
International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.10, June 2017

7

Advance Version Control (AVC): A Paradigm Shift

from Version Control to Conflict Management

Inderdeep Kaur

Dept. of Computer Science
Guru Nanak Dev University Amritsar

Hardeep Singh

Dept. of Computer Science
Guru Nanak Dev University Amritsar

ABSTRACT

Distance is the major barrier in Global software development.

It negatively impacts communication and coordination. Many

tools are used to help developers to coordinate their work.

One such tool is Software Configuration Management (SCM).

But studies have shown that SCM lacks in conflict detection.

This weakness has been removed by workspace awareness

tool.

This paper describes Advance Version Control tool (AVC), a

tool that does versioning of artifacts and actively monitor

commit activities of the developer. It is an integration of

Configuration Management and Conflict Management. AVC

determines conflicts at right time and also provides resolution

methods like code sharing. The developed tool allows the

developers to focus on their main task i.e. programming

without presenting trivial notifications and warnings. AVC

also has integrated communication medium to further enhance

the coordination.

General Terms

Distributed Software Development, Software Configuration

Management, Workspace Management tools.

Keywords

Version control tools, conflict detection, workspace

awareness.

1. INTRODUCTION
Globalization of software development has given rise to

distributed software development. Distributed Software

Development (DSD) or Global Software Development (GSD)

refers to style of development in which developers work from

geographically dispersed locations. These developers may

belong to same organization or may be from different

organizations. Also, the dispersed locations may vary from

one building to another, from one city to another or from one

country to another. In latter case, it is referred as Global

software development. The widespread usage of distributed

software development is due to its numerous benefits like

reduced development cost, reduced time to market, best

quality labor and proximity to market [1-6].

Nevertheless, its benefits DSD pose many challenges. These

challenges owe to distance. Distance effects three areas of

software development communication, coordination and

control [2-5]. Due to less information flow in DSD projects

coordination requires more effort [3]. Coordination is

synthesizing various modules or parts made by different

developers into single working unit. When people are working

on same area then there are coordination problems.

SCM tools like version control system (VCS) provide

impeccable solutions for collaborating teams. It coordinates

the activities of individuals or organizations in one form or

another for collocated as well as distributed projects [7,8]. It

also manages and controls the evolution of software by

keeping track of artifacts [9].

Version control systems have undergone a change with shift

in centralized to distributed software development [10]. Eric

Raymond [11] has categorized the version control systems

into three generations ranging from peer-to-peer to distributed

approach. Third generation tools are distributed version

control systems (DVCS). This category of tools clone full

repository on the developer’s machine creating private

workspace for the developer. Most of the operations including

commit can be performed on local machine [10]. Private

workspaces help developers to focus on their work without

being affected by other developers work [12][13]. Due to this

isolation, developers are unaware of each other’s work. When

the changes from developers’ workspaces are reconciled, it

could lead to merge conflicts [18]. Microsoft developers

reported that in merging operation most of the time is devoted

in resolving the conflicts [14]. Brun [32] studied nine open

source projects from Github (http://git-scm.com) and

concluded that conflicts are frequent, persistent, and appear

not only as overlapping textual edits but also as subsequent

build and test failures even with modern SCM tools like (Git

[20] and Mercurial [21]) which provide enhanced method of

automatic merging. Conflicts could be direct (conflicts in the

same section of the code) or indirect (conflicts in dependent

code also called dependency conflicts). However, if these

conflicts are not handled appropriately it can cause merging

errors, compilation errors, test suites failure and wrong

behavior in shared repository. Also, late discovery of wrong

behavior add to complexities and increases cost of correction

as well [15]. The rationale behind this is lack of coordination

and group awareness [16]. Conflict complexities are

inherently less in co-located teams where developers have

routine informal communication. But in distributed team’s

direct communication is rare. In such a setting, some approach

is required to enhance the level of awareness to improve

coordination [17].

This is place where workspace awareness tools come into

existence. Awareness in this context is “an understanding of

the activities of others which provides a context for one’s own

activities” [19]. Being aware of others work enables the

developers to detect the conflicts at early stage before they

diffuse with the main repository. SCM community has

accepted it as challenge and realized the benefits of workspace

awareness tools [22-30].Significant contributions have been

done by [31, 23, 22, 34, 26] in workspace awareness which

assist the developers to detect conflicts early by exchanging

information among developers. These tools compliment SCM

by coordinating across workspaces still maintaining good

isolation.

http://git-scm.com/

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.10, June 2017

8

A new approach, AVC, provides novel solution for conflict

management by removing the limitations of currently

available workspace awareness tools. The goal of designing

AVC is to provide right kind of conflict information at right

time by reducing the time wastage of developers in reading

redundant notifications and warnings.

2. BACKGROUND
In this section, some of the existing workspace awareness

tools are discussed:

2.1 Related Work
Palantir [33]increases workspace awareness by continuously

sharing information regarding operations performed by all

developers. All the operations are mapped into events and

event notification system is used to communicate with

developers. Palantir shows which developers are changing

which artifacts by how much. Developers are informed of

others changes when they switch from one artifact to another.

Once modified artifact has been checked-in, Palantir

calculates and shows the severity of change (by differencing

between old version and new version). Palantir reports the

direct conflicts at the level of artifact rather than individual

methods or lines of code. For indirect conflicts, it calculates

the diff’ in class signature and broadcast it. Other developers

interpret this to determine whether this change cause conflicts

with their local version.

CollabVs[34] extends user interface of visual studio. It

provides coordination mechanism to manage conflicts in

asynchronous software development. The model constantly

looks for dependency conflicts and makes developers aware

of these conflicts. Program elements looked for dependency

conflicts are classes, methods and files. Developers can

choose the granularity of program elements for which

dependency conflicts are checked. Also, team members can

easily communicate through IM and audio/video session.

Code session can be started where developer can browse the

remote developers’ version to identify the conflicts. CollabVs

also provides facility to set watch on remote developer’s

work, which gives the information when developer finishes its

editing task.

Wecode[35] used continuous integration for conflict detection

which runs as plug-in of Eclipse. Wecode address direct and

indirect conflicts. It constantly merges committed and

uncommitted changes of developers. This merged system is

analyzed, compiled and tested. Developers’ changes are

collected at save time. Each developer copy is internally

represented as tree. Every file and program element is a node

in system tree. Recent changes done to nodes are used for

background merging. Nodes which are in conflict are tracked

by node change tracking information. Each conflict is

reported to the members who changed have the node.

Crystal [36] identifies the conflicts in version controlled

artifacts by actually creating a merged artifact. This merged

artifact is compiled and tested to determine the conflicts. The

resultant conflict information is presented to developer in an

unobtrusive manner. Developer can also determine the

relationship of his repository with other developers’

repository and with master repository. Crystal supports

distributed environment and works with mercurial.

Syde[37] is an Eclipse plug-in, which provides conflict

awareness using change-centric approach. Syde uses abstract

syntax trees (AST) to represent object-oriented system, where

nodes of AST are elements of system. Changes are captured at

every save operation. Whenever developer changes something

in his workspace, syde captures it as an AST operation.

Conflicts are detected by comparing AST of developers. This

change information is then broadcasted to all the developers.

Conflicts are shown in different colours. Red conflicts are

considered severe because in this case one entity is already

checked-in. Yellow conflicts are moderate in which both the

entities are not checked-in.

Cloudstudio[38]is a web-based prototype. It keeps multiple

synchronized versions of codebase thus performing functions

of SCM. Along with this, Cloudstudio provides real-time

awareness system, which makes developers’ aware of each

other’s work before the conflicts occur. This is achieved by

editor which indicates other developers’ changes by showing

changed lines with different colors to the current developer.

Developer can switch to see the actual changes. Cloudstudio

provides SCM functionality by implementing standard notions

like repository, push/pull and branch operations.

2.2 Limitations of current tools
The above mentioned tools have been evaluated on various

criteria. During this qualitative evaluation, it has been found

that there are several limitations in these tools. This section

discusses those shortcomings which have led to design a new

tool. All of the existing tools have same goal i.e. to detect the

conflicts at early stage and in this process, they produce

unnecessary notifications which lead to numerous false

positives. An aggressive tool will be producing higher false

positives and less false negatives. In an extreme case, a tool

detecting conflict at each edit will be producing no false

negatives and high false positives. However, most of the tools

which are integrated with IDE capture the changes in

workspace at the time of edit or saving the file and report the

conflict. Thus, these tools produce higher false positives

because there is high probability that conflict disappears till

the final changes done before commit [39].

Moreover, plethora of notifications like who is changing

which file or which element of the file, overload the

developers and distract them from doing actual work and

hence affect the productivity [42, 43].

 Another downside of these tools is that developers feel

privacy invasion when each change is monitored and viewed

by others. They want only final commits to be viewed by

others. Also, conflict discovery requires conflict computation

and communication cost. So, conflict discovery at each edit

and save, involves lot of cost [40].

3. PROPOSED FRAMEWORK
From current state of art, it is found that still there is a need

for a tool which will discover the conflicts at right time.

Keeping this in mind, a novel approach for version control has

been proposed which has conflict detection and conflict

resolution capability also. Version Control System and

Workspace Awareness have been combined because SCM is

the best place to monitor the activities of developers where

they are collaborating. This tool is named as Advance

Version Control (AVC). It has been designed to manage the

evolution of the software and to detect the conflicts at right

time with reduced false positives and unnecessary

notifications.

3.1 AVC Framework and model
Tool has been designed to deal with five aspects of

collaborative software development:

 Software versioning/version control

 Conflict detection

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.10, June 2017

9

 Communication among developers.

 Code sharing.

 Group Awareness.

Software versioning is version control module. AVC is

distributed version control system. AVC version control

module has been adapted from Git [20]. After evaluating and

comparing various distributed version control tools, it has

been found that Git has been designed with excellent features,

so it was natural to adapt it [41]. It allows the developers to

create new repositories or clone existing repositories created

by others. Cloning allows developers to create a private

workspace on their system. Developers can make changes to

files in their workspace, AVC track the changed files and

stage them. Staging is one step prior to commit which assures

that changed files need to be committed. Commit operation

assigns new Revision ID to changed files. Pull feature is also

there which allows developers working in distributed

environment to see each other’s work. New version of project

can be created by integrating work from different developers.

Conflict Detection module is responsible for detecting the

conflicts and presenting it to developer. AVC allows conflicts

to be detected before commit but after the changes are

finalized. Detecting the conflicts after the changes are

confirmed saves the developers from trivial notifications and

warnings. When a file is changed and staged for commit, a

potential conflict is shown if the same file is staged or

committed by some other developer. AVC will show the

difference of your version of file and conflicting file. If there

is no conflict it can be ignored. If there is actually a conflict

then any of the conflicting developer rollback his/her code or

they can start code sharing session to mutually resolve the

conflict.

Sometimes it is difficult for a developer to resolve conflict

without communicating with other developer, especially when

both the developers are having conflict in same lines of code.

Communication in AVC is carried out using messaging. It can

also be used for routine communication to understand the

code like who is changing which part of the code and also it

can be used to send message for starting the code session.

AVC allows code sharing session to be opened independently

or when conflict arises. The motive of adding this module is

conflict recovery by using synchronous editing session

between two developers.

Group Awareness works in two ways. For Project owner, it

provides information about how many contributions are done

by each contributor. For Project contributor, it provides

information about which contributor has maximum number of

commits in each file. This information helps developer to

know which contributor has more expertise in the code. Fig 1

shows the working of AVC model.

Fig 1: AVC Model

3.2 Features of AVC
AVC is client-server application. It is entirely written in Java

in NetBeans. It uses JMerge utility for viewing the difference

and merging of files.

 New AVC repository can be created or existing

repository can be cloned.

 Track the changed but uncommitted files and stage them.

 Commit the file and creates new revision of the file in

the repository.

VersionControl

(AVC)

VersionControl

(AVC)

Developer A Developer B

StageFiles StageFiles

Track Uncommitted

Files

Track Uncommitted

Files

ServerDetecting

Conflicting

Files

View

Conflicts

View

Conflicts

Ignore Messaging Ignore Code

Sharing

Session

Messaging

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.10, June 2017

10

 Creates the change log in the file with author userid, date

and time of change and comments for change.

 Branches can be created in local repository.

 Other developers work can be pulled, either single file or

whole repository.

 Recent commits of any developer can be viewed of any

selected project.

 Diff n Merge(Auto) shows all the differencing files in

two selected projects.

 Diff n Merge(Manual) shows file by file difference.

 AVC also shows the difference between subsequent

versions of a file.

 New version of project can be created by integrating

different developers work.

 Messaging service can be used for project discussions

and initiating Code session.

 Conflicts are detected real time.

 AVC detects potential but perpetual conflicts.

 Code sharing session can be used in conflict recovery.

Developers can also open this session when they are

closely working on the same code.

 Group awareness system of AVC gives information

about number of commits in each file and commits done

by each contributor.

3.3 Working of AVC
AVC is an optimistic version control system which allows for

parallel development. Developer has to create Username and

password for Login. After successful login, AVC will open

main window as shown in figure 2. This main window will

provide all the options useful for developers for versioning

and conflict management.

3.3.1 Repository creation and cloning
Option (1) Create Repository is used to create a new

repository by developer. AVC will convert normal project on

developer’s system to AVC repository on server. Developers

can contribute to other developer’s project by cloning his/her

repository from server to their local machine. This can be

done by using option (2) Search Repository. Projects can be

searched by using some keywords. Once the project is

searched, it can be cloned.

3.3.2 Staging and committing the changed files
Once the developer change files, they need to be committed.

This commit is done by AVC in local repository as well as

silently on server also. But AVC adds one step prior to

commit i.e. staging. When developer changes files, AVC track

those changed files and stage them. Staging confirms that

these files are going to be committed. This can be done using

Staging option (3) in figure 2. This option will open the

window as shown in figure 3. Changed files are tracked and

staged by Tack Uncommitted Files option (1) in figure 3.

Developer performs the commit on staged files by giving

comments for commit. A new version is assigned to the

committed file. The information about commits and the

committers is saved as log in changed file. This log can be

viewed by any developer.

3.3.3 Information about contributors
Owner of the project can any time view the contributors of the

project. This information can be obtained by using

MyContributors option (4) in figure 2. Developer can also

view all the projects for which he/she is contributor. This can

be done from option (5) MyContribution in figure 2.

3.3.4 Creating Branches
AVC allows developers to create branches in their private

repositories by making parallel line of development from

main repository and test the changes separately. Any number

of branches can be created in AVC. Branch is created at the

time of commit.

3.3.5 Creating New Version
Most of the time owner of the project is also the integrator.

AVC allows the owner to get commits of all the contributors

and create a new version of the project and upload it.

ViewCommits (6) in figure 2 is used by Project

Owner/Integrator to download the commits of all the

contributors, merge them as required, produce a new version

and upload it. A new version can be uploaded using Upload

New Version option (7) in figure 2.

3.3.6 Pull Files between developers
While using distributed version control system, developers

have private workspaces. So to see other developer’s work,

they need to pull it. AVC provides option that any contributor

can Pull work of other contributor with his/her permission.

This can be done using Pull option (8). Developers can pull a

single file or a whole project.

3.3.7 Viewing Difference and Merging of files
In AVC JMerge tool has been used for merging of java files.

Two types of merging facility have been provided. Diff n

Merge Auto option (9) and Diff n Merge manual option (10).

First one compares the two folders and automatically detects

conflicting files and shows the conflicts in diffviewer. After

removing the conflicts, files can be merged manually. The

latter option is used to manually select the files to view the

difference or merge them.

3.3.8 Conflict Detection
AVC conflict detection for direct conflicts works at the time

of staging. When a developer changes the file/files, AVC

tracks the changed files and stage them. At that time, AVC

will check if the same file/files are staged or committed by

other contributor, then they are shown as conflict. Conflicting

developers for the staged file are shown in figure 4. AVC

allows you to view the difference of your files and conflicting

files. If it is not a conflict, it can be ignored by developer and

he/she can continue with the commit. If there is actually a

conflict, developer can modify his code or can start code

sharing with conflicting developer to mutually resolve the

conflict. Code sharing session is shown in figure 5.

3.3.9 Indirect conflicts with compiler
AVC detects indirect conflicts with compilation. Developer

can integrate other contributor’s work with their own work in

different directory and compile the changes to determine the

dependency conflicts. Get Recent Commits option (11) is used

to view the commits of the other developers. Commits can

also be downloaded, which can be integrated with developers

own work in separate directory using Diff n

Merge(manual)and can be compiled using compiler option

(12). Resulting compilation errors depict dependency

conflicts.

Compiler can also be used to test developers own changes

with the rest of his/her repository before commit.

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.10, June 2017

11

Fig 2: Main window of AVC

Fig 3: Stage, track and commit window of AVC

4

10

7

12

11 8
9

5

2

3

6

1

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.10, June 2017

12

Fig 4: Conflicts detected at the time of staging

Fig 5: Code sharing between two developers

4. COMPARISON OF AVC WITH

OTHER WORKSPACE AWARENESS

TOOLS
This section compares AVC with other workspace awareness

tools. Comparison is shown in table.1. Various features on

the basis of which comparison has been done are given below:

1. Setting watch in other workspace: Developer can

set a watch in other developer’s workspace to know

when some work under progress is completed.

2. Synchronous Editing: It allows the developers to

open local and remote version of the code side-by-

side. Changes done at one end are visible to other

end on real time. This facility allows the developers

to mutually resolve the conflicts.

3. Importing remote code: Developerscan import or

pull the conceivable conflicting changes of other

developer, integrate them with local changes and

test them.

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.10, June 2017

13

4. Setting watch in other workspace: Developer can

set a watch in other developer’s workspace to know

when some work under progress is completed.

5. Dependency Conflicts: This parameter describes

up to what granularity dependency conflicts are

determined. Conflicts are of two types that are

direct and indirect conflicts. Direct conflicts are also

called textual conflicts, occurs when work of two

developers who have changed same piece of code in

different ways is merged.

Indirect conflicts are also called dependency

conflicts.Wheneverthere is a changein some API or method,

code using it get affected and can cause conflicts. One

obvious method to determine indirect conflicts is by

compilation which discovers all dependency conflicts. Some

tools may use other methods like dependency graphs to

determine dependency conflicts.

6. Works with Version Control: This parameter

defines either tool is working independently or

interacting with some version control.

7. Testing on merged code: This parameter

determines whether the tool is performing testing on

integrated code to discover more conflicts.

8. Integration with SCM or IDE: This parameter

determines whether workspace awareness is

integrated with Configuration management,

Integrated development environment or working

independently.

9. Conflict discovery before or after check-in: This

parameter determines whether conflicts discovery is

done before the commit performed by developer or

after the commit.

10. Code sharing: This is a medium used for

communication between developers via code. By

using code sharing session, developers can resolve

the conflict by mutually agreeing on code. This

parameter determines whether tool is using code

sharing facility to resolve the conflicts.

11. Conflict information to conflicting developers:
Workspace awareness tools collect the developer’s

workspace information and share it with other

developers. When a conflict is detected, it is

communicated to developers. This parameter

determines whether conflict information is

communicated to conflicting developers or

broadcasted to all the developers of the team.

12. Time of conflicts discovery: Workspace awareness

tools are designed to collect the conflict information

at some particular developer action like at the edit

time, save action or at the time of commit.

5. CONCLUSIONS
The purpose of using version control tool is to integrate and

coordinate the work of different developers located at

geographically dispersed locations. But these tools have

weakness in handling the conflicts and these unhandled

conflicts are reported at delayed stage. Workspace awareness

tools have been designed by researchers to compliment SCM

by providing the conflict information at early stage. However,

these tools overload the developers with notifications, which

makes difficult for developer to find real conflict information.

The purposed tool, AVC, integrates SCM and workspace

awareness. AVC conflict management detects the potential

conflicts at right time without creating disturbance to the

developer. It has easy to use versioning system and provides

full control to developer for communication. The group

awareness module of AVC provides enhanced assistance in

development work.

Another contribution done by this paper is analyzing and

comparing the existing workspace awareness tools, which

helps the team to select the particular tool according to project

requirement.

This research work can be improved in future by adding

automatic merging techniques instead of manual merging. At

present, AVC is detecting higher order conflicts by

compilation. This can also be automated by using dependency

graphs or some other techniques.

6. ACKNOWLEDGMENTS
Miss kaur is thankful to Department of Computer Science,

Guru Nanak Dev University, Amritsar, providing me the

opportunity to carry out my research work.

Table 1. Comparison table

Sr.no Features CollabVs Crystal Palantir Syde Wecode Cloudstudio AVC

1.
Synchronous

Editing
Yes No No No No Yes Yes

2.
Importing

remote code
Yes No

No, shows diff

only

No, only the

difference of two

developers work

with conflict is

shown.

No Yes yes

3.
Setting watch

on others work.
Yes No

No,continuous

event

generation.

No No NA No

4.
Dependency

conflicts

File, method,

class or

interface and

method

Public class

variables and

methods.

Class

signature

Yes(with

compilation)

Yes(with

compilation)

Yes(with

compilation)

Yes(with

compilation

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.10, June 2017

14

5.

Works with

Version

Control

No
Yes,

Mercurial

CVS and

Subversion.
CVS and SVN

With

mainstream

VCS.

Itself Itself

6.
Testing on

merged code.
No Yes No No Yes Yes No

7.

Integration

with SCM or

IDE

Integrated

with Visual

Studio

Independent

tool

Plug-in of

Eclipse

Integrated with

eclipse.

Eclipse plug-

in
Itself

Independent

version

control

8.

Conflict

discovery

before or after

check-in.

Before

Check-in

Before and

after

Before

check-in

Before and after

both
Before Real-time

Before and

after

check-in

9. Code sharing Yes No No No No Yes Yes

10.

Conflict

information to

conflicting

developers

Only

conflicting

members

Repository

relationship

shared with

all

Broadcast Broadcast
Only affected

members

Only

conflicting

members.

Only

conflicting

members

11.

Time of

conflicts

discovery

Editing time Edit time Save action Save action Save action Edit time staging

7. REFERENCES
[1] Carmel, E. 1999. Global software teams: Collaborating

across borders and time zones. Prentice Hall upper

saddle river, NJ,USA.

[2] Lanubile, F. 2009. Collaboration in distributed software

development. Software Engineering, Springer, 174-193.

[3] Ågerfalk, P. J., Fitzgerald, B., Holmström, H., Lings, B.,

Lundell, B., Conchúir, E. O. 2005. A Framework for

considering opportunities and threats in distributed

software development. In Proceedings of the

International Workshop on Distributed Software

Development, Austrian Computer Society.

[4] Gumm, D. C. 2005. Distribution Dimensions in Software

Development Projects: A Taxonomy. IEEE Software

23(5), 45–51.

[5] Ågerfalk, P. J., Fitzgerald, B., Holmström, H.

andConchúir, E. O. 2008. Benefits of Global Software

Development: The Known and Unknown.In Proceedings

of ICSP’08the Software process, international conference

on Making globally distributed software development a

success story. 1-9, Springer-Verlag.

[6] Herbsleb,J.D.,Moitra, D. 2001. Global Software

Development. IEEE Software, volume 18, Issue 2, 16–

20.

[7] Software configuration management: A practical

guide.https://energy.gov/sites/prod/files/cioprod/docume

nts/ scmguide.pdf.

[8] Bendix, L., Magnusson, J.,Pendleton, C. 2012.

Configuration management stories from distributed

software development trenches. IEEE Seventh

International Conference on Global Software

Engineering (ICGSE).

[9] Grinter,Rebecca.E.1996. Supporting Articulation Work

Using Software Configuration Management Systems.

Computer Supported Cooperative Work,Volume 5,

Issue 4,447- 465.

[10] Clatworthy, I. 2007. Distributed version control: Why

and how. In Proceedings of Open Source Development

Conference (OSDC).

[11] Raymond, E. Understanding version-control systems.

Retrieved from http://www.catb.org/esr/version-

control/version-control.htm.

[12] De Souza,Cleidson, R.B., Redmiles, D. and Dourish,

P.2003.” Breaking the code”, moving between private

and public work in collaborative software development.

In Proceedings of ACM SIGGROUPInternational

conference on supporting group work GROUP’03,

Florida, USA, 105-114.

[13] Conradi,R. and Westfechtel,B. 1998.Version Models for

Software Configuration Management. ACM Computing

Surveys, vol.30,232-282.

[14] Bird, C. and Zimmermann, T. 2012. Assessing the value

of branches with what-if analysis. In proceedings of the

ACM SIGSOFT International Symposium on

Foundations of Software Engineering, North Carolina.

[15] Levin,S. and Yehudai, A. 2015.Alleviating Merge

Conflicts with Fine-grained Visual

Awareness.arXiv preprint

arXiv:1508.01872.

[16] Fauzi,S.S.M., Bannerman, P.L. and Staples, M. 2010.

Software Configuration Management in Global Software

Development: A Systematic Map. In Proceedings of 17th

Asia Pacific Software Engineering Conference.

[17] Chen, C. Zang, K. 2013. Team Radar: A Radar Metaphor

for workspace Awareness. Evaluation of Novel

Approaches to Software Engineering. ENASE 2011.

Communications in Computer and Information

Science,vol 275. Springer, Berlin, Heidelberg.

https://energy.gov/sites/prod/files/cioprod/documents/
https://energy.gov/sites/prod/files/cioprod/documents/
http://www.catb.org/esr/version-control/version-control.htm
http://www.catb.org/esr/version-control/version-control.htm

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.10, June 2017

15

[18] Sarma, A., Noroozi, Z. and Hoek Andre, V, D. 2003.

Palantír: raising awareness among configuration

management workspaces. In Proceedings of the 25th

International Conference on Software Engineering, May

03-10, Portland, Oregon.

[19] Dourish, P. and Bellotti, V. 1992. Awareness and

Coordination in shared Workspaces. In Proceedings of

ACM Conference on Computer-Supported Cooperative

Work,Tronto,Ontario,Canada.

[20] “GIT, a free, open source, distributed version control

system,” http://git-scm.com/, [Online; accessed 11-April-

2011].

[21] “Mercurial is a free, distributed source control

management tool.”http://mercurial.selenic.com/, [Online;

accessed 02-April-2011].

[22] Sarma, A. and Hoek, A. vander. 2002. Palantir:

coordinating distributedworkspaces. In Proceedings of

26th International Computer Software and

Applications(CMPSAC.2002), pp. 1093 – 1097.

[23] Jacob, T.Biehl., Mary, C.,Greg, S. and George, G. R.

2007. FASTDash: A visual dashboard for fostering

awareness in software teams. In proceedings of SIGCHI

conference on Human factors in Computing systems

ACM, pp 1313-1322, San Jose, USA.

[24] Lucia, A.D., Fasano, F., Oliveto, R. and Tortora, G.

2007. Recovering traceability links in software artifact

management systems using information retrieval

methods. ACM Transactions on Software Engineering

and Methodology, volume 16, issue 4.

[25] Bang, J.Y., Popescu, D., Edwards, G., Medvidovic, N.,

Kulkarni, N., Rama, G.M., and Padmanabhuni,S. 2010.

CoDesign: a highlyextensible collaborative software

modeling framework. In Proceedings of ACM/IEEE

32nd International Conference on Software Engineering,

vol. 2, pp. 243 –246

[26] Hattori, L. and Lanza, M. 2010. Syde: a tool for

collaborative software development. ACM/IEEE 32nd

International Conference on Software Engineering,vol. 2,

pp. 235 –238.

[27] Lucia, A.D., Fasano, F., Oliveto, R., and Tortora, G.

2010. Fine-grained management of software artefacts:

the ADAMS system. Software:Practice and Experience,

vol. 40, no. 11, pp. 1007–1034.

[28] Dam, H. K and Ghose, A. 2011. An agent-based

framework for distributed collaborative model evolution.

In Proceedings of the 12th International Workshop on

Principles of Software Evolution and the 7th annual

ERCIM Workshop on Software Evolution, NY, USA,

pp. 121–130.

[29] Huyen, P.T.T. and Ochimizu, K. 2012. A Change

Support Model for Distributed Collaborative Work.

CoRR,

[30] Costa, C., Mutra, L. 2013. Version Control in Distributed

Software Development: A Systematic Mapping Study. In

Proceedingsof ICGSE IEEE 8th International Conference

on Global Software Engineering, page 90-99.

[31] Guimaraes, M.L. and Silva, A.R. 2012. Improving early

detection of software merge conflicts. In Proceedings of

International Conference on Software Engineering

ICSE’12, pages 342–352. IEEE Press.

[32] Brun, Y., Holmes, R., Ernst, M. D. and Notkin, D. 2011.

Proactive detection of collaboration conflicts. In

Proceedings of the 8th Joint Meeting ofthe European

Software Engineering Conference and ACM SIGSOFT

Symposium on the Foundations of Software Engineering

(ESEC/FSE11), pp.168–178.

[33] Sarma, A. and Hoek, A. vander 2002. Palantir:

coordinating distributedworkspaces. In Proceedings of

26th International Computer Software and applications

(CMPSAC)pp. 1093 – 1097.

[34] Dewan, P. and Hegde, R. 2007. Semi-Synchronous

Conflict Detection and Resolution in Asynchronous

Software Development. In Proceedings of the 10th

European Conference onComputer Supported

Cooperative Work (ECSCW ’07), pages 159–178.

Springer, London.

[35] Guimaraes, M.L. and Silva, A.R. 2012. Improving early

detection of software merge conflicts. In Proceedings of

International Conference on Software Engineering

ICSE’12, pages 342–352. IEEE Press.

[36] Y, Brun., R, Holmes., Ernst, M. D., and Notkin, D. 2011.

Crystal: Precise and Unobtrusive Conflict Warnings. In

Proceedings of the 19th ACM SIGSOFT Symposium and

the 13th European Conference Foundations of Software

Engineering (ESEC/FSE’11), pp.444-447, NY, USA.

[37] Lanza, M., Hattori, L., and Guzzi, A. 2010. Supporting

collaboration awareness with real-time visualization of

development activity. In Proceedings of 14th European

Conference on Software Maintenance and Reengineering

(CSMR), 202 –211.

[38] Nordio, M., Estler, H.-C., Furia, C. A. and Meyer, B.

2011. Collaborative software development on the web.

arXiv:1105.0768v3.

[39] Hattori, L., Lanza1,M., D’Ambros, M. 2012. A

qualitative user study on preemptive conflict detection.

In Proceedings of ICGSE,IEEE Seventh international

conference on Global Software Engineering.

[40] Dewan, P. 2008. Dimensions of tools for detecting

software conflicts. In Proceedings of ACM international

workshop on Recommendation systems for software

engineering (RSSE’08). Pp 21-25, NY, USA.

[41] Kaur, I., Kaur, P. and Singh, H. 2017. A Comparative

Study of Distributed Version Control Tools. In

Proceedings of 5th International conference on

Advancements in Engineering and Technology (ICAET-

2017), ISBN No. 978-81-924893-2-2.

[42] Damian, D., Izquierdo, L. et al. 2007. Awareness in the

Wild: Why Communication Breakdowns Occur. In

ICGSE ’07: Inter.Conf. on Global Softw. Eng. IEEE

Computer Society,81–90.

[43] Kim, M. 2011. An Exploratory Study of Awareness

Interests about Software Modifications. In CHASE ’11:

Workshop on Cooperative and Human Aspects of Softw.

Eng. ACM, 80–83.

IJCATM : www.ijcaonline.org

http://dl.acm.org/citation.cfm?id=776870&CFID=760079014&CFTOKEN=11337352
http://dl.acm.org/citation.cfm?id=776870&CFID=760079014&CFTOKEN=11337352
http://dl.acm.org/citation.cfm?id=776870&CFID=760079014&CFTOKEN=11337352
http://dl.acm.org/citation.cfm?id=776870&CFID=760079014&CFTOKEN=11337352
http://dl.acm.org/citation.cfm?id=776870&CFID=760079014&CFTOKEN=11337352

