014, India, Feb 6-8 2014.

[7] Saito T., Tomoda I., Takabatake Y., Ami J. and

Teramoto K., "Home Gateway Architecture And Its

Implementation", IEEE International Conference on

Consumer Electronics, pp. 194-195, 2000.

[8] Ali M., Vlaskamp J. H. A, Eddiny N. N., Falconer B. and

Oramc, "Technical Development and Socioeconomic

Implications of the Raspberry Pi as a Learning Tool in

Developing Countries", 5th Computer Science and

Electronic Engineering Conference (CEEC), pp. 103-

108, 2013.

[9] P. Vigneswari, V. Indhu, R. R. Narmatha, A. Sathinisha

and J. M. Subashini, “Automated Security System using

Surveillance”, International Journal of Current

Engineering and Technology E-ISSN 2277 – 4106, P-

ISSN 2347 – 5161.

[10] Cheah Wai Zhao, Jayanand Jegatheesan, Son Chee Loon,

“Exploring IOT Application Using Raspberry Pi”,

International Journal of Computer Networks and

Applications Volume 2, Issue 1, January - February

(2015).

IJCATM : www.ijcaonline.org

