
International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.7, May 2017

36

Securities in Android using SELinux

S. S. Sambare
Dept of Comp Engg,
Pimpri Chinchwad

College of Engineering,
Pune

Sneha Bhambhani
Dept of Comp Engg,
Pimpri Chinchwad

College of Engineering,
Pune

Ritesh Tejwani
Dept of Comp Engg,
Pimpri Chinchwad

College of Engineering,
Pune

Prerana Rai
Dept of Comp Engg,
Pimpri Chinchwad

College of Engineering,
Pune

ABSTRACT
With the increase in technology, the current use of mobile

phones is increasing with a rigorous amount and so we need

to assure that the information stored in our cell phones is

secure and is not being misused. The apps when installed in

Android do not provide high level security to the information

present in our cell phones and thus the implementation of

SELinux helps in securing the information more effectively.

Android being a Linux based system can support SELinux

and thus provide users with a robust Mandatory Access

Control (MAC) to ensure full system security. It not only

provides flexible security but also helps in reduction of

performance overhead only by implementing a limited chip

area.

Keywords
Android, SELinux, Security, Mobile devices, MAC.

1. INTRODUCTION
Android is the most popular mobile operating systems with

80% of global market share. It was released by Google in

2008.It is an open source operating system, primarily based

on the Linux Kernel. Android applications are written in Java

and run on virtual machines. The open nature of Android

attracts a variety of third-party application market places.

These, either provide an alternative for the devices that are not

allowed to ship with Google Play Store, or provide

applications that cannot be offered on the Google Play Store

due to policy violations, or for some other reason. Android is

mainly designed for use in smart phones, tablets etc. Recently,

we also have AndroidTV for televisions, AndroidAuto in cars,

AndroidWear for watches and many more. Malware attacks

propagating into smart phones include cellular networks,

Bluetooth, the Internet, USB, and other peripherals[2].

Security mechanisms such as anti-malware and anti-spam

software, host-based intrusion detection tools, and firewalls

are available, but not widely used. Today, Android has the

largest base among all the operating systems.

Hence, security in Android is of immense importance and is

required to be very strong.

2. SECURITY WITH SELinux

The core of the security at application-level in Android is its

permission mechanism. Contradicting a typical Linux-based

Personal system, different applications in Android are

executed as different users. This preventive measure causes

the bar to rise on successful exploitation because one

application can’t affect others in a normally. However, more

processes could run as the same user, and, particularly, several

system daemons run as system, radio and root users. The

security mechanisms of both Android-specific and Linux

inherited are insufficient and too coarse-grained to deal with

the security issue. [1]. While installing an application, the

application displays a dialog indicating the permissions

requested and asks if it should continue the installation. The

user can not accept or refuse individual permissions – he must

accept or refuse all the requested permissions only as a block.

The security model of Android is based on the concept of

sandbox. Every application runs in the separate individual

sandbox. Beginning with the 4.3 Android version, SELinux

further describes the boundary limits of the Android

application sandbox[4]. Android uses SELinux as a part of its

security model, which enforces MAC(mandatory access

control) over other processes, including the processes running

with superuser/root privileges. Android security is enhanced

by SELinux that confines privileged processes and automating

the creation of security policy. Many contributions have been

made to it by various organizations. Using SELinux, Android

can do better confinement of system services, access control

to application and system data and logs, reducing the ill-

effects of malicious code, protecting users from flaws in code

on mobile and other handheld devices. It is basically operated

in 3 modes :

1. Disable.

2. Permissive.

3. Enforcing.

2.1 System Architecture

Fig. 1.Integration of Security module [1].

2.2 The SE Android Policy
SE Android policy is one of the cores of the entire SE

Android security mechanism. In addition, the security

architecture must also have a strict security policy to ensure

that the access subject has only minimal access permissions to

the object, so that the program can execute the basic functions

but will be prevented from executing malicious operations[3].

The SE Android's implementation is in enforcing mode,

instead of the non-functional disabled mode or the

notification-only permissive mode, to act as a reference and

facilitate testing and development. SELinux does not change

any existing security in the Linux environment; instead, LSM

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.7, May 2017

37

extends the security model to include Mandatory Access

Control (e.g., both MAC and DAC are enforced in the

SELinux environment).

2.3 The Extended Policy
Android has added some new features to the 4.4 version of the

Android OS ("Kitkat"). The most important change among the

new features is the ability to integrate SE Android in

enforcing mode, which means access permissions for all

Android components is under the control of SE Android[5].

SELinux embedded Android refers to Security Enhancements

for Android, a security solution for Android that identifies and

addresses critical gaps. Initially, the project's scope was to

enable the use of SELinux in Android to limit the damage that

can be done by flawed or malicious apps and to enforce

separation guarantees between apps. SELinux LSM in

Android is now the overall framework for implementing

SELinux mandatory access control (MAC) and middleware

mandatory access control on Android.

2.4 SELinux Components

Fig. 2. SELinux Components[3].

A high level diagram of the SELinux core components that

manage enforcement of the policy and comprise of the

following:

1. A subject that must be present to cause an action to

be taken by an object (such as read a file as

information only flows when a subject is involved).

2. An Object Manager that knows the actions required

of the particular resource (such as a file) and can

enforce those actions i.e. allow it to write to a file if

permitted by the policy server.

3. A Security Server that makes decisions regarding

the subjects rights to perform the requested action

on the object, based on the security policy rules.

4. A Security Policy that describes the rules using the

SELinux policy language.

5. An Access Vector Cache (AVC) that improves

system performance by caching security server

decisions[6].

2.5 Hooking with LSM

Fig. 3.Hooking with SELinux LSM[4]

The concept hooking covers a wide range of techniques used

to modify or augment the behavior of an operating system, of

applications, or of other software components by intercepting

function calls or messages or events passed between software

components. Fuctional Code that handles such intercepted

function calls, events or messages is called a "hook".

It is sometimes possible that there is simply not enough space

for our hooking method. This happens when there is either an

International Journal of Computer Applications (0975 – 8887)

Volume 165 – No.7, May 2017

38

unconditional jump instruction, or a return instruction[7].

Such situation occurs when we’ve simply hit the end of a

function.It is perfectly possible to have multiple layers of

hooks, i.e. Multiple hooks on one function. The only one

condition which must apply; when installing a new hook over

an existing hook, then you will have to make sure that the

required length of the new hook is equal to, or lower than, the

length of the existing hook in the code.

2.6 SE Policy

camera interface

type camerad, domain;

permissive camerad;

type camerad_exec, exec_type, file_type;

init_daemon_domain(camerad)

unconfined_domain(camerad)

relabelto_domain(camerad)

allow camerad tombstone_data_file:dir relabelto;

force automatic transition when init spawns us

Leaves camerad unconfined, at present

Allow domain transition to this domain

Allow debugged to manipulate tombstone files[8].

3. IMPLEMENTATION STEPS IN

DETAIL
1. Upgrade phone to latest Android version – 4.3+

(Jellybean) .(Contains SELinux module in

complete Enforcing mode.)

2. Root Phone (Jailbreak).

3. Get root access.

4. Develop Base policy.

5. Set the system to enforcing mode by using

command 'setenforce 1'.

6. Edit the config file and set

 Selinux= enforcing, then reboot the system.

7. Test that the policy meets the security requirements or not.

8. Ensure you are logged in as root and Selinux is in enforcing

mode to

perform build process.

9. Produce a policy.conf file with the text editor (vi or gedit).

10. Compile the policy with 'checkpolicy' to produce the

binary policy file.

11. Make the following directories to store the file

 - mkdir /etc/selinux/monolithic_test/policy

 - mkdir -p /etc/selinux/monolithic_test/context/files

 12. Reboot system

13. Login as root.

14. setenforce 1 (enforcing).

The new policies would be enforced.

4. CONCLUSION
Security is correctly perceived as a crucial property of mobile

operating systems. The integration of SELinux into Android is

a significant step toward the realization of more robust and

more flexible security services. Our approach is a natural

application of this design. The potential of an SELinux based

solution like SEIntentFirewall is extensive and leads to a

significant improvement in access control enforcement and

app isolation. The project would facilitate the usage of any

application on the phone without the risk or threat to any

confidential or personal data to be accessed by any other

application. It therefore protects the personal information of

the user from being misused thus ensuring full time security.

5. REFERENCES
[1] Simone Mutti, Enrico Bacis, “An SELinux based intent

manager for Android”, IEEE CNS 2015.

[2] Prof Dr. Frank Bellosa, Stefan Brahler, “Analysis of

Android Architecture”, IEEE 2015.

[3] Lukas Aron and Petr Hanacok at BRNO university of

technology, “Introduction to Android 5 Security ”,

CEUR-ws.org, 2014.

[4] Chetan C Kotkar, Pravin Game, “Exploring Security

mechanisms to Android Device”, International Journal

Of Advanced Computer Research, 2013.

[5] Han Bing at North China University of

Technology,”Analysis and research of system security

based on Android ”, 5th International Conference of

Intelligent computation technology and automation, 2012

[6] Asaf Shabtai, Yuval Feldel and Yuval Elovici at Ben-

Guiron University, “Securing Android Powered Mobile

devices using SELinux ”, IEEE 2010.

[7] SELinux/Tutorials/Creating your own policy module file

https://wiki.gentoo.org/wiki/SELinux/Tutorials/Creating

_your_own_policy_module_file

[8] Building a Local Policy Module

https://www.centos.org/docs/5/html/Deployment_Guide-

en-US/sec-sel-building-policy-module.html

IJCATM : www.ijcaonline.org

https://wiki.gentoo.org/wiki/SELinux/Tutorials/Creating_your_own_policy_module_file
https://wiki.gentoo.org/wiki/SELinux/Tutorials/Creating_your_own_policy_module_file

