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ABSTRACT
The paper deals with the use of directed hypergraph so as to model
chemical reaction kinetics. Firstly, the model is directly deduced
both from using systematic generation from chemical equation
laws, then, based on the Bond Graph-Hypergraph analog given in
details. Secondly, the causal and structural properties of a directed
hypergraph are involved to design the Fault Detection and Isola-
tion (FDI) algorithm scheme by generating redundancy relations
through covering causal hyperpaths. The integrated framework is
demonstrated to be effective through a tutorial example of via a
reaction with a second order.
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1. INTRODUCTION
Modeling of physical systems with all engineering fields is a help-
ful tool to understand the behavior of the system without having to
experiment on it which is very important at industrial level. When
compared with other engineering branches, a chemical process en-
gineering is characterized by the complexity and the difficulty in
obtaining convenient dynamical models. This result from the fact
that they are based on chemical and physical principals that in-
clude different branches of science such as thermodynamics, physi-
cal chemistry, fluid mechanics, heat transfer, mass transfer, reaction
kinetic, etc.
Most of the chemical processes can be modelled as a system of
algebraic equation (AE), differential equation (DE) or differential
algebraic equation (DAE). Mathematical model of chemical pro-

cesses are helpful tools for the development of processes and con-
trol schemas. However, due to the strong non linearities and param-
eters uncertainties in the chemical systems the formulation of these
models themselves is still an obstacle for the application of model-
based techniques in industry.
In this context, the behavior of reaction kinetics is determined by
structural constraints on mass and energy balances and follows
from the stoichiometry of the reaction. Thus, the graphical model
such as Bond Graph (graphical quantitative model) and Signed Di-
rected Graph (graphical qualitative model) tools become significant
in this case because they are appropriate for the multi-physics mod-
eling of complex systems.Therefore, various techniques [10] [5]
have been previously used to model the thermodynamic phenom-
ena in the reaction. Research works [7] show how to use (Pseudo)
Bond Graph to model chemical systems.
Like in many areas of sciences [9] [2] , hypergarphs can be useful
in chemical engineering. Directed Hypergraphs have been recently
used for modeling chemical reaction networks [12],[11].. As stated
by Zeigarnik [12],the multimolecular reactions are modelled by us-
ing directed hypergraphs. For example protein complexes, provid-
ing associations between one, two or more proteins illustrate the
difference that may arise in modeling biological facts with graphs
and hypergraphs. For chemical reaction networks, co-authors [11]
describe a reaction by a weighted directed hyperedge where nodes
are the chemical and hyperedges are the reactions. All of these ap-
plications and other [8] indicate that the Hypergraph offers a frame-
work which helps to overcome such conceptual limitations.
From above-mentioned, how to deal with the modelling chemical
reaction kinetics based on hypergraph tools is not yet developed in
the literature. Moreover, the current results are not sufficient, which
inspires the present investigation.
Motivated by the aforementioned analysis, the representation of
chemical reaction kinetics using hyper-graphs comes from the the
fact that the model is obtained based on the material and energy bal-
ances which do not include only binary relations. The present paper
aims to increase communities’ awrarness of hypergraphs as a mod-
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eling framework for chemical reaction kinetic phenomenon. This
graphical model is based on energy, material and species balances.
To proof the obtained model, Bond graph-Hypergraph analogy is
detailed.
The remainder of this paper is organized as follows: Section 2
presents the problem formulation, notations and preliminaries re-
lated to Bong Graph and Hypergraph formalisms and we conclude
this section by an illustrative example of modeling with graphs
(BG and directed hypergraph). Section 3 provides the two proposed
modeling approaches using hypergraph tool. The new hypergraph
model based for FDI design is developed in section 4. The devel-
oped methodology is applied in section 5 for a reaction with a sec-
ond order and we give a comparative study highlighting the strength
of the use of hypergraph modeling in section 6. Finally, section 7
concludes the works and gives some outlooks.

2. PROBLEM FORMULATION, NOTATIONS AND
PRELIMINARIES

2.1 Problem formulation
We consider a reaction with a set E of educts ,a set P of products
and stoichiometric coefficients υi:

υA1 A1 + · · ·+υAn An
A f


Ar

υB1 B1 + · · ·+υBm Bm (1)

where
⋃n

i=1 Ai = E,
⋃m

j=1 B j = P,
The reaction rate follows a mass-action low:

J = k+ ∏
l∈E

C|υl |
l − k−∏

l∈P
C|υl |

l (2)

with constant coefficients k+ and k+.
As can be derived from the fundamental equations of thermody-
namics and the mole balances, the density of entropy production
Ṡgen

[
JK−1m−3s−1]of a reaction is given by:

A∗ J = T ∗ Ṡgen (3)

where J
[
mol m−3 s−1] is the reaction flux, T [K] the thermody-

namic temperature and A
[
J mol−1] is the negative Gibbs reaction

energy:

A = A f −Ar (4)

where A f and Ar are linear combinations of the chemical potentials
µi:

A f = ∑
i∈E
|υi|µi (5)

Ar = ∑
i∈P
|υi|µi (6)

For ideal mixtures, the chemical potentials µi are given by :

µi = µ
i
0 +RT ln(Ci/C0) (7)

with Cl =
nl
V = 1

V
∫

ṅl , where V the volume of the reaction, µ i
0 the

chemical standard potential of pure chemical species , C0 a standard
concentration (e.g. C0 = 1mol/L) and R the universal gas constant.
Thus, we obtain:

µi = µ
i
0 +RT ln

(
1

C0V

∫
ṅl

)
(8)

Fig. 1. BG definition and causality concept

As we can write :

J = k+ ∏
i∈E

( ∫
ṅl

V

)|υi|
− k−∏

i∈P

( ∫
ṅl

V

)|υi|
(9)

The molar balances of different species are defined as the following
: {

ṅl = ṅli− ṅlo− ṅ1l , l = Ai, i = 1 · · ·n
ṅl =−ṅlo + ṅ1l , l = B j, j = 1 · · ·m

(10)

such that ṅ1l = υlJ and ṅli and ṅlo, respectively denote the inlet and
outlet molar flow, are written by:{

ṅli = ṁl/Ml , l = Ai

ṅlo = nl (ṁl/(ρV )) , l = Ai,B j
(11)

ρ : the mass density, Ml : the molar mass.
The understanding of chemical kinetics rate is a fundamental issue
in chemical engineering. A detailed mathematical model is diffi-
cult or is unavailable. Therefore, graphs are suitable tools for mod-
eling chemical processes. But, a key properties of graphs is that
every edge connects exactly two nodes and many chemical rela-
tions are characterized by more than two participating partners and
are thus multilateral. Hyper-graph offers a framework to overcome
such limitations. In mathematics, a hypergraph is a generalization
of graph where edges can connect any number of vertices. Using
the characters of hyper-graph that edge is represented as multi-set
of nodes, we propose hyper-graph as a natural way to represent
systems.

2.2 Notations and preliminaries
2.2.1 Basic element of Bond graph. Since details of Bond Graph
theory can be easily found in [10] this section briefly recalls cou-
pled Bond Graph representation for modeling of chemical process.
Bon graph can be considered as a graph G=(V,E)}whose nodes V
represents subsystems basic elements (junction) or components and
edges E show the power transfers within a system (power bonds).
As shown in Figure 1 Bond Graph models are composed of mul-
tiports related by power bonds representing the identity between a
pair of conjugated variables (named effort (e) and flow( f )) whose
product is the instantaneous energy flow between the multiport el-
ements. Effort is the intensive variable (e.g. pressure,electrical po-
tential, chemical potentiel, temperature...) and flow is the deriva-
tive of the extensive variable (e.g. volume flow, current,velocity,
entropy flow...). Effort variable is labeled above the bond and flow
variable is labeled below the band.The positive direction of power
flow (a generalized coordinate system used in bond graph models)
is represented by the half-arrow on the bond. This power is the
product of the two power variables.
The determination of causes and effects (by a covering causal path)
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Fig. 2. directed hypergraph and its incidence matrix

in the system is directly deduced from the graphical representa-
tion. The causality is denoted by a cross-stroke (see Figure 1). By
convention, the causal stroke is placed near (respectivelyfar from)
the bond graph element for which the effort (respectively flow) in
known.

2.2.2 Fundamentals of Hypergraph. For basic definitions of hy-
pergraph we refer the reader to [3].A hypergraph is a generaliza-
tion of a graph where an edge can be connected to any number
of vertices. formally a hypergaph H (V,E) consists of two sets
V = (v1,v2, . . . ,vn) is the set of vertices and E = (e1,v2, . . . ,em)
is the set of hyperedges where ei ⊆V for i = 1 . . .m.
A=

[
ai j
]

a n×m matrix such that ai j ∈ {0,1} defines the incidence
matrix of the hypergraph H where each row i is associated with a
vertex vi and each column j is associated with an hyperedge e j.

2.2.3 Basic directed Hypergraph Concepts. A directed hyper-
graph is a pair (V,E) where V is a finite set of vertices and
E ⊆ 2V ∗ 2V is a set of hyperarcs (hyperedge), such that every
e = (T (e) ,H (e)) ∈ E is an ordered pair of non-empty disjoint
subsets T (e) and H (e). where T (e) and H (e) are the sets of
vertices that appear respectively in the tail and the head of the
hyperarc e. We say that e is incident on each vertex in T (e)∪H (e).
For each υ ∈ T (e), e is outgoing hyperedge from υ and for each
υ ∈ H (e), e is incoming hyperedge to υ .
An E1 ⊂ E induced a directed hypergraph H1 (V1,E1)
of H (V,E) is defined as directed hypergraph with
V1 = (∪e∈E1 head(e))∪ (∪e∈E1 tail(e))
H1 = (V1,E1) is called a subhypergraph of the hypergraph H such
that E1 ⊂ E and V1 ⊂V .
As for directed graphs, directed hypergraph is specified with its
adjacency matrix A and its incidence matrix B:
Two vertices of hypergraph are said to be adjacent, if there is an
edge that contains both of these vertices. Two edges are said to
be adjacent, if their intersection is not empty(i.e. there is a vertex
adjacent to both edges).
Adjacency matrix A of a directed hypergraph is a square symmet-
ric matrix whose entries ai j are the number of hyper-edges that
contain both nodes υi and υ j, the diagonal entries of A are zero.
In the incidence matrix B each of the rows is associated with a
vertex and each of the columns is associated with an hyper-edge,
where bi j = 1 if υi ∈ H(e j), bi j = −1 if υi ∈ T (e j) and bi j = 0
otherwise.
The adjacency matrix is related to the incidence matrix by the
following theorem A = BBT −D where BT is the transpose of the
incidence matrix and D is the diagonal matrix whose diagonal
entries are the degrees of the vertices.
Figure 2 (part a) shows a directed hypergraph H with nine vertices
{v1,v2,v3, . . . ,v9} and six hyperedges {E1,E2,E3,E4,E5,E6},

Fig. 3. hydraulic two tank system

Fig. 4. BG model of the hydraulic two tank system

Fig. 5. Hypergraph model of the hydraulic two tank system

where:
E1 = ({v1,v2} ,{v3}),E2 = ({v3} ,{v7}),
E3 = ({v3,v4} ,{v5,v6}), E4 = ({v7} ,{v1}),E5 = ({v1,v7} ,{v8})
and E6 = ({v9} ,{v8})
The corresponding incidence matrix is shown in (part b).
A simple hyperpath Pst of length q, in directed hypergrath
H = (V,E), is a sequence

(
υ1,e1,υ2,e2, . . . ,υq,eq,υq+1

)
con-

sisting of distinct vertices υi, where 1 ≤ i ≤ q + 1, and distinct
hyperedges e j, 1≤ j ≤ q, such that s = υ1, t = υq+1, and for every
1≤ j ≤ q, υi ∈ T (ei) and υi+1 ∈ H (ei).
The forward star (FS) and the backward star (BS) of a vertex
vi are ,respectively, defined by FS (vi) = {e ∈ E,v ∈ T (E)} and
BS (vi) = {e ∈ E,v ∈ H(E)}.

2.2.4 Modeling with Graphs: Illustrative example . Let us con-
sider a simple hydraulic system consisted of two tanks depicted in
Figure 3, where Qe is the input flow ,Q and Qs are, respectively, the
outputs flow in tank 1 and tank 2 and h1 and h2 are, respectively,
the level-tank 1 and the level-tank2.This system is defined by the
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following differential equations :
Ch1

dP1
dt = Qe−Q

Ch2
dP2
dt = Q−Qs

Q = P1−P2
R1

= ∆P1
R1

Qs =
P2
R2

= ∆P2
R2

(12)

such that P1 = γh1 and P2 = γh2, Ch1 , Ch2 are respectively the
hydraulic capacitance of tank 1 and tank 2 and R1 and R2 are, re-
spectively, the hydraulic resistance of tank 1 and tank 2.
Based on Equation (12), the BG and hypergraph models of the
hydraulic system are given respectively by Figure (4) and Fig-
ure (5). The hypergraph model H = (V,E) is composed by nine
vertices V =

{
Qe,Q,Qs,P1,P2, Ṗ1, Ṗ2,∆P1,∆P2

}
and eight hyper-

edges E = {E1,E2, . . . ,E8} where E1 =
{
{Qe,Q} ,

{
Ṗ1
}}

, E2 ={{
Ṗ1
}
,{P1}

}
, E3 =

{
{Qs,Q} ,

{
Ṗ2
}}

, E4 =
{{

Ṗ2
}
,{P2}

}
, E5 =

{{P1,P2} ,{∆P1}}, E6 = {{P2} ,{∆P2}}, E7 = {{∆P1} ,{Q}} and
E8 = {{∆P2} ,{Qs}}

3. PROPOSED HYPER-GRAPH
REPRESENTATION FOR CHEMICAL
REACTIONS

3.1 Systematic procedure to derive a hyper-graph
model

In this section, we propose a hypergraph model for the chemical
reaction rate (Global hypergraph) which is a collection of six sub-
hypergraph of different phenomena of chemical reactions. Details
related to each of these subhypergraphs are listed as follows:

3.1.1 The molar balance. Equation (10) may be modeled as a
subhypergraph Hn = (Vn,En) with molar flow ṅ, inlet and outlet
molar flow ṅli, ṅlo of different species corresponding to vertices
and relations which assembled them corresponding to hyperedges.
It is defined as follows :

Vn =
{

ṅl , ṅ1l , ṅki, ṅlo,k = Ai, l = Ai,B j, i = 1 · · ·n, j = 1 · · ·m
}
(13)

Vn a finite set of vertices and

En =
{

E1n
l
,E2n

k

}
(14)

En a set of non empty subsets of Vn such that:

E1n
l = {({ṅl} ,{ṅli, ṅlo, ṅ1l}), l = Ai, i = 1 · · ·n} (15)

E2n
k =

{
({ṅk} ,{ṅko, ṅ1k}),k = B j, j = 1 · · ·m

}
(16)

Note that En ⊆ 2Vn , E1n
l ∪E2n

k =Vn

3.1.2 The reaction flux. We may represent equation (9) by a sub-
hypergraph Hr f =

(
Vr f ,Er f

)
with n+m molar flow vertices and

a B-hyperedge (|H (e) = 1|)consisting of that equation. Hr f is de-
fined through the following sets:

Vr f =
{

J, ṅl , l = Ai,B j, i = 1 · · ·n, j = 1 · · ·m
}

(17)

Er f = {{ṅl} ,{J}} (18)

3.1.3 The chemical potential. Our model views the chemical
potential (equation(9)) as a subhypergraph Hµ =

(
Vµ ,Eµ

)
where

we represent each molar flow ṅl and chemical potential µl of all
species by a vertex and relation assembling them by a hyperedge.
The sets Vµ and Eµ of vertices and hyperedges respectively are
given as:

Vµ =
{

ṅl ,µl , l = Ai,B j, i = 1 · · ·n, j = 1 · · ·m
}

(19)

Eµ =
{

Eµl , l = Ai,B j, i = 1 · · ·n, j = 1 · · ·m
}
⊆ 2Vµ (20)

where Eµl = {({ṅl} ,{µl})} and ∪Eµl =Vµ

3.1.4 The chemical affinity. In the chemical affinity subhyper-
graph HA = (VA,EA), we represent each of chemical potential of
different species µl , forward affinity A f , reverse affinity Ar and
chemical affinity A by a vertex and equations (4), (5) and (6) by
the set of hyperedges:

VA =
{

µl ,A f ,Ar,A , l = Ai,B j, i = 1 · · ·n, j = 1 · · ·m
}

(21)

EA =
{

E f ,Er,Ea
}

(22)

where:

E f =
{{

µAi

}
,
{

A f
}
, i = 1 · · ·n

}
(23)

Er =
{{

µB j

}
,{Ar } , j = 1 · · ·m

}
, (24)

Ea =
{{

A f ,Ar
}
,{A}

}
, (25)

with EA ⊆ 2VA , Ea∪E f ∪Er =VA

3.1.5 The hydraulic chemical relationship. We use the subhy-
pergraph Hch = (Vch,Ech) whose vertices are the molar flow ṅl , the
inlet and outlet molar flow ṅki, ṅlo and the mass flow ṁl , and hy-
peredges represented by equations (11). Vch and Ech are defined as
follows:

Vch =
{

ṅl , ṅki, ṅlo, ṁl , k = Ai, i = 1 · · ·n, l = Ai,B j,

i = 1 · · ·n, j = 1 · · ·m}
(26)

Ech = {E1ch k,E2ch l ,k = 1 · · ·n, l = 1 · · ·n+m} (27)

where:

E1ch k = {({ṁl} ,{ṅli}) , l = Ai, i = 1 · · ·n} (28)

E2ch l =
{
({ṁl , ṅl} ,{ṅlo}) , l = Ai,B j, i = 1 · · ·n,

j = 1 · · ·m}
(29)

Ech ⊆ 2Vch , E1ch l ∪E2ch k =Vch, k = 1 . . .n, l = 1 . . .n+m

3.1.6 The thermal chemical relationship. The thermal chemi-
cal relationship is modeled by the subhypergraph Hct = (Vct ,Ect)
whose vertices are the chemical affinity A, the reaction flux J, the
temperature T and the entropy flow Ṡ and a hyperedge represented
by equation (3):

Vct =
{

A,J,Tr, Ṡ
}

(30)

Ect =
{
{A,J} ,

{
Tr, Ṡ

}}
(31)
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Fig. 6. Hypergraph model obtained by BG-Hypergraph transformations

3.1.7 Global hypergraph. As we defined a chemical reaction by
the combination of different phenomena that appear, the global hy-
pergraph H = (V,E) modeling the chemical reaction rate is the as-
sociation of all the previous subhypergraphs such that:

V =
{

Vn∪Vr f ∪Vµ ∪VA∪Vch∪Vct
}

(32)

the finite set of vertices and

E =
{

En,Er f ,Eµ ,EA,Ech,Ect
}

(33)

the set of hyperedge of H.
E ⊆ 2V , ∪Ei =V, i = n,µ,A,ch,ct.

3.2 Bond Graph-Hypergraph transformations
Built the Bond Graph.To get graphical model systems by devel-
oping a hypergraph model directly from the Bond Graph, we pro-
pose rules of transformations from the Bond graph to the hyper-
graph model. In the resulting directed hypergraph, effort and flow
variables will be represented as vertices, while relations between
variables will be represented as directed hyperedges. The causality
results in the arrow of the hyperedge indicating the direction of the
power transfer (see [1] for more details).

3.3 Illustrative example
In order to show the impact of our BG-Hypergraph transformations,
we have used, again, in this section the hydraulic two tank system
as an example. The BG model of the studied example is given by
Figure 4. Based on the given rules, the hypergraph model is given
by Figure 6. Such that f2 = Ṗ1, f8 = Ṗ2, e2 = P1 and e5 = P1−P2,
e7 = P2 and e11 = P2, one may conclude on the efficiency of the
proposed Bond Graphs-Hypergraph analogy.

4. HYPERGRAPH MODEL BASED FOR
QUALITATIVE FDI DESIGN

In this section, we first recall the Analytical Redundancy Rela-
tionship (ARR)algorithm based on Bond Graph model then we
present our algorithm for ARR generation from a directed hyper-
graph model.

4.1 Directed Hypergraph model-based FDI
Based on causal and structural proprieties, a methodology to
generate QARRs from a hypergraph model is proposed in this
section.

Fig. 7. BG model in preferred derivative causality

The generation of QRRs from the hypergraph modelk is based on
the determination of causal hyperpaths that relate known variables.
The known variables in the hyperpath are elements of the QRR.
The QRR generation proposed algorithm can be summarised as
follows :

\* K the set of unknown variables vi in the directed hypergraph
model* \
Begin

K = {unknown variables}
j = 1
for vi ∈ K do
QRR j = /0
A : Define FS (vi) \ * the set of hyperedges ei where vi ∈ T (ei)*
\

for e j ⊆ FS (vi)

if ∃ vk ∈ H
(
e j
)

a known variable then
QRR j = {QRR,vk} go to B

else vi = vk return to A
end if
end for
B : Define BS (vi) \ * the set of hyperedges ei where vi ∈ H(ei)*
\

for e j ⊆ BS (vi)

if ∃ vk ∈ T
(
e j
)

a known variable then
QRR j =

{
−vk,QRR j

}
else vi = vk return to B
end if
end for
j = j+1
end for

end

4.2 Illustrative Example
For illustration, consider again the example of the hydraulic two
tanks systems shown on Figure 3, the Bond Graph model of the
system is shown in (Figure 4).
To avoid initial condition problems which are not known in real
processes, ARRs are directly generated from the BG model in
derivative causality. Thus, the model in derivative causality given
in Figure 7 is used for ARR generation.

Equations described C1, C2, R1 and R1, can be defined as follow :

f2 =C1
de2

dt
(34)
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f8 =C2
de8

dt
(35)

e5 = φR1 ( f5) (36)

e11 = φR2 ( f11) (37)

Where φR2 is a function of the valve characteristics. The capacities

C1 and C2 are, respectively, equal to
γCh1

g and
γCh2

g . g is the gravity.
Constraints deduced from different junctions are :

J01 : f1− f2− f3− f4 = 0 ( f4 = 0) (38)

J11 : e4− e5− e6− e7 = 0 (e6 = 0) (39)

J02 : f6− f8− f9− f10 = 0 ( f10 = 0) (40)

J12 : e10− e11− e12 (e12 = 0) (41)

To transform these constraints to ARR, all variables must be
known. They will be expressed as function of known variables by
covering causal paths. Hence, four fault indicators have to be gen-
erated as the following :

r1 : Qe−C1
dP1

dt
−Q = 0 (42)

r2 : P1−R1Q−P2 = 0 (43)

r3 : Q−C2
dP2

dt
−Qs = 0 (44)

r4 : P2−R2Qs = 0 (45)

The associated quantitative fault signature matrix is given in Ta-
ble (4.2). We can deduce that all faults are detected and isolated.
The proposed algorithm is now used to generate the ARRs. The
hypergraph model is shown in Figure 5. In this graph two vari-
ables are unknown Ṗ1 et Ṗ2. E1 and E2 (respectively E3 and E4)
are adjacent to Ṗ1 (respectively to Ṗ2). E1 is the incoming hy-
peredge and E2 is the outgoing hyperedge to Ṗ1. We obtain the
new hyperedge E ′1 = {{Qe,Q} ,{P1}}. Likewise for Ṗ2 we obtain
E ′2 = {{Qs,Q} ,{P2}}. Vertices in E ′1 represent the variables of
the first Qualitative Redundancy Relationship QRR1 and vertices
in E ′2 are those of the second Qualitative Redundancy Relationship
QRR2. The associated qualitative fault signature matrix is given in
Table (4.2).

Table 1. Quantitative fault signature Matrix
QRR1 QRR2 QRR3 QRR4 D I

Q 1 1 1 0 1 1
Qs 0 0 1 1 1 1
P1 1 1 0 0 1 1
P2 0 1 1 1 1 1

Table 2. Qualitative fault
signature matrix

QRR1 QRR2 D I

Q -1 -1 1 1
Qs 0 -1 1 1
P1 1 0 1 1
P2 0 1 1 1

By comparing these two tables, we note that the number of redun-
dancy relationship are reduced and all faults are still isolable. More-
over, if one use the BG-hypergraph transformations there is no need
to transform the Bond Graph model to the derivative causality. The
BG-based method provides an intuitive and direct way to derive
ARRs from the BG model. However, the total number of derived
ARRs may not be optimum. This case study shows that although
BG-based method provides good results in the diagnosis of chemi-
cal processes, the total number of arrs derived by this method may
not be optimum.

5. CASE STUDY
5.1 Hypergraph representation
The case study deals with a reaction which has a second-order re-
action rate between acid acetic C2H4O2 and ethanol C2H6O to pro-
duce ethyl acetate C4H8O2 and water H2O. This reaction is repre-
sented by:

C2H4O2 +C2H6O
A f


Ar

C4H8O2 +H2O

It is a widely used reaction in engineering laboratories because it
illustrates the theory of reactor very easily. In the sequel A, B, C
and D stand for acid acetic, ethanol,ethyl acetate and water [6].
This reaction can be written in the general form as:

υAA+υBB
A f


Ar

υCC+υDD

where υi (for i = A,B,C,D) are the stoichiometric coefficients. In
our case these coefficients are equal to one because the esterifica-
tion is one-to-one reaction.
Figure (8) presents the directly generation of
the corresponding hypergraph H = (V,E) with :
V = {ṅ1A, ṁA, ṅAi, ṅAo, ṅA, ṅ1B, ṁB, ṅBi, ṅBo, ṅB, ṅ1C, ṁC, ṅCo, ṅC,

ṅ1D, ṁD, ṅDo, ṅD,µA,µB,µC,µD,A f ,Ar,A,J,T, Ṡ
}

and E = {E1,E2, . . . ,E23}
where:

E1 = ({ṅ1A, ṅAi, ṅAo},{ṅA}) ,E2 = ({ṅ1B, ṅBi, ṅBo},{ṅB})
E3 = ({ṅ1C, ṅCo},{ṅC}) ,E4 = ({ṅ1D, ṅDo},{ṅD})
E5 = ({J} ,{ṅ1A}) ,E6 = ({J} ,{ṅ1B}) ,E7 = ({J} ,{ṅ1C}) ,
E8 = ({J} ,{ṅ1D}) ,E9 = ({ṁA} ,{ṅAi}) ,E10 = ({ṁB} ,{ṅBi})
E11 = ({ṁA, ṅA} ,{ṅAo}) ,E12 = ({ṁB, ṅB} ,{ṅBo}) ,
E13 = ({ṁC, ṅC} ,{ṅCo}) ,E14 = ({ṁD, ṅD} ,{ṅDo}) ,
E15 = ({ṅA} ,{µA}) ,E16 = ({ṅB} ,{µB}) ,E17 = ({ṅC} ,{µC})
E18 = ({ṅD} ,{µD}) ,E19 =

(
{µA,µB} ,

{
A f
})

,
E20 = ({µC,µD} ,{Ar}) ,E21 =

({
A f ,Ar

}
,{A}

)
,

E22 =
(
{A,J} ,

{
Ṡ
})

,E23 = ({ṅA, ṅB, ṅC, ṅD} ,{J})
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Fig. 8. Global hypergraph model H

The corresponding incidence matrix B of the hypergraph H is de-
fined as follows :

bi j =

 −1 i f vi ∈ T
(
E j
)

1 i f vi ∈ H
(
E j
)

0 otherwise

The BGs have been successfully used for modeling different kinds
of systems involving multiphysical phenomena [4]. Hence, an eas-
ier understand of the overall system. Figure (9) presents the pro-
posed BG model of the considered esterification [6].Based on BG-
hypergraph analogy, the automatically generation of the hyper-
graph model HBG of the chemical kinetics is deduced directly from
a Bond graph model as shown in Figure (10).

Fig. 9. Bond Graph model

One may easily check even the hypergraph HBG presents the same
incidence matrix. Thus, both of the hypergraphs model refer to the
same chemical reaction kinetics.

Fig. 10. deduced hypergraph model

5.2 Fault monitoring and main results
The chemical reaction Bond graph model in derivative causality is
given (Figure (11)). From 0 junctions 4 ARRs can be obtained. The

Fig. 11. Chemical reaction BG model in deriatie causality

candidate ARR generated from junction 01 is :

ARR1 = f1− f2− f3− f4 = 0 (46)

where f1 =MS f = ṅAi =
ṁA
MA

, f2 =CA
de2
dt , f3 =MS f = ṅAo = nA

ṁA
ρV

and f4 = υAJ.
The unknown variable f2 is eliminated by covering the causal path:
f2→ φCA → e2→ D̃eA : µA
The first ARR is then deduced substituting unknown variable in
Eq.(46):

ARR1 = ṅAi− V
RTr

exp
(

µA−µA0
RT

)
−nA

ṁA
ρV −υAJ

= ṁAi
MA
− V

RTr
exp
(

µA−µA0
RTr

)
−nA

ṁA
ρV −υAr f

(
1− exp

(
A

RTr

))
V

= 0
(47)
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µA0 is the standard chemical potential.
From junction 02, we obtain :

ARR2 = ṅBi− V
RTr

exp
(

µB−µB0
RT

)
−nB

ṁB
ρV −υBJ

= ṁBi
MB
− V

RTr
exp
(

µB−µB0
RTr

)
−nB

ṁB
ρV −υBr f

(
1− exp

(
A

RTr

))
V

= 0
(48)

From junction 03, we have :

f11− f12− f14 = 0 (49)

where f11 = υCJ = υCr f

(
1− exp

(
A

RTr

))
V , f12 = CC

de12
dt and

f14 = MS f 3 = ṅCo = nC
ṁC
ρV .

he unknown variable f12 is deduced from the causal path:
f12→ φCC → e12→ D̃eC : µC
Thus the third ARR is :

ARR3 = υCr f

(
1− exp

(
A

RTr

))
V −nC

ṁC
ρV −

V
RTr

exp
(

µC−µC0
RTr

)
= 0

(50)
And from junction 04, we obtain :

ARR4 = υDr f

(
1− exp

(
A

RTr

))
V −nD

ṁD
ρV −

V
RTr

exp
(

µD−µD0
RTr

)
= 0

(51)
Table (5.2) gives the fault signature matrix of the studied chemical
reaction :

Table 3. FSM deduced from the BG model
ARR1 ARR2 ARR3 ARR4 D I

ṁA -1 0 0 0 1 1
ṁB 0 -1 0 0 1 1
ṁC 0 0 -1 0 1 1
ṁD 0 0 0 -1 1 1
µA 1 0 0 0 1 1
µB 0 1 0 0 1 1
µC 0 0 1 0 1 1
µD 0 0 0 1 1 1

The hypergraph model of the studied chemical reaction is given in
Figure 8. The set of unknown variables is K = {ṅA, ṅB, ṅC, ṅD}.
step 1 : FS (ṅA) = {e15,e23}, for e15, the chemical potential µA is
the known variable in H (e15) thus P = {µA}
BS (ṅA) = {e1}, the known variable in T (e1) is the molar flow ṁA
and P1 = {µA,−ṁA}. We proceed in the same manner for the others
variables in K. We obtain P2 = {µB,−ṁB}, P3 = {µC,−ṁC}, P4 =
{µD,−ṁD}. The obtained result is summarized in the following
fault signature matrix (Table(5.2))

6. CONCLUSION AND OUTLOOK
The hypergraph provides an important approach for modelling
chemical reaction kinetics. This model was developed based on the
basic energy and material balances. A difficulty is that even if a
hypergraph model can be built from mathematical equations ([1]),
precise equations are usually unavailable. The hypergraph model is
then built on the bases of the process knowledge using the Bond
Graph model developed from deep physical understanding of the
complex system, thus avoiding the complexity of numerical calcu-
lations.

Table 4. FSM deduced from the hypergraph model
QRR1 QRR2 QRR3 QRR4 D I

ṁA -1 0 0 0 1 1
ṁB 0 -1 0 0 1 1
ṁC 0 0 -1 0 1 1
ṁD 0 0 0 -1 1 1
µA 1 0 0 0 1 1
µB 0 1 0 0 1 1
µC 0 0 1 0 1 1
µD 0 0 0 1 1 1

The cause-effect structure impled by the hypergraph makes it
amenable for diagnosis, where the goal is to determine the causes
of observed abnormal situation. The application of the proposed ap-
proach has been fulfilled through the example of a reaction which
has a second-order reaction rate.
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