
International Journal of Computer Applications (0975 – 8887) 

Volume 167 – No.11, June 2017 

11 

Middleware, Operating System and Wireless Sensor 

Networks for Internet of Things  

Ritvik Verma 
Department of Electronics and Communication 

Engineering  
M.M.M. University of Technology Gorakhpur, India 

 

Kartikey Srivastava 
Electrical and Electronics Engineering Department 

S.R.M. University Ghaziabad, India 

 

 

ABSTRACT 
With the evolution of Internet of Things (IoT), various sectors 

stand at the door of revolution. Recently, there has been a 

number of proposals for the model of IoT. Despite it, we do not 

have a reference model where all the key components like 

supervisory control and data acquisition (SCADA), machine-to-

machine (M2M) communication, wireless sensor networks 

(WSN) and RFID identification is addressed. This paper reviews 

the architecture, requirements and solutions available for 

framework, middleware, operating system (OS) and, WSN and 

MANET, in regard to IoT environment. In addition to this, it 

highlights the issues and the solutions that can be integrated in 

the model, like software defined networking (SDN). 

Keywords 
Internet of Things (IoT); framework; middleware; operating 

system (OS); software defined networking (SDN); wireless 

sensor networks (WSNs); MANET. 

1. INTRODUCTION  
Internet of Things is a network of sensors and actuators having 

an identification and connected to the internet so as to provide 

sensing and action as a service. The IoT offers a great 

opportunity for electronic components manufacturers, Internet 

service providers and software developers. It is expected by 

2022, IoT entities will cross 212 billion, deployed globally and 

45% of the whole Internet traffic to be comprised of machine to 

machine (M2M) communications [13-15].  

IoT is set to revolutionize various sectors such as (1) 

Manufacturing, (2) Agriculture, (3) Healthcare, (4) 

transportation, (5) Education, (6) Home automation, (7) 

Automobile and many more. The growing interest in IoT calls 

for the need of a reference model that takes into consideration 

factors like heterogeneity, scalability and security amongst 

others.  

This paper contains five sections and provides a brief review of 

the framework that includes Global Sensors Network, 

middleware (MOSDEN), operating system (TinyOS) and 

wireless sensor network. It attempts to briefly review the 

requirements, solutions available and the challenges that has to 

be coped up with. Whereas Section II discusses the architecture 

and its components. Besides this, Section III highlights the 

requirements of middleware and OS as well as their relation and 

examples. It discusses the need to integrate software defined 

networking with IoT. The role and interoperation of Wireless 

sensor networks and MANETs is presented in section IV. Last 

Section V includes the summary of the paper.  

2. DIFFERENT ARCHITECTURES OF 

IoT 
The IoT should be capable of interconnecting billions or trillions 

of heterogeneous sensors and actuators through the Internet, 

therefore it is a critical need for a flexible layered architecture. 

The ever-increasing number of proposed architectures has not 

yet converged to a standard model [7]. Meanwhile, there are few 

models like IoT-A [8] which try to design a common 

architecture based on the analysis of the needs of researchers and 

the industry. 

 

Fig. 1. Internet of Things (IoT) architecture (a) Three-layer. 

(b) Based-on- Middleware  (c) Based-on-SOA  (d) Five-layer 

2.1 Perception Layer 

The first layer, the objects (devices) or perception layer i.e. 

category 1 as shown in Fig. 2, represents the physical sensors of 

the IoT that aim to acquire data and process it. This layer 

includes sensors and actuators to perform different functions. 

Standards need to be set for plug-and-play mechanisms so as to 

enable them to configure heterogeneous objects [9]. The 

perception layer digitizes and transfers data to the Object 

Abstraction layer through secure channels using protocols like 

Bluetooth, Zigbee, etc.. RFID and Electronic Product Code 

(EPC) are essential for identification of the components of this 

layer[10]. 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 167 – No.11, June 2017 

12 

Fig. 2. IoT Device Catagorization on the basis of Computational Capabilities

2.2 Object Abstraction Layer 
The Object Abstraction transfers data produced by the sensors 

(category 3) or the Objects layer to the Service Management 

layer (category 3) through secure channels. Data can be 

transferred through various technologies such as ZigBee, 3G, 

GSM, WiFi, Bluetooth, etc. Furthermore, other functions like 

cloud computing and data management processes are handled at 

this designation. 

2.3 Service Management Layer 
Middleware (pairing) layer or Service Management pairs a 

service with its requester based on addresses and names. This 

layer enables the IoT application programmers to work with 

heterogeneous objects without considering the platform. The 

server receives the query and then forward it according to the 

middleware model and routing algorithm. Also, this layer 

processes received data, makes decisions, and delivers the 

required services over the network wire protocols [10], [16], 

[17]. 

2.4 Application Layer 
The application layer provides the services requested by 

customers. For instance, the application layer can provide 

temperature and air humidity measurements to the customer who 

asks for that data [11]. The importance of this layer for the IoT is 

that it has the ability to provide high-quality smart services to 

meet customers’ needs. The application layer covers numerous 

vertical markets such as smart home [9], smart building, 

transportation, industrial automation and smart healthcare [16]. 

2.5 Business Layer 
The management or business layer manages the overall IoT 

system activities and services. The responsibilities of this layer 

are to build a business model, graphs, flowcharts, etc. based on 

the received data from the Application layer. It is also supposed 

to design, analyse, implement, evaluate, monitor, manage and 

develop IoT system related elements. The Business Layer makes 

it possible to support decision-making processes based on data 

analytics. Management and monitoring of the underlying four 

layers is achieved at this layer. Moreover, this layer compares 

the output of each layer with the expected output to enhance 

services, security and maintain users’ privacy [10], [16]. 

The architectures that corporates network stacks (like the three-

layer model) fails to comply with IoT requirements since, e.g., 

the “Network Layer” does not heed to needs like low power 

consumption, e.g., low profile connection over 6LoWPAN. 

More importantly, the layers are supposed to be run on resource-

constrained devices while having a layer like “Service 

Composition” in SOA-based architecture takes rather a big 

fraction of the time in M2M communications.  

3. MIDDLEWARE AND OPERATING 

SYSTEM 
The middleware for IoT acts as a bond joining the heterogeneous 

domains of applications communicating over heterogeneous 

interfaces. It is responsible for increasing the level of abstraction 

for the developers. It often runs on top of OS to providing 

different functionalities. It runs on category 3, 4 and 5 of Fig. 2 

depending on the requirements and the case. 

The composite structure of IoT embodies a wide variety of 

machines ranging from sensors powered by 8-bit 

microcontrollers to devices powered by advanced processors. 

Neither conventional UNIX/Windows, nor the existing Real 

Time Operating Systems are able to meet the demands of 

heterogeneous IoT applications. We require an operating system 

that incorporates the essential features for IoT like 

interoperability, scalability and portability. 

 

Fig. 3. Generic model of IoT OS 

3.1 Requirements of Middleware 
The following is a list of major technical challenges that needs to 

be addressed by middleware solutions for the IoT [32]: 

 Interoperability: The IoT poses significant amount of 

challenges for the middleware initiatives since 

dissimilar devices are required to link and 

communicate with one another for information 

exchange. Challenges like these give room for 

enhanced scope of rigorous research for designing of a 

middleware that can imbibe majority of the diverse 

pool of devices within its coverage and provide room 

for expansion into the domain of devices yet to come 

in market. [3] Presents an approach in which a sensor 

based on IEEE 1451 standards is used but presents a 

significant drawback as it cannot integrate a variety of 

sensors within itself. In this regard the semantic web 

approaches as the ones presented in [4] have an edge 



International Journal of Computer Applications (0975 – 8887) 

Volume 167 – No.11, June 2017 

13 

over IoTs since interoperability is a constructive 

feature of the former. 

 

 
Fig. 4. Middleware Deployment at Worker Nodes and Cloud 

 Scalability:  It counts as one of the major issues to be 

tackled when it comes to IoTs since these solutions 

have to support and communicate effectively with a 

large number of devices.  This challenge emerges as a 

result of having thousands of devices interacting with 

it, but fortunately, almost in one place. A reliable IoT 

middleware is required to effectively manage 

scalability issues so as to enable the operation of the 

basic functions irrespective of the expanse of the 

environments [5]. Scalability happens to be one of the 

drawbacks of the proposed approach in [4], but a 

pivotal advantage in [3]. 

 Abstraction: Provision of abstraction is a must at 

various levels for a middleware operating in an IoT 

environment. It is required for enabling ease in 

managing heterogeneous input and output hardware 

devices, hardware and software interfaces, data 

streams, physicality and the development process. 

 Spontaneous interaction: These come into picture 

when new objects enter the wireless range of the other 

objects already operating in the IOT environment [15]. 

In such cases middleware is required to manage 

entities in an arrive-and-operate manner as presented 

in [6]. 

 Flexible Infrastructure: A heterogeneous environment 

like the IoT must be capable of distinctly identifying 

each device operating under it and managing the 

associated resources without the requirement of 

additional infrastructure [5]. Using a dedicated server 

for resource management does not hold in the IoT, 

because of the high distribution and mobility of 

devices.   

 Multiplicity: Two important multiplicity challenges 

should be dealt with while design an IoT middleware 

environment. First, the devices that operate under it 

must communicate with other entities simultaneously 

[5]. Second, a device participating in an IoT 

environment is required to select the most suitable 

services from a massive set of services, because such 

devices will often rely on services that are available at 

other nearby devices. They also have to deal with the 

results returned from different services, which often 

contradict with one another. 

 Security and Privacy: Automatic communication of 

real-life objects poses a huge implication on the 

concerns of trust, security and privacy. Embedded 

RFID tags in the personal devices, groceries and even 

in our clothes can be triggered to respond with their ID 

and other information. This type of surveillance 

influences vital aspects of our everyday life. The 

assurance and support of security and privacy has to be 

taken into account as a major feature of the 

middleware design for an IoT [18]. In SOA-based 

operations, the functions related to security and 

privacy can be either be constructed on a single layer 

or distributed among all other layers. In the latter case, 

other issues have to be considered, so as not to affect 

the system’s performance or introduce excessive 

overhead. 

 Resource Discovery and Management: The 

heterogeneous devices and heterogeneous resources 

need to be discovered and managed. This needs to be 

automated too. Middleware is required to discover, 

identify and managed to maintain an acceptable 

Quality of Service (QoS). 

3.2 Requirements of OS  
 Architecture: Kernel architecture can be structured in 

either monolithic, layered or modular microkernel 

manner. Small memory footprint and less expensive 

modular interaction are the chief features the 

monolithic kernel. Better performance is ensured in this 

case as the control is not exchanged between kernel and 

microkernel as in the case of microkernel architecture. 

However, in terms of sustainability, the modular 

architecture proves better than monolithic, as in the 

event of failure of a module in the former doesn’t result 

in whole system crash. Also that newer modules can be 

easily loaded into the memory without disturbing the 

structure of the system makes the modular architecture 

a favorable choice. Reliability of the system can easily 

be ensured while configuration of the modules in case 

of modular microkernel architecture. Another problem 

associated with the monolithic kernel is- as the kernel 

code becomes long and complex, it becomes harder to 

understand and hence, configure. The third approach of 

layered architecture is less modular as compared to 

microkernel. But it is more manageable, reliable and 

less complex than monolithic kernel. 

 Programming Model: Out of the many factors that 

determine the structure of the programming model, 

parallelism, memory hierarchy and concurrency can be 

considered as the chief decisive factors. The resultant 

programming model affects the system performance, 

productivity, reliability, security and flexibility. The 

architecture of the programming model is aimed at 

optimum utilization of the underneath architecture for the 

applications running on top. The programming model 

also focuses on increasing the developer productivity. 

The role of the programming language is to abstract this 

underlying system The APIs and programming languages 

implement a programming model and abstracts 

underlying system. Therefore, the programming model 

should equip the programmer with the liberty to make the 

best possible of the system architecture. Assembly 

language is the best alternative to interface with the 

hardware but support to high level languages is required 

for easy development. 

 Scheduling: The scheduling algorithm plays a decisive 

role in determining the latency (turnaround time, 

response time), throughput, fairness and wasting time as 

a result of which the whole scheduling strategy is 
   



International Journal of Computer Applications (0975 – 8887) 

Volume 167 – No.11, June 2017 

14 

affected. Given the variety of the IoT tasks, there are 

many applications with strict time constraints. In order to 

be capable of meeting the deadlines in real, the scheduler 

must operate in real time so that tasks are accomplished 

within the allotted time span. Moreover, the schedulers 

should be energy efficient and multitasking in IoT 

systems. 

 Networking: Internet With internet connectivity being 

one of the fundamental requirements of the IoT 

environment, such devices should be capable of operating 

with low power consumption. Conventional TCP/IP 

stacks and WSN networking technologies are not suitable 

for IoT. While former fails to achieve the goals of less 

complexity, less memory and low power, latter needs 

intermediate proxies to enable different communication 

platforms to converse with peers. The individual 

requirements of smart systems can be fulfilled by WSN 

protocols like ZigBee, Bluetooth, Z-Wave, Wavenis and 

many more as such yet these platforms fail to suit the 

large scale communication requirements of IoT [19]. An 

open standard that allows seamless communication over 

the internet is required. Apart from it, the IoT stack 

should be light-weight, reliable and Internet-enabled. 

Flexibility of the stack is also a chief area of concern as it 

enables the configuration of a large number of devices 

with minimal changes in it.  The support to Ipv6 is 

mandatory in IoT systems to have unique identities in 

tremendously large networks. Mechanisms like 

6LoWPAN (Low-power Wireless Personal Area 

Network over IPV6), RPL (IPv6 Routing Protocol for 

Low-Power and Lossy Networks) and CoAP 

(Constrained Application Protocol) are designed for low-

power systems. Header compression and inclusion of 

minimal features help in keeping the protocols viable for 

IoT. 

 Memory Management: Memory management provides an 

abstraction to programming taking care of things By 

performing tasks like caching, memory allocation/de-

allocation, virtual memory, logical-physical address 

mapping, memory protection at the back-end the memory 

management module abstracts the programming 

structure. In IoT devices, where simple and small kernel 

is a primary goal, many IoT OSes do not have Memory 

Management Unit (MMU) and Floating Point Unit. The 

application type and the support of the underlying 

platform also plays an important role in the performance 

of the memory management functions. The memory 

allocation can either be static or dynamic. The static 

memory allocation is simpler but flexibility of run-time 

memory acquirement can be ensured by the dynamic 

approach. 

3.3 Relation between Middleware and OS 
High end computational devices, low end computational devices 

and sink nodes have operating system with comprehensive 

network stack running on them to communicate within a local 

network or through internet using IPv6. For easing the 

development of applications, level of abstraction needs to be 

increased at all levels. Depending on the level in the hierarchy 

we have different middleware available to us. 

TinyDB is a query-based middleware based on TinyOS with 

good data management and power efficiency but with poor 

middleware functionality [20, 21]. TinyCubus is another 

middleware based on TinyOS which is cross layer, generic and 

flexible and that can manage new application requirements [25]. 

We do not have a versatile solution for all layer. So, 

middlewares at different levels need to interact efficiently and 

reliably. One of the combination is MOSDEN (node-level 

middleware) [26] running on top of Android and interacting with 

Global Sensors Network (GSN, Cloud IoT middleware). 

Application development is plugin based and communication is 

REST based peer-to-peer over HTTP. Sensors are registered 

with GSN and the data can be accessed using the platform. 

Other solutions are TWINE [22], Ninja Blocks [23] and Smart 

Things [24] amongst others. Having their own proprietary 

software installed on the nodes, these do not provide an 

opportunity for development. 

3.4 Examples of Middleware and OS 
Few examples of OS are discussed here. Contiki [27]                                       

is a portable and flexible OS implementing a hybrid   

protothread model, which supports both event-based and multi-

threading. RIOT [28] has been developed in two parts, hardware 

dependent and hardware independent. Hardware specific part is 

configured to implement the solution in C. TinyOS [20] is an OS 

based on components (software modules around hardware). It is 

written in NesC. Hardware access is simple and it implements 

Berkeley Low Power Internet Stack (BLIP). Other OS options 

are LiteOS [30], FreeRTOS [29], and OpenTag [31] amongst 

others. 

There is a diverse range of middleware solutions depending on 

the layer and level of abstraction (e.g. local or node level) and 

implementation domains (e.g. WSN, RFID, etc.). There are 

various types of middleware [32] based on the nature of 

operation like event-based, service-based, VM-based, agent-

based, tuple-based, database-based and application specific. 

Other solutions for middleware are RUNES (event-based), 

TinySOA (service oriented), Maté (VM based), COUGAR 

(database oriented) and TinyLIME (tuple-space). 

 

 
Fig. 5. Model of VM-Based Middleware 

3.5 Software defined Networking 
The steep rise in the number of connected devices to the internet 

due to its service model and M2M communication is going to 

result in overloading and paralysis of the network. Lack of single 

protocol standards add on to the complex control problems. 

Software defined networking aims to solve the problem. It 

reinforces the network, increases bandwidth, reduce latency and 

linkup time. There are numerous merits of SDN that includes, 

efficient control of traffic, effective use of resource, ease in data 

acquisition, reliable data analysis, traffic pattern analysis 

(debugging tool). 



International Journal of Computer Applications (0975 – 8887) 

Volume 167 – No.11, June 2017 

15 

Some of the available solutions for SDN are OpenRoad, Oclin, 

OpenRadio, OpenRAN, CellSDN and SoftMoW. One of the 

popular solution is OpenFlow [33], which can be enabled in 

switches and other products. Every incoming flow is evaluated 

independently and the respective task is performed in 

accordance with the matching flow, following the unified control 

protocol. 

 
Fig. 6. SDN – IoT Integration Architecture 

SDN can be implemented by implementing a OpenFlow-like 

protocol in IP layer. One node acts as controllerwhile others are 

controlled device. Virtual Machine (VM) can be used to 

simulate the network behaviour with OpenFlow. SDN enabled 

hybrid network  implemented on NetFPGA reduces latency and 

linkup time, where the control circuit and packet switching is 

governed by unified control protocol. 

4. WIRELESS SENSOR NETWORKS AND 

MANET 

4.1 Wireless Sensor Networks (WSNs) 
A Wireless Sensor Network consists of spatially distributed 

sensor to monitor physical or environmental conditions such as 

temperature, sound, vibration, pressure, motion or pollution and 

to cooperatively pass their data through network to a main 

location [34]. Applications of WSN includes healthcare, 

industrial automation, indoor/outdoor environmental monitoring, 

inventory location awareness etc. 

          
Fig. 7. SDN OpenFlow Switching 

Today, the aim is to build on the already existing sensor 

network, so as to be able to exploit the available resources and, 

to control actuators and acquire data using sensor, remotely over 

the internet. There are two types of wireless sensor network: (1) 

which can communicate over IP protocol. (2) which cannot 

communicate over it. 6LoWPAN/IPv6 offers IP solutions while 

Zigbee, Z-Wave, Wavenis and Insteon offers non-IP solutions. 

LoWPAN [35] is made up of LoWPAN. Edge router plays an 

important role as it routes traffic in and out of LoWPAN. Each 

LoWPAN node has a unique IPv6 address. 6LoWPAN does not 

require an infrastructure to operate and can operate as an ad hoc 

LoWPAN. 

 
Fig. 8. Interaction between Heterogenous WSN 

Using IP protocol for WSN offers us the opportunity to exploit 

web services. Constrained Application Protocol (CoAP) has 

been developed for deployment in IoT environment. Its effective 

for resource constrained setup [35]. For IoT and M2M, HTTP is 

too bulky with high power and bandwidth consumption. It can 

run on any device which is User Datagram Protocol (UDP) or its 

equivalent compatible. The protocol has been provided with 

standardized framework by the joint collaboration Internet 

Engineering Task Force (IETF) and CoRE group and is still 

evolving. CoAP needs to consider optimizing length of datagram 

and satisfying REST protocol to support URI (Uniform 

Resource Identifier). It also needs to provide dependable 

communication based on UDP protocol. CoAP features are as 

follows [2]: 

 Constrained Web Protocol fulfilling M2M 

requirements. 

 Security binding to Datagram Transport Layer Security 

(DRLS). 

 Asynchronous message exchanges. 

 Lower header overhead and parsing complexity. 

 Uniform Resource Identifier (URI) and Content –type 

support. 

 Simple proxy and caching capabilities. 

 UDP binding with optimal reliability supporting unicast 

and multicast requests. 

 A stateless HTTP mapping. Allowing proxies to be 

built proving access to CoAP resources via HTTP in a 

uniform way or for HTTP simple interfaces to be 

realized alternatively over CoAP. 

REST consists of coordinated set of guidelines and rules for 

building effective application architecture. The HTTP transfer 



International Journal of Computer Applications (0975 – 8887) 

Volume 167 – No.11, June 2017 

16 

protocol lies over the RESTful architecture [36]. Under the 

HTTP protocol, the client-server communicates via request-

response over the internet. The client could then have its own 

logic to present the response to format the communicated data. 

Contrary to the standardized SOAP architecture that strictly 

relies on the provided documentation, the RESTful architecture 

is quite flexible. The REST client-servers can communicate 

using common formats like XML, JSON, text etc. The messages 

can be exchanged in most of the HTTP methods. Also, the 

REST HTTP protocol does not solely depend on a strict service 

definition. The important constraints which is followed by the 

HTTP transfer protocol in accordance to REST include 

cacheable responses, uniform client-server interaction, 

statelessness where no client information is stored during request 

on the server, layered system and uniform interface.   

4.2 MANET 
MANET stands for Mobile Ad hoc Network. In this network, 

several mobile nodes are present in the pool which can 

independently interact with each other wirelessly. It does not 

follow a strict top-down architecture.  Each device becomes an 

inherent part of the network infrastructure. The need for central 

communication is obviated since each device can freely 

communicate with other devices in the pool. Some of the 

features of Mobile Ad hoc Networks include low latency, real 

time position location, secure transfer, high bandwidth and 

supports over the air-rekeying. 

In a MANET driven system, there are several nodes 

interconnected. At any time, several mobile devices can join or 

leave the network pool without hindering the efficiency of data 

transmission. The data to be transmitted can be routed through 

any of the unique passages connecting different nodes. This 

makes the network reliant, robust and resilient.  

MANET can be further divided into following categories 

depending on the area of deployment: 

 Military or Tactical MANET 

 Smart Phones ad hoc Network (SPANs) 

 Vehicular ad hoc Network (VANET) 

 Internet based Mobile ad hoc Network (iMANET) 

Their easy deployments followed with high bandwidth 

efficiency, lower network overhead, lower energy consumption 

and better reachability stand as a proof for the underlying 

potential in this technology. 

4.3 Integration of WSN and MANET 
While WSN is a network of devices, MANET is a network of 

people. Their convergence greatly improves data acquisition and 

digital record of physical environment. The idea is to create 

dynamic cluster of network according to a protocol. This 

arrangement offers flexibility, e.g., if data is marked urgent, 

WSN-MANET integration support can be dynamically activated 

for speedy execution of the task, which would otherwise be kept 

inactive to keep power consumption low. It is cost effective and 

also result in efficient network. There usually is a tradeoff 

between coverage range, data rate and routing support. 

For physical layer Bluetooth Low Power (BLE) and Zigbee is 

suitable. While IPv6 Routing Protocol for Low-power and lossy 

networks (RPL) is suitable for networking layer and can operate 

over any physical layer. 

 

5. CONCLUSION 
There is growing interest in IoT and it is set to change our lives 

in all realms. Its architecture has multiple layers employing 

multiple technologies. Each layer has its own purpose, 

requirements and challenges. There is need to understand them, 

innovate and employ technologies to complement one another. 

The five-layer architecture is the answer to IoT requirements of 

protocols for resource-constrained devices. CoAP, MQTT, 

6LoWPAN, etc. are essential for the reference model that is 

surfacing, for IoT.  

Middleware acts as an interface between developers and objects. 

Its increases the level of abstraction. It operates on top of OS 

performing different functions for different categories (fig. 2). 

They have functional and non-functional requirements like 

interoperability, scalability, security and privacy amongst others. 

The model for middleware is of different types like database-

oriented, tuple-space, service-based, etc.  

Operating system requirements for IoT solutions is different 

from traditional OS and real time OS. Scalability, 

interoperability, scheduling and networking demands are 

specific for IoT. Some of the available solutions are Contiki, 

RIOT, FreeRTOS and TinyOS. 

Stupendous increase in connected devices threatens to paralyze 

the internet if an efficient method of controlling the network is 

not sought. Software Defined Networking (SDN) offers to 

effectively control the traffic, analyze data and acquire data. 

OpenFlow is a suitable solution for it. 

Wireless sensor networks connected by non-IP protocol has been 

here for a while now. IoT demands them to be connected to the 

internet for performing task and acquiring data remotely. 

6LoWPAN is a low profile protocol to implement that for 

resource constrained devices. CoAP following REST criteria 

exploits the web services. 

MANET is a significant part of IoT which is required to acquire 

data effectively and make decisions soundly. Integrating WSN 

and SDN is necessary for their effective use in IoT environment. 

The challenges that IoT poses like heterogeneity, scalability, 

flexibility, security and privacy is yet to be surmounted. 

Amongst all models, a reference model is required to come up 

and standards need to be set for commercial deployment of more 

IoT devices. 

6. REFERENCES 
[1] H. Zhou, The Internet of Things in the Cloud: A 

Middleware Perspective, 1st ed. Boca Raton, FL, USA: 

CRC, 2012. 

[2] C. Perera, A. B. Zaslavsky, P. Christen, and D. 

Georgakopoulos, “Context aware computing for the 

Internet of Things: A survey,” IEEE Commun. Surveys 

Tuts., vol. 16, no. 1, pp. 414–454, May 2013. 

[3] K. Aberer, M. Hauswirth, A. Salehi, “Middleware support 

for the Internet of Things,” In: 5th GI/ITG KuVS 

Fachgespräch Drahtlose Sensornetze, Berlin, Germany, 

Sep. 2006.  

[4] A. Gómez-Goiri, D. López-de-Ipiña. “A Triple Space-

Based Semantic Distributed Middleware for Internet of 

Things,” In LNCS Vol. 6385, pp. 447-458. Springer, July 

2010.  



International Journal of Computer Applications (0975 – 8887) 

Volume 167 – No.11, June 2017 

17 

[5] F. Mattern, C. Flörkemeier. From the Internet of Computers 

to the Internet of Things. Informatik-Spektrum, 33(2), 

2010.  

[6] K. Paridel, E. Bainomugisha, Y. Vanrompay, Y. Berbers,  

and W.D. Meuter,  "Middleware for the Internet of Things, 

Design Goals and Challenges",  ECEASST Journal, ISSN 

1863-2122, 2010. 

[7] S. Krco, B. Pokric, and F. Carrez, “Designing IoT 

architecture(s): A European perspective,” in Proc. IEEE 

WF-IoT, 2014, pp. 79–84. 

[8] EU FP7 Internet of Things Architecture Project, Sep. 18, 

2014. [ Online ]. Available: http://www.iot-a.eu/public. 

[9] Z. Yang et al., “Study and application on the architecture 

and key technologies for IOT,” in Proc. ICMT, 2011, pp. 

747–751. 

[10] M. Wu, T. J. Lu, F. Y. Ling, J. Sun, and H. Y. Du, 

“Research on the architecture of Internet of Things,” in 

Proc. 3rd ICACTE, 2010 , pp. V5-484–V5-487. 

[11] L. Tan and N. Wang, “Future Internet: The Internet of 

Things,” in Proc. 3rd ICACTE, 2010, pp. V5-376–V5-380. 

[12] M. A. Chaqfeh and N. Mohamed, “Challenges in 

middleware solutions for the Internet of Things,” in Proc. 

Int. Conf. CTS, 2012, pp. 21–26. 

[13] D. Evans, “The Internet of things: How the next evolution 
of the Internet is changing everything,” CISCO, San Jose, 

CA, USA, White Paper, 2011. 

[14] J. Gantz and D. Reinsel, “The digital universe in 2020: Big 
data, bigger digital shadows, and biggest growth in the far 

east,” IDC iView: IDC Anal. Future, vol. 2007, pp. 1–16, 

Dec. 2012. 

[15] S. Taylor, “The next generation of the Internet 

revolutionizing the way we work, live, play, and learn,” 

CISCO, San Francisco, CA, USA, CISCO Point of View, 

2013. 

[16] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future 
Internet: The Internet of Things architecture, possible 

applications and key challenges,” in Proc. 10th Int. Conf. 

FIT, 2012, pp. 257–260. 

[17] M. A. Chaqfeh and N. Mohamed, “Challenges in 

middleware solutions for the Internet of Things,” in Proc. 

Int. Conf. CTS, 2012, pp. 21–26. 

[18] L. Atzori, A. Iera and G. Morabito, “The Internet of Things: 

A Survey”, Computer Networks, 54(15): 2787-2805, 2010. 

[19] H. Will, K. Schleiser, and J. Schiller. A Real-Time Kernel 

for Wireless Sensor Networks Employed in Rescue 

Scenarios. In Workshop on Practical Issues in Building 

Sensor Network Applications (SenseApp), 2009. 

[20] TinyOS [Online]. Available: www.tinyos.net/ 

[21] TinyDB [Online]. Available: 

tinydb.readthedocs.io/en/latest/extend.html 

[22] TWINE [Online]. Available: supermechanical.com 

[23] NinjavBlocks [Online]. Available: ninjablocks.com 

[24] Smart Things [Online]. Available: smartthings.com 

[25] P.J. Marr n, A. Lachenmann, and D. Minder, "TinyCubus: 

A Flexible and Adaptive Framework for Sensor Networks," 

in 2nd European Workshop on Wireless Sensor Networks, 

2005, pp. 278-289. 

[26] C. Perera, P. P. Jayaraman, A. Zaslavsky, P. Christen and 

D. Georgakopoulos, "MOSDEN: An Internet of Things 

middleware for resource constrained mobile devices", Proc. 

47th Hawaii Int. Conf. Syst. Sci. (HICSS), pp. 1053-1062, 

2014. 

[27] Contiki [Online]. Available: www.contiki-os.org. 

[28] RIOT [Online]. Available: www.riot-os.org. 

[29] FreeRTOS [Online]. Available: www.freertos.org. 

[30] LiteOS [Online]. Available: 

http://lanterns.eecs.utk.edu/software/liteos/ 

[31] OpenTag[Online].Available:   

www.indigresso.com/wiki/doku.php?id=opentag:main. 

[32] Mohammad Abdur Razzaque, Marija Milojevic-Jevric, 

Andrei Palade and Siobhan Clarke, "Middleware for 

Internet of Things: A Survey", IEEE Internet of Things 

Journal, vol. 3, no. 1, pp. 70-95 . 

[33] OpenFlow [Online]. Available: 

www.opennetworking.org/sdn-resources/openflow/   

[34] Wireless Sensor Networks [Online]. Available:   

www.scribd.com/doc/50634760/MANET-vs-WSN 

[35]  L. Mainetti, L. Patrono, and A. Vilei, "Evolution of 

wireless sensor networks towards the Internet of Things: A 

survey". Proceedings of the 19th International Conference 

on Software, Telecommunications and Computer Networks 

(SoftCOM 2011). Split, Croatia, 2011, pp. 1-6. 

[36] Fielding, Roy Thomas (2000). Chapter 5: Representational 

State Transfer (REST). 

 

IJCATM : www.ijcaonline.org 


