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ABSTRACT

In this paper, by wusing a concept of M7 -function
we introduce a new class of cyclic contraction map-
pings and consider the best proximity points the-
orem in the context of multiplicative metric space
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1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, we denote by R, R™, and N the sets of real
numbers, non-negative real numbers and natural numbers respec-
tively. Consistent with [} [2], the following definitions and results
will be needed in the sequel.

DEFINITION 1. [ll} 2] The multiplicative absolute value func-
tion|-|*: R™ — R isdefined as

z, x>1,
|z|" =
%, z <1
Using the above definition of multiplicative absolute value func-
tion, [3] deduce the following proposition.

PROPOSITION 1. [I3] For arbitrary x,y € R, the following
hold:

iLo|x]>1,

i. L<z<l|z
Ja]

1

iii. 1] = |zl

v |z| < yifandonlyif% <z <y,

v |z eyl < zllyl-

With the help of multiplicative absolute value function, they define
the multiplicative distance between two non-negative real numbers

as well as between two positive square matrices. This provides the
basis for multiplicative metric spaces.
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DEFINITION 2. [lI]] Let X be a non-empty set. A function d* :
X? — R is said to be a multiplicative metric on X if for any
x,y,z € X, the following conditions holds:

my. d*(z,y) > land d*(z,y) =1 < z =y,
my. d*(z,y) = d'(y, @),

The pair (X, d*) is called multiplicative metric space.

EXAMPLE 1. [Ul] Let R4 be the collection of all n-tupples of
positive real numbers. And let d(x,y) = | 71| - |32 - - - | =] where
x = (T1,T2y e, Tpn) andy = (Y1,Y2, .-, Yn) € Ry. Then, clearly,
d(z,y) is a multiplicative metric space.

EXAMPLE 2. [l Let (X, d) be a metric space, then the map-
ping d, defined on X as follows is multiplicative metric, d, =
a®@¥) where a > 1 is a real number. For discrete metric d the
corresponding mappings d,, called discrete multiplicative metric is
defined as:

1, z=y,

da (‘T7 y) = a’d(zy) =
a, T #y.

EXAMPLE 3. [I] Letd: R+ R — [00,00) be defined as d, =
a®@Y) where x,y € Rand a > 1. Then d(x,vy) is a multiplicative
metric.

EXAMPLE 4. [I] Let X = C*[a,b] be a collection of all
real-valued multiplicative continuous functions over [a,b] C R™T.
Then (X, d) is a multiplicative metric with d defined by d(f, g) =

SUD ¢ [q,0) \%Uor arbitrary f,g € X
Remark

Neither every metric is multiplicative metric nor every multiplica-
tive metric is metric. The mapping in example 1 defined above is
multiplicative metric but not metric as it doesn’t satisfy triangular
inequality. Consider, d(2,3) + d(3,5) = 2 + 2 =32 > 25 =
d(2,5) On the other hand the usual metric on R is not multiplica-
tive metric as it doesn’t satisfy multiplicative triangular inequality.
Asd(4,7).d(7,9) =6 >5=4d(4,9)

DEFINITION 3. [[I|] Let (X.d) be a multiplicative metric space.

Then we have the following \%\ < d(z,y) for all z,y € X

Which is called multiplicative reversed triangular inequality.



DEFINITION 4. [2] Let xq be an arbitrary point in a multi-
plicative metric space X and € > 1. A multiplicative open ball
B(zo, €) of radius € centered at x is the set {y € X : d(y, zo) <
e}.

A sequence {z,} in a multiplicative metric space X is said to be
multiplicative convergent to a point z € X if for any given € > 1,
there is Ny € N such that x,, € B(z,¢) foralln > Ny. If {z,}
converges to x, we write x,, — x as n — 0o0. A sequence x,, in X
is multiplicative convergent to = in X if and only if d(z,,,z) — 1
asn — oo [2].

DEFINITION 5. [2]] Let(X, d) be a multiplicative metric space.

a) A sequence {x,} in X is said to be multiplicative Cauchy if for
any € > 1, there exists Ny € N such that d(z,,, Tm) < € for all
n,m > Ny,

b) A multiplicative metric space (X,d) is said to be complete if
every Cauchy sequence {x,,} in X is multiplicative convergent
to a point x € X.

A sequence {z,} in X is multiplicative Cauchy if and only if
d(zn,zm) — 1asn,m — oo [2].

DEFINITION 6. [2(Multiplicative generalization of Supre-
mum): Let A be a nonempty subset of RT. Then, s = sup A if
and only if

i. a<sforalla € A
ii. There exists atleast a point a € A such that || < ¢ forall e > 1

DEFINITION 7. [2l/(Multiplicative generalization of Infimum):
Let A be a nonempty subset of Rt. Then, m = InfA if and only
if
. m<sVaeA
ii. There exists atleast a point a € A such that | 2| < € for all

e>1

THEOREM 8. [2l[(Multiplicative Bolzano-Weierstrass): Every
multiplicative bounded sequence {x,} € (R™,|-|) has a multi-
plicative convergent subsequence.

Banach contraction mapping principle has been a very advanta-
geous and efficient means in nonlinear analysis. Various authors
have generalized Banach Contraction principle in different spaces.
Recently, Ozavsar and Cervikel [2] generalized the celebrated Ba-
nach contraction principle in the set up of multiplicative metric
spaces.

DEFINITION 9. [2]] Let X be a multiplicative metric space. A
mapping T : X — X is said to be multiplicative contractive if
there exists A\ € [0,1) such that d(Tx,Ty) < d(z,y)*, for all
z,y € X.

THEOREM 10. [4|] Let X be a multiplicative metric space and
T : X — X a multiplicative contractive mapping. Then T" has a
unique fixed point.

PROPOSITION 2. [4]] Let ¢ : [0,00) — [0, 1) be a function.
Then, 1 is an R-function if and only if for any nonincreasing se-
quence {Ty }ne(0,00), we have 0 < supp{z,} <1

On the other hand, []] established a classical Best proximity point
theorems which generalizes the concept of fixed point theorems.
For more information about multiplicative metric space and best
proximity point theorems see [6, 7, 18, (9]

In this paper, we established some new existence and convergence
theorems of iterates of best proximity points for multiplicative
MT -cyclic contractions.

International Journal of Computer Applications (0975 - 8887)
Volume 166 - No.6, May 2017

2. MAIN RESULTS

Motivated by the concept of multiplicative cyclic contractions and
MT -functions, we first introduce the concept of multiplicative
MT -cyclic contractions

DEFINITION 11. Let A and B be non-empty subsets of a mul-
tiplicative metric space (X,d). Ifamap T : AUB — AUB
satisfies

M; T(A) C Band T(B) C A
M3 there exists an MT -function v : [1,00) — [0, 1) such that

d(Tz, Ty) < (d(z,y))* 4@ . d(A, B)A-¥@=0) forall x €
Aandy € B,

then T is called a multiplicative M T -cyclic contraction with re-
spect to ¢ on A U B.

Remark 2.1 It is obvious that (Mj) implies that T satisfies
d(Tz,Ty) < d(z,y) foranyz € Aandy € B.

THEOREM 12. Let A and B be non-empty subsets of a mul-
tiplicative metric space (X,d) and T : AUB — AUB bea
multiplicative R-cyclic contraction with respect to .

Then there exists a sequence {x,, }ne N C AU B such that

lim d(z,, Tpi1) = ingv d(xp, Tpni1) = d(A, B)
n—o00 ne

PROOF. Let z; € A be given. Define an iterative sequence
{n}ne NbY Ty =Tz, forne N
then d(A, B) < d(zp,Tn4+1) foralln € N.
If there exists j € N suchthatz; =x;.1 € AN DB,
then by definition T'z; = x4 = x;
also, x40 =Txj11 =T(Tx;) =Tx; =x;

S0x; = Ijl'_»'_l = Tj42 = ... and
therefore lim,, oo d(Zp, Tpy1) = 1.
So,

lim d(zn, zp+1) = inf d(z,,zn41) =d(A,B) =1
n—00 ne N

and it suffices to consider the case z,,+1 # z,, foralln € N. Since

the sequence {d(z,,, x,+1)} is non-increasing in (1, co),then t; =

limnﬁoc d(xny xn+1) = infne N d(mnv xn—‘—l) Z 1.

Since ¢ is an MT —function we have,

0< SUPpe N @(d($n7$n+1)) <1

Letting A := sup,,c y ¢(d(Tn,ZTn+1)),

then 0 < @(d(zp, Tn+1)) <A< 1lforalln € N.

If z; € A, then by the cyclic nature of 7', we have x5, 1 € A

and x5, € Bforalln € N.

Since T is a multiplicative cyclic M T -contraction, we have

d(l‘g, 133) = d(T{L‘l, TJJQ)

< d(xy, me)P4@m2) (A, B) T¥d(z122)
< d(z1,22)" - d(A, B)

and

d(z3,24) = d(Tza,Tx3)

(
d(x27x3)wd(wz,ws) -d(A, B)lfwd(zz,ws)
(d(ml, 1,2)/\ X d( )wd(avzyra) . d(A, B)lﬂbd(rz,za)
d(w1, 2) - d(

INIA

A, B)
A, B)



also,
d(z4,25) = d
d

Txs,Tx,)
x3,x4)wd(’“3’“) -d(A, B)l—wd(ws,m)

(
(

INIA

d(ﬂ?l, JZQ)AB . 61(147 B)
Hence, continuing in this fashion, one can obtain
d(A, B) < d(Tns1, Tng2) < d(zy,22)*" -d(A,B) (1)

forallm € N.
Since A € [0,1), lim,_, A™ = 0. Using inequality (1) and the
non-increasing nature of {d(z,, n+1)}, we obtain

lim d(zp, Tpt1) = ingv d(pn, Tn+1) = d(A, B).
ne

n—o0
O
Next, we give an existence theorem for a class of cyclic mappings.

THEOREM 13. Let A and B be non-empty subsets of a multi-
plicative metric space (X,d) and T : AU B — AU B be a multi-
plicative MT -cyclic contraction. Let x1 € A be given. Define an
iterative sequence {x, }ne N by Tny1 = Tx, forn € N. Suppose
further that {xo,_1} has a multiplicative convergent subsequence
in A, then there exists © € A such that d(xz, Tx) = d(A, B).

PROOF. Let {%2,, 1} be a subsequence of {x,_1} such that
Zon,—1 — T as k — oco. Now we observe that,

d(A,B) < d(z, 29, ) < d(T, Tan,-1) - d(@T2n, -1, Tan, )
forallk € N.
since, limy_ d(x, €2, —1) = 1, from theorem [12|and

d(A, B) < d(x, %an, ) < d(z, Tan,—1)d(T2n, -1, Ton, )

we have, (taking limit as k — o0)

d(A, B) < lim d(z, x2n, ) < lim d(zan, -1, T2,, ) = d(4, B)
k—o0 k—o0 ’ ’

hence, limy,_, d(z, Z2n, ) = d(A, B).

Now,

d(A,B) < d(xan,+1,Tx)
= d(22n,,TT)
< d(xgnk,x)“"(d(”"k‘””)) -d(A, B)lfw(d(zznk-,r))
< d(anw:c)“’(d(””k ,z)) ~d(mznwx)l’wd(”"k’”)
< d(x2n,,x)

hence,

d(A, B) < d(zan, 4+1,Tx) < d(x2p,, )

Taking limit as k — co we obtain

d(A, B) < d(z,Tz) < d(A, B)

andso d(z,Tx) = d(A,B). O

(d($1,$2)A2 -d(A, B))Y4@s:ma) . (A, B) - dzsra)
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3. CONCLUSIONS

In this paper, Best Proximity Point on a Class of Multiplicative
MT-Cyclic Contraction Mapping is investigated under some suit-
able conditions. Since Best proximity point results generalizes
fixed point results, these results extend the results of [7)]. Fur-
thermore, the best proximity point results for cyclic contraction
mapping satisfying another contractive conditions in multiplicative
metric spaces is still open for interested researchers.
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