Improved Air Light Estimation Algorithm by using Fuzzy Filters and Dark Channel with Large Haze Gradients

Abstract

Fog phenomena bring about air flow gentle generating and also decline this awareness involving made from photograph caught in the camera. To increase awareness, air flow gentle evaluation is essential regarding photograph errors removal. As air flow gentle can be quite dazzling, this conventional methods immediately select dazzling p regarding air flow gentle estimation. In this paper improved/hybrid fuzzy filters based haze removal algorithm is proposed. The dark channel prior can automatically extract the global atmospheric light and roughly eliminate the atmospheric veil. To make dark channel prior more effective, the atmospheric veil has been refined by using hybrid fuzzy filters as well as it able to produce a haze free image in more optimistic manner. The use of improved/hybrid fuzzy filters has improved the coarse estimated atmospheric veil by reducing halo artifacts.

References

1. Atta, Randa, and Rabab Farouk Abdel-Kader. "Brightness preserving based on singular

11. Huang, Shih-Chia and Chien-Hui Yeh. "Image contrast enhancement for preserving mean brightness without losing image features." Engineering Applications of Artificial Intelligence 26, no. 5 (2013): 148

16. Huynh-The T, Le-Tien T. Brightness preserving weighted dynamic range histogram
Improved Air Light Estimation Algorithm by using Fuzzy Filters and Dark Channel with Large Haze Gradients equalization for image contrast enhancement. In Advanced Technologies for Communications (ATC), 2013 International Conference on 2013 Oct 16 (pp. 386-391). IEEE.

Index Terms

Computer Science
Signal Processing

Keywords

Image defogging; Dark channel prior; Air light Estimation; Fuzzy filtering.