Abstract

Clustering has two approaches, hard clustering and soft clustering. The hard clustering restricts that the data object in the given data belongs to exactly one cluster. The problem with hard K-Means (KM) clustering is that the different initial partitions can result in different final clusters. Soft clustering which also known as fuzzy clustering forms clusters such that data object can belong to more than one cluster based on their membership levels. But sometimes the resulting membership values do not always correspond well to the degrees of belonging of the data. So to overcome the problems in hard Fuzzy K-Means clustering, the improved Fuzzy K-Means (FKM) clustering approach is proposed. The proposed improved Fuzzy K-Means clustering assigns membership to an object inversely related to the relative distance of the object to cluster prototype. Fuzzy K-Means clustering assigns membership levels which indicate the degree to which the data elements belong to the clusters, and then using them to assign data object to one or more clusters. These indicate the strength of the association between that data object and a particular cluster. The proposed work also compares the execution time and required memory of Proposed Fuzzy K-Means (FKM) to that of existing Fuzzy K-Means
References

2. C. C. Aggarwal and C. K. Reddy, “Data clustering: algorithms and applications”.
algorithms with cluster validity indices,” in Proceedings of the Elsevier International
5. J. Daxin, C. Tang, and A. Zhang, “Cluster analysis for gene expression data: a survey”,
IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 11, pp. 1370.
tgsom and fuzzy k-means”, in Proceedings of the 2009 First International Workshop on
3, June 2015.
9. L. Rokach and O. Maimon, “Clustering methods,” in Data mining and knowledge
algorithm for image segmentation,” IEEE Transactions on Consumer Electronics, vol. 55, no. 4,
14. L. Zadeh, C. Negoita, and H. Zimmermann, “Fuzzy sets as a basis for a theory of
based on fuzzy clustering and particle swarm optimization,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, no. 99, pp. 19, 2015.
18. S. Ayramo and T. Karkkainen, “Introduction to partitioning based clustering methods with
a robust example,” Reports of the Department of Mathematical Information Technology Series
k-means clustering algorithm: analysis and implementation,” IEEE Transactions on Pattern
20. I. V. Cadez, S. Ga_ney, and P. Smyth, “A general probabilistic framework for clustering
individuals and objects,” in Proceedings of the sixth ACM SIGKDD international conference on
Enhancing the Performance of K-Means Clustering by using Fuzzy Partitioning Matrix

Knowledge discovery and data mining. ACM, 2000, pp. 140-149.

32. O. Sutton, “Introduction to k nearest neighbour classification and condensed nearest neighbour data reduction,” University lectures, University of Leicester, 2012

40. M. Ramaswami and R. Bhaskaran, “A study on feature selection techniques in

Index Terms

Computer Science Artificial Intelligence

Keywords

Fuzzy clustering, Fuzzy Partition Matrix