
International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.11, May 2017

18

Connectivity Maintenance of a Set of Agents through

MST-based Algorithm

Cézanne Alves

Computer Science Department
Federal University of Tocantins

Palmas/Tocantins - Brazil

Warley Gramacho da Silva
Computer Science Department
Federal University of Tocantins

Palmas/Tocantins - Brazil

Rafael Lima de Carvalho
Computer Science Department
Federal University of Tocantins

Palmas/Tocantins - Brazil

ABSTRACT

In this paper, it is proposed a solution to the problem of

positioning a set of agents that play the role of pursing a set of

moving targets, while the global connectivity among such

agents is maintained throughout positioning a second set of

relay agents. The role of the agents consists of organizing

themselves in order to allow the underlying network to stretch

at its maximum (maximizing the action of pursuers), while

ensuring the connectivity. In order to do that, this work

proposes a positioning algorithm that uses the Minimum

Spanning Tree (MST) in a way that maximizes the mobility of

the nodes while deciding on the position of relays and

pursuers. The approach is validated through experimental

simulations using a set of behaviors to some deployed targets

showing the feasibility of the proposed solution.

General Terms

Connectivity Problem, Pursuer-evasion, Dynamic positioning

problem.

Keywords

Connectivity Problem, Pursuer-evasion, Minimum Spanning

Tree, Dynamic positioning problem.

1. INTRODUCTION
In disaster scenarios, dynamic connectivity among search

agents may be of vital importance to the success of a rescue

mission. This scenario can be modelled as the problem of

given a set of possible moving targets, a set of pursuers for

which the mission is to reach the set of targets, and an

additional set of relay agents, the problem asks for the

positioning of the latter set in order to maximize the action of

the pursuers and ensure global connectivity. Figure 1 shows

the considered scenario.

In [1], the authors considered the challenges of dealing with a

simple situation: given two static pursuers and a set of relays

deployed around them, how to move the minimum number of

relays with minimal effort in order to establish connectivity

between the static pursuers. Despite the simplicity of the

scenario, the authors showed that in order to find the optimal

configuration of movements, there should be a known

ordering of such relays. Furthermore, in [2], it is proposed an

approach to the problem of computing the minimum number

of robotic routers (and their motion strategies) in order to

maintain the connectivity of a single pursuer to a base station.

It was considered the case where the polygon is concave in

order to calculate optimally the positioning based on the

velocity vector acting over each agent.

Kim et.al. [3] proposed an optimization model based on the

weighted Laplacian matrix of the underlying graph induced by

the positions of the agents. As long as the second smallest

eigenvalue of the Laplacian matrix remains greater than zero,

the network graph remains connected [4]. With such

information, they proposed a solution using an iterative

algorithm that optimizes the control of each agent, to perform

missions such as rendezvous without losing connectivity.

Furthermore, in [5] the authors reached the same objectives as

[3] but in a distributed way, i.e., the agent needed only to

know about its local neighborhood in order to decide the next

position and still ensuring global connectivity.

In addition, in [6] the authors showed a mixed integer linear

programming approach for a pursuit-evasion which included

optional connectivity constraints. They considered deciding

over an occupancy grid for which the set of pursuers are

trying to cover a given area. The discretized area included

obstacles and the cells were labeled over a discrete time

horizon.

In [7], the authors presented an extension to the Darwinian

Particle Swarm Optimization (DPSO) algorithm, which they

named Robot DPSO (RDPSO). The RDPSO main three key

aspects are: a) ensuring network connectivity; b) social

exclusion and inclusion, and c) obstacle avoidance. The

Darwinian PSO [8] is an extended version of the traditional

PSO algorithm in a way that natural selection or survival-of-

the-fittest is added in order to enhance the chances for

escaping from local optima.

Fig 1: General view of the pursuer-evasion problem under

connectivity constraints.

Despite the existence of many approaches for this problem, in

this paper it is proposed a quadratic model for which the

positioning of the relays is based on a minimum spanning tree

(MST) approach. MST is a fundamental algorithm found in

the graph theory and as shown by this work, it can be used to

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.11, May 2017

19

drive a set of pursuers and relays in order to maintain them

connected, while the pursuers still fulfill their mission.

The general structure of this paper is as follows: Section 2

shows the fundamental theories as well as the mathematical

model of the problem. Section 3 describes the proposed

approach to the problem. In addition, Section 4 presents the

computational simulations showing the feasibility of the

proposed solution. Lastly, Section 5 points the general

discussion about the results and points some future directions

to this research.

2. THEORETICAL REVIEW
Let be a set of agents whose objective is

to move towards their respective targets of the set
 Let be a set of relay agents

whose objective is to position themselves in order to provide

connectivity to the elements of . Two elements of

 can communicate only if ,

the maximum communication distance. In order to describe

the movement of the agents, and better represent the

limitations of a real-time implementation, the time is discrete,

i.e., from instant to instant , with interval of time,

each agent must decide on its new position based on the

distance it can travel in that time interval and the connectivity

constraints. This problem can be defined as a quadratic

programming model for which it is desired to minimize the

average distance among the elements of and their

counterparts of , subject to the connectivity restriction of the

proximity graph induced by the position of the elements of

 .

To denote time, let be the

positions of the pursuers at time . For this work, it is assumed

that
 . The sets and are defined in a

similar way. In this way, the quadratic model of the

aforementioned problem is given by:

Where is the proximity graph induced by the position in

 of the elements of the set , and is the maximum

distance that any agent can move from instant to

The problem asks for solutions to move the relays in order to

provide connectivity and mobility to the pursuers in the

directions of their targets, and how to move the pursuers given

the restriction of the positions of the relays. However, the

restrictions imply as well in finding which edges should be

broken in order to increase the reachability of the objectives,

while still maintaining global connectivity.

Let us define the restriction topology as the set of edges of the

network whose integrity we decide to maintain in order to

assure connectivity.

As the hosts move independently and have limited

information about their neighbors, in order to achieve the

objective (1), we want to avoid restricting the movement of

some node while the graph is still able to stretch. This

approach gives rise to the following problems:

Problem 1: Given the current node positions of a

network , which restriction topology

 maximizes the mobility of the nodes without

disconnecting the network?

Problem 2: Given the restriction topology , where to

move the relays in order to maximize the mobility of the

nodes?

Problem 3: How each node deals with the uncertainty of the

movement of their neighbors in order to assure connectivity?

The next section presents the proposed the connectivity

maintenance solution, with detailed discussions of the above

sub-problems in subsections 3.3, 3.4, and 3.5, respectively.

3. MST-BASED APPROACH
The proposed method consists in keeping the network

connected by the edges of its Minimum Spanning Tree

(MST), ignoring completely the others edges and letting them

break freely, this way we can substitute the restriction 3 by:

where is the set of edges of the MST.

The relays, then, move to the middle of their neighbors with

the intent of increasing the network reach.

The MST is recomputed in each iteration to guarantee

optimality in case the movements of the hosts make the

previous tree not minimal. The pursuers just move in the

direction of theirs targets, with the only restriction of not

breaking any MST edge, and the relays move to middle of

their neighbors in the MST to increase the reach of the

network, as if the edges exerted traction on them. Figure 2

illustrates this procedure.

Fig 2: Movement of the relay – the highlighted relay

moves to the middle of its neighbors, increasing their

mobility.

3.1 Problem Variations
We defined the problem as it is, with pursuers and relays, to

simplify discussion and focus on the more relevant aspects.

However, the proposed solution also applies to more broader

scenarios.

There could be static nodes representing fixed base stations,

and they would be treated similarly as the pursuers, or nodes

that transition between the state of pursuing, static and

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.11, May 2017

20

relaying, and the relays would move to increase the mobility

of the network.

In this work when we refer as relaying node or relay to any

node that in a given moment has the sole purpose of routing

packages and move only-and-always to maintain connectivity

and provide mobility to other nodes. To all the other types of

nodes, we may refer as active nodes or pursuers. To nodes

that can transit between these states we refer as auto-nodes.

3.1.1 Routing pursuers
Another variation the problem may have is: whether or not

active nodes are allowed to route network packages.

If there are active nodes not allowed to route packages, we

compute a connected subgraph with only the routing nodes.

Then, to form the restriction subgraph, we connect each non-

routing actives to its closest routing node so as to insure non-

routing actives always have degree 1. In this case, we call the

immediate relay of an active node the relay provider.

However, regardless of being able to route packages, there is a

problem in allowing actives as branch nodes in the restriction

tree: As, in principle, the relays rely only on the position of

the neighbors to decide their movement, actives can be

trapped in a branch of the network, as illustrated by Figure 3.

Fig 3: Pursuer trapped in the MST. The relays (green)

could link the two static nodes (gray) directly, allowing the

pursuer (blue) to reach the target.

Our strategy to overcome this is to always make the active

nodes as leaves of the restriction tree, even when it’s not a

routing requirement. This imposes some restrictions in

scenarios where there is auto-nodes, where is preferable to

activate auto-nodes in leaves, as actives in branches could

become trapped.

3.2 Computation of the MST
The simplest method to compute the MST is to elect one node

as the leader, which will compute the MST every round. As

the network is connected, every node informs its position to

the leader through network messages in the beginning of the

round, and after computing the MST, the leader informs the

edges that the hosts must not break. In a round where the

MST changes, the leader first request the conservation of the

new links. Only after acknowledgement of the request by all

involved hosts, with confirmation of the integrity of the links,

the leader informs which links may now be broken. Here we

use the Kruskal Algorithm [9].

As the connectivity doesn’t rely on the MST being up-to-date,

but in it being the same for every host, the MST doesn’t need

to be recomputed every round. This could allow less overhead

in network traffic and higher frequency in updating the relay

function, making the relays more responsive to movements of

the neighbors.

3.3 MST as Restriction Subgraph
At first sight, one could think that using the MST to restrict

the movement would result in a network with small reach,

since it has smaller edges than other subgraphs. However, we

do not use the MST to define the position of the nodes, but

only to choose which edges to avoid breaking. In addition, the

limit of distance of a node to its neighbor is not the edge

between them, but , and smaller edges allow for a greater

stretch until reaching this limit.

Let’s define the mobility of a node ,
 , as the greater distance it can move in any direction

without breaking an edge assuming the others remain still.

And the mobility of the network as the

greater distance any node can move in any direction without

breaking an edge.

First, let’s prove that a non-tree connected spanning subgraph

is redundant as a restriction subgraph, and that there is always

an optimum spanning tree to be used as the restriction

subgraph.

Let be a non-tree connected spanning subgraph

of , that is, has cycles. has a node that belongs to a

cycle, therefore is connected to other nodes by two (or

more) paths that start from itself by distinct edges. If we opt

by maintain the edges of , would have its movement

limited by the neighbors of this two paths, that is,

As these edges belongs to a cycle, one of them, say ,
may be broke without disconnecting the graph, which may

increase mobility to x. That is, by removing of the

restriction subgraph, the mobility of becomes:

3.3.1 Optimality of the MST
Given a connected spanning subgraph , it’s easy

to see that , where is the longest edge of .

The reason for choosing the MST to restrict connectivity is

that it minimizes the longest edge in the network, that is, it

maximizes the network’s mobility.

Proof: Suppose a MST of a network , , whose

longest edge is , and a non-minimum spanning tree of ,

 , whose the longest edge is smaller than . By

removing from , we get two connected components that

induce a 2-partition of . Any spanning tree of has one and

only one edge connecting some node of one set of any 2-

partition of to the other. So, let the edge of that connects

the sets induced by removing . By supposition , and

we could insert in making it connected again but with

smaller weight, that is, was not minimum, a contradiction.

Therefore minimizes the longest edge between all the

connected spanning subgraphs of , and hence is a spanning

connected subgraph that maximizes its mobility .

3.4 Moving the relays
To simplify the discussion, this section explains the

movement of a relay as if its neighbors remained still

throughout the rounds. We also assume the restriction tree

always maintain active nodes as leaves.

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.11, May 2017

21

In time , compute its ideal final position and spend the

next round moving at full speed to the desired position until it

reaches it or the round ends. So,

To ensure all the nodes of the network have mobility, we wish

to, in each iteration, move the relays so as to minimize the

distance to their neighbors. Thus, we need to choose a

function upon the distance of the neighbors to minimize.

3.4.1 Desired Properties
Assuming stationary neighbors, it is desirable to compute the

final desired position in the first round, regardless of the

actual position of in the current round, so the relay can

move at full speed to this final position, restricted only by its

physical limits of speed, acceleration and deceleration. This

would result in faster response of the relays to the movement

of the active nodes

3.4.2 Relay Objective Function
Since the longest edges are more restrictive, we wish to give

more weight to the farthest neighbors. Let be the set of

neighbors of the node in the restriction tree, and be the

next position we want to move to.

The chosen function was:

Which, if unrestricted by (3), results in

This simple function is easily minimized algebraically, and

the computation of the minimum takes time, and does

not varies with the current position of , resulting in the final

position been known in the first round (assuming the

neighbors don’t move). This way we can compute the optimal

position for the relay very fast in only one round, even for

dense graphs, since we only consider the neighbors on the

restriction tree.

The procedure to guaranteeing a solution inside the restriction

(3) is described below.

3.5 Preventing Disconnection
To ensure connectivity, we let the nodes free to move at their

maximum velocity to the next desired position, unless they are

able to break one edge until the next round with their

maximum velocity. Since one node does not have information

about the next movement of its neighbors, it has to prevent for

the worst movement possible. For the node and one

neighbor , we split this restriction between both: The

maximum distance can move to a given direction, is half

the remaining distance to reaching the maximum radius in

such direction, so can move the same distance in the

opposite direction.

We achieve this by pruning the movement vector of with a

circle of radius

 centered in the middle of and . It is

easy to see the correctness of this procedure: Since the circle

is the same for both, both can move to whatever position

inside the circle and

Let be the disc centered in

 with radius

, and be the

objective of the node if it’s a pursuer, or the position

obtained by the relay moving function, if it’s a relay.

Let . Since lies inside ,

We define then

 , and

substitute the restriction (2) by:

This can be done in , by pruning the line segment
with

Such procedure can slow down the progress of only when

, for some , which, for small values of

 , will happen only when the edge is near its maximum

stretch.

4. COMPUTATIONAL EXPERIMENTS
To test the efficacy of the technic we ran the algorithm in the

test scenarios described in [10], with simple heuristics for

assignment of the targets. As in that work, we used the

Hungarian method [11] to assign pursuers to targets, which

minimizes the sum of the distances from the pursuers to their

respective targets. Although this method is not ideal for

instances where the targets are out of the network’s reach and

the swarm need to move itself entirely to reach an objective,

these scenarios can give good evidence on how the technic

performs when it is possible to reach the targets by changing

the topology of the network.

4.1 Out-of-reach Targets
To avoid the network of being stuck when the targets are out

of reach, we implemented two counter-measures:

4.1.1 Swarm direction
When some pursuer has its velocity restricted by the stretch of

the network, we make all the pursuers headed in an opposite

direction of the swarm to retreat, that is, move toward its relay

provider.

We defined the swarm direction as:

So, when and

We make all such that retreat.

4.1.2 Inactive pursuers
When the above measure fails to insure progress, a more

aggressive measure is taken, which can deactivate even nodes

aligned with the direction of the swarm. Let’s partition into

two always disjoint sets , the set of active pursuers, and ,

the set of inactive pursuers, which always retreat. Initially,

 and all pursuers start retreating when put in this set.

If during consecutive rounds

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.11, May 2017

22

and , then:

When any active pursuer changes its target,

4.2 Test Scenarios and Results
The benchmarking scenarios presented in [10] consist of two

arbitrary placements of targets in with different behaviors

displayed by the targets. Table 1 presents the targets’

positions of the scenarios, and Table 2 describes the behavior

schemes.

Table 1. Targets locations

Point AllLeft Symmetric

1

2

3

4

5

6

7

8 -

Table 2. Behavior schemes description

Scheme Behavior

Escape The targets move at the direction opposite to

their closest pursuer

Static The targets remain still during all simulation

Spiral The targets follow a discretized counter-

clockwise logarithmic spiral

 centered in their initial position, with

 , , and sampled at an interval

of starting at . If a target reaches

a point of the spiral, it stops, sample the next

point, and head to it in the next round.

Cooperative The targets move towards their closest

pursuer

Random At each round, the targets pick a random

direction and velocity.

In the benchmark, , the maximum velocities were

 , , , and every target, except

those with random behavior, always move at their maximum

velocity.

When a pursuer has its target in an effective range of 5 units,

it captures the target and is assigned to another.

All nodes are deployed at position and the simulation

ends when the last target is captured, or when 200 simulated

second have passed.

We simulated with a , which was computed faster

than real-time.

The results are presented in Figure 4.

Fig 4: Simulation results

The Symmetric scenario has targets in opposite direction too

distant for the pursuers to be able to reach to their assigned

targets at the same time, requiring the use of some counter-

measure.

The static and escape instances of the symmetric scenario

made the first counter-measure impossible: During initial

spreading, all pursuers remain at symmetrically opposing

direction and with same distance of their targets, making

 , this caused the pursuers stop for a brief moment

until the more aggressive counter-measure took place.

Only the Symmetric-escape instance was not completed

within 200 seconds, with only 3 targets captured of a total of

8. This is due to the increasing distance between the targets:

From the moment the targets become distant form each other

more than the maximum diameter of the network, it becomes

impossible to pursue more than one target at a time, and the

relay positioning and topology control become less relevant as

the distance increases, whereas the assignment order becomes

crucial.

In the AllLeft scenario – with exception of the escape

instance, where opposing targets reach distance greater than

the maximum diameter of the network – the relays provided

uncompromised connectivity to the pursuers, that is, all the

pursuers moved at maximum speed toward their targets during

the entire simulation.

5. CONCLUSION
In this work, it has been presented an approach that deals with

the connectivity problem in a scenario of pursuit-evasion. In a

simplified version of an MST-based approach, the developed

protocol could ensure global connectivity while allowing the

pursuers to reach their objectives. In the literature, there are

many different approaches which uses a discretized version of

the area, or more complex approaches such as using the

Laplacian matrices and eigenvalues decomposition and

optimization.

Experiments confirmed that the solution is able to change

topology under demand of the pursuers. There was significant

loss of performance only when the targets were beyond

simultaneous reach of the swarm.

A future appointment to overcome this problem is the

development of an integrated assignment protocol to enable

the swarm to receive higher level tasks and decide a near

optimum order for completion.

0

50

100

150

200

AllLeft Symmetric

Simulated seconds

Cooperative Random Static Spiral Escape

International Journal of Computer Applications (0975 – 8887)

Volume 166 – No.11, May 2017

23

6. REFERENCES
[1] Tekdas, O., Kumar, Y., Isler, V. et al. 2012. Building a

Communication Bridge with Mobile Hubs. In IEEE T.

Automation Science and Engineering v. 9, n. 1, pp. 171–

176.

[2] Tekdas, O., et al. 2010. Maintaining connectivity in

environments with obstacles.” In: IEEE ICRA, pp. 1952–

1957.

[3] Kim, Y., Mesbahi, M. 2006. On maximizing the second

smallest eigenvalue of a state-dependent graph

Laplacian, IEEE Transactions on Automatic Control, v.

51, n. 1, pp. 116–120.

[4] Godsil, C., Royle, G. 2001. Algebraic Graph Theory, v.

207, Graduate Texts in Mathematics. Volume 207 of

Graduate Texts in Mathematics. Springer.

[5] De Gennaro, M., Jadbabaie, A. 2006. Decentralized

Control of Connectivity for Multi-Agent Systems. In:

45th IEEE Conference on Decision and Control, pp.

3628–3633.

[6] Thunberg, J., Ogren, P. 2011. A Mixed Integer Linear

Programming approach to pursuit evasion problems with

optional connectivity constraints, Autonomous Robots, v.

31, n. 4, pp. 333–343.

[7] Tillet, J., Rao, T. M., Sahin, F. 2005. Darwinian Particle

Swarm Optimization. In: 2nd Indian International

Conference on Artificial Intelligence, pp. 1474–1487

[8] Couceiro, M., Rocha, R., and Ferreira, N. 2011. A novel

multi-robot exploration approach based on Particle

Swarm Optimization algorithms. In IEEE International

Symposium on Safety, Security, and Rescue Robotics,

pp. 327.

[9] KRUSKAL, J. B. 1956. On the shortest spanning subtree

of a graph and the traveling salesman problem.

Proceedings of the American Mathematical society,

JSTOR, v. 7, n. 1, pp. 48-50

[10] Carvalho, R. L. d. 2016. Multitarget Tracking System

with Connectivity Constraints. Doctoral Thesis. Federal

University of Rio de Janeiro, COPPE

[11] Kuhn, H. W., Yaw, B. 1955. The Hungarian method for

the assignment problem, Naval Res. Logist. Quart, pp.

83-97.

