
International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.13, June 2017

48

Dynamic Time Quantum based Round Robin CPU

Scheduling Algorithm

Yosef Berhanu
Department of Computer

Science
University of Gondar

Ethiopia

Abebe Alemu
Department of Computer

Science
University of Gondar

Ethiopia

Manish Kumar Mishra
Department of Computer

Science
University of Gondar

Ethiopia

ABSTRACT

In multiprogramming environment, CPU scheduling is the

process to determine the most efficient way to service the

requests of the processes waiting in the ready queue to be

executed. The CPU scheduling algorithms focus on

maximizing CPU utilization by minimizing waiting time,

turnaround time and number of context switches for a set of

processes. In time shared systems the preferred choice is

Round Robin (RR) CPU scheduling in which performance of

the system depends on the choice of the time quantum. This

paper presents a dynamic time quantum based Round Robin

CPU scheduling algorithm to enhance the CPU performance

using the features of an Improved Round Robin (IRR) and an

improved Round Robin CPU scheduling algorithm with

varying time quantum (IRRVQ). The experimental and

simulation results show that the proposed algorithm is proven

better than the RR, IRR and IRRVQ in terms of decreasing

the average waiting time, average turnaround time and

number of context switches.

General Terms

CPU Scheduling, Operating System

Keywords

CPU Scheduling, Round Robin, Dynamic Time Quantum,

Waiting Time, Turnaround Time

1. INTRODUCTION
In multiprogramming environment multiple processes are

being kept in memory for maximum utilization of CPU [1].

Switching CPU among waiting processes in the ready queue

and running some process all the time can maximize the CPU

utilization [2]. The CPU scheduling algorithms focus on

maximizing CPU utilization by minimizing waiting time,

turnaround time and number of context switches for a set of

processes. This study focuses on improving the efficiency of

Round Robin CPU scheduling algorithm by minimizing

waiting time, turnaround time and number of context switches

using dynamic quantum size.

1.1 Performance Parameters
A process can compete for the CPU as soon as it is loaded

from input queue to the ready queue. CPU should be busy all

the time to optimize the systems performance. CPU is

allocated to a waiting process from the ready queue whenever

CPU is free [2]. The total CPU time needed by a process to

complete execution is known as burst time of the process. The

time a process loaded from input queue to the ready queue is

known as arrival time of the process. When a process loaded

into the ready queue, it may have to wait for some time before

CPU is allocated to it. The total time a process is waiting for

the CPU in the ready queue is known as waiting time of the

process. The sum of burst time and waiting time is known as

turnaround time of the process. When CPU becomes idle, it

switches to another process waiting in the ready queue. This

process is known as context switch. In the proposed dynamic

time quantum based Round Robin (DTQRR) CPU scheduling

algorithm, three parameters namely waiting time, turnaround

time and number of context switches have been considered for

performance evaluation. Our focus is to minimizing waiting

time, turnaround time and number of context switches using

dynamic quantum size by scheduling the processes from the

ready queue effectively.

1.2 CPU Scheduling Algorithms
CPU scheduling algorithms allocate CPU to the processes

waiting in the ready queue to be executed. Different CPU

scheduling algorithms have been proposed by the research

scholars. The process that loaded first from input queue to the

ready queue gets the CPU first in First-Come-First-Served

(FCFS) CPU scheduling algorithm. In this non-preemptive

approach, CPU is occupied by one process until it finishes

execution or terminates [2]. Since the average waiting time is

quite long in FCFS, it is not suitable for the time sharing

systems. Shortest Job First (SJF) CPU scheduling assigns the

CPU to the process having minimum burst time. Compared to

FCFS, SJF gives better performance in terms of reducing

average waiting time and turnaround time. SJF is also not

suitable for the time sharing systems since it does not give fair

CPU time to the waiting processes in the ready queue. A

process with highest priority gets the CPU time first in the

Priority scheduling algorithm. Priority scheduling algorithm is

also not considered appropriate for time sharing systems

because of the same reason. Round Robin (RR) CPU

scheduling is considered suitable for time sharing systems. A

fixed time slice of the CPU is assigned to each process

waiting for execution in the ready queue. This algorithm gives

equal preference to all waiting processes. The performance of

RR scheduling depends on time quantum. Time quantum is

the CPU time that is assigned to each process. If time

quantum is very large, RR behaves like FCFS scheduling. If it

is too short, number of context switches increased. Time

quantum affects the processes waiting time, turnaround time,

response time and number of context switches. In this paper

we have proposed a new algorithm that combined the

approaches proposed in IRR [3] and IRRVQ [4] to reduce the

waiting time, turnaround time and number of context

switches.

2. RELATED WORK
Several CPU scheduling algorithms have been proposed by

research scholars for improving the system performance. We

have reviewed some CPU scheduling algorithms that are

relevant to our study. A fixed time quantum value is allocated

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.13, June 2017

49

to the processes waiting in the ready queue, only in first cycle

and then SJF is used to select next process for execution in

“An Improved Round Robin Scheduling Algorithm for CPU

Scheduling” [1]. The CPU is allocated to the first process

from the ready queue for a time interval of up to one time

quantum in “An Improved Round Robin (IRR) CPU

Scheduling Algorithm” [3]. After completion of process’s

time quantum, the remaining CPU burst time of the currently

running process is compared with the time quantum. If the

burst time of the currently running process is less than one

time quantum, the CPU is again allocated to the same process

so that it can finish execution and removed from the queue. It

reduces the waiting time of the process in the ready queue and

hence improves the performance. “An improved Round Robin

CPU scheduling algorithm with varying time quantum

(IRRVQ)” combines the features of SJF and RR scheduling

algorithms with varying time quantum [4]. In this approach

initially the processes in the ready queue are arranged in the

ascending order of their remaining burst time. CPU is

allocated to the processes using RR scheduling with time

quantum value equal to the burst time of first process in the

ready queue. After each cycle, processes in the ready queue

are arranged in the ascending order of their remaining burst

time and CPU is allocated to the processes using RR

scheduling with time quantum value equal to the remaining

burst time of first process in the ready queue. In “Self-

Adjustment Time Quantum in Round Robin Algorithm” [5],

time quantum is continuously adjusted according to the

remaining burst time of the processes. The job mix order for

the algorithm in [5] is used in “Dynamic Quantum with

Readjusted Round Robin Scheduling Algorithm” [6]. A robust

time quantum value has been proposed in [7] after arranging

the process in the ascending order and calculating the average

of minimum and maximum burst time of the processes

waiting in the ready queue. In “Burst Round Robin (BRR)”, a

new weighting technique is introduced for CPU Schedulers

[8]. The processes having smaller burst time are given more

CPU time, so that these processes can be removed from the

ready queue in a short time span. Debashree Nayak et. al. [9]

did the similar work as [5] [6]. After every cycle of execution,

the optimal time quantum is assigned to each process waiting

in the ready queue. Optimal time quantum is the average of

highest CPU burst time and the median. In the “New Method

of Adaptive CPU Scheduling using Fonseca and Fleming’s

Genetic Algorithm” [10], the running processes are scheduled

based on three parameters of CPU. These parameters are burst

time, I/O service time, and priority of processes. A “New fare-

share scheduling with weighted time slice” [11] assigns a

weight to each process waiting in the ready queue. The

process having the minimum burst time is assigned the

highest weight. Weighted time slice method is used to

calculate the time quantum dynamically. “A new dynamic

Round-robin and SRTN algorithm using variable original time

slice and dynamic intelligent time slice for soft real time

system” [12] calculates the original time slice suited to the

burst time of each processes and then dynamic ITS

(Intelligent Time Slice) is found out in conjunction with the

SRTN algorithm [2]. The scheduling algorithm “A New

Proposed Two Processor Based CPU Scheduling Algorithm

with Varying Time quantum for Real Time Systems” [13]

uses two processors, one processor is used to execute CPU-

intensive processes only and the other processor is used to

execute I/O-intensive process. This gives better result in a two

processor environment than [6]. “A New Round Robin based

Scheduling Algorithm for Operating Systems: Dynamic

Quantum Using the Mean Average” [14] is using dynamic

time quantum equal to the average burst time of the processes

waiting in the ready queue after every cycle. In the algorithm,

“Fair Priority Round Robin with Dynamic Time Quantum”

[15], the processes are scheduled for execution from ready

queue by giving importance to both the user priority and

shortest burst time priority. In this approach, deciding factor

for individual time quantum for each process is based on both

user priority and the burst time priority. “An Additional

Improvement in Round Robin (AAIRR) CPU Scheduling

Algorithm” [16] propose an improvement in the conventional

RR and IRR [3] CPU scheduling. This approach is similar to

the IRR but it chooses the process for execution from the

ready queue whose remaining burst time is shortest. “A New

Improved Round Robin (NIRR) CPU Scheduling Algorithm”

[17] is again an improvement of IRR [3] which uses two

queues, ARRIVE queue and REQUEST queue. It is giving

significance performance improvement compared to IRR. “An

Optimized Round Robin CPU Scheduling Algorithm with

Dynamic Time Quantum” [18] uses the dynamic time

quantum assigned to the processes waiting in the ready queue.

The processes are first arranged in the ascending order of their

burst time and the dynamic time quantum is set equal to the

mean of the burst times of the processes after every cycle of

execution. They compare their results with some existing

algorithms and found that the proposed algorithm provides

better performance metrics.

3. PROPOSED DTQRR CPU

SCHEDULING ALGORITHM
The proposed dynamic time quantum based Round Robin

(DTQRR) CPU scheduling algorithm takes the advantage of

the approaches proposed in IRR [3] and IRRVQ [4]. It

combines these two approaches to reduce the waiting time,

turnaround time and number of context switches

Initially the processes in the ready queue are arranged in the

ascending order of their remaining burst time. Time quantum

is assigned equal to the burst time of first process in the ready

queue. CPU is allocated to the first process from the ready

queue for a time interval of 1 time quantum. After completion

of currently running process’s time quantum, the remaining

burst time is checked. If it is less than 1 time quantum, CPU is

allocated again to the same process for remaining burst time.

In this case this process finishes execution and removed from

the ready queue. The scheduler then proceeds to the next

process in the ready queue. Otherwise, if the remaining burst

time of the currently running process is more than 1 time

quantum, the running process is put at the tail of the ready

queue. The CPU scheduler then selects the next process in the

ready queue. After each cycle, processes in the ready queue

are arranged in the ascending order of their remaining burst

time and CPU is allocated to the processes using RR

scheduling with time quantum equal to the burst time of first

process in the ready queue.

Following is the proposed DTQRR CPU scheduling algorithm

1. Make a ready queue RQUEUE of the processes

submitted for execution.

2. DO steps 3 to 9 WHILE queue RQUEUE becomes

empty.

3. Arrange the processes in REQUEUE in the

ascending order of their remaining burst time.

4. Set the time quantum value equal to the burst time

of first process from RQUEUE.

5. Allocate CPU to first process from RQUEUE for a

time interval of up to 1 time quantum. Remove the

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.13, June 2017

50

currently running process from RQUEUE, since it

has finished execution and the remaining burst time

is zero.

6. Select the next process from RQUEUE, and allocate

CPU for a time interval of up to 1 time quantum.

7. IF the currently running process has finished

execution and the remaining CPU burst time of the

currently running process is zero, remove it from

RQUEUE.

8. IF the remaining CPU burst time of the currently

running process is less than 1 time quantum THEN

allocate CPU again to the currently running process

for remaining CPU burst time. Remove the

currently running process from RQUEUE, since it

has finished execution and the remaining burst time

is zero. ELSE put it at the tail of RQUEUE.

9. REPEAT steps 6 to 8 for each process in RQUEUE.

3.1 Illustration
For illustration purpose, a ready queue with four processes P1,

P2, P3 and P4 has been considered. The processes are arriving

at time 0 with burst time 19, 9, 25 and 12 respectively.

According to our proposed algorithm, the processes P1, P2,

P3 and P4 are arranged in the ascending order of their burst

time in the ready queue which gives the sequence P2, P4, P1

and P3. The time quantum value is set equal to the burst time

of first process in the ready queue i.e. TQ = 9. CPU is

allocated to the first process P2 from the ready queue for a

time quantum of 9 milliseconds (ms). Process P2 has finished

execution and remaining burst time is 0. Hence it is removed

from the ready queue. Now CPU is allocated to the next

process P4 from the ready queue for a time quantum of 9 ms.

After executing P4 for 9 ms, the remaining CPU burst time of

P4 is 3 ms. Since the remaining CPU burst time of P4 is less

than the TQ, CPU will be allocated again to P4 for a time

interval of 3 ms. P4 has finished execution, it will be removed

from the ready queue. CPU is allocated to the next process P1

from the ready queue for a time quantum of 9 ms. Since the

remaining CPU burst time of P1 is 10 which is more than the

TQ, CPU will be allocated to the next process P3 from the

ready queue for a time quantum of 9 ms. Remaining CPU

burst time of P3 is 16 which is more than the TQ, it will not

get CPU time again in the first cycle. After first cycle, the

remaining burst time for P2, P4, P1 and P3 are 0, 0, 10 and 16

respectively. The remaining processes P1 and P3 from the

ready queue will be arranged in the ascending order of their

remaining burst time which gives the sequence P1 and P3.

The time quantum value will be updated and it will be set

equal to the burst time of first process in the ready queue i.e.

TQ = 10. CPU is allocated to the first process P1 from the

ready queue for a time quantum of 10 ms. Process P1 has

finished execution and remaining burst time is 0. Hence it is

removed from the ready queue. Now CPU is allocated to the

next process P3 from the ready queue for a time quantum of

10 ms. After executing P3 for 10 ms, the remaining CPU burst

time of P3 is 6 ms. Since the remaining CPU burst time of P3

is less than the TQ, CPU will be allocated again to P3 for a

time interval of 6 ms. Process P3 has finished execution and

remaining burst time is 0. Hence it is removed from the ready

queue.

The waiting times are 30, 0, 40 and 9 for the processes P, P2,

P3 and P4 respectively. The average waiting time is 19.75 ms.

The average turnaround time is 36 ms and the number of

context switch is 5.

With the same set of process with same arrival and CPU burst

times, the average waiting time is 25 ms, average turnaround

time is 41.25 ms and number of context switch is 8 in IRRVQ

algorithm.

With the same set of process with same arrival and CPU burst

times, the average waiting time is 26.25 ms, average

turnaround time is 41.5 ms and number of context switch is 8

in IRR algorithm for time quantum 5 ms. For time quantum

10 ms, IRR gives average waiting time 24.25 ms, average

turnaround time 40.5 ms and number of context switch 4.

With the same set of process with same arrival and CPU burst

times, the average waiting time is 33.75 ms, average

turnaround time is 50 ms and number of context switch is 12

in RR algorithm for time quantum 5 ms. For time quantum 10

ms, RR gives average waiting time 31.75 ms, average

turnaround time 48 ms and number of context switch 7.

Above illustration clearly shows that the proposed DTQRR

CPU scheduling algorithm is giving better performance than

the IRRVQ, IRR and RR CPU scheduling algorithms in terms

of reducing average waiting time, average turnaround time

and number of context switches.

4. EXPERIMENTAL ANALYSIS

4.1 Assumptions
For performance evaluation, we have assumed that all the

processes joining the ready queue are having equal priority in

uniprocessor environment. The number of processes and their

respective burst times are known before submitting the

processes for the execution. The CPU overhead has not been

taken into account for arranging the processes in ascending

order in the ready queue. All processes submitted for

execution are CPU bound i.e. no process is I/O bound. The

burst time and time quantum are measured in milliseconds

(ms).

4.2 Experiments Performed
Two different cases have been taken for performance

evaluation of our proposed DTQRR algorithm. In Case I,

CPU burst time is in random orders and processes arrival time

is assumed zero. In Case II, CPU burst time is in random

orders and processes arrival time is assumed non zero. The

CPU burst time in ascending or descending orders have not

been considered since it gives the same result as the CPU

burst time in random orders.

4.2.1 Case I – Zero Arrival Time
In this case arrival time has been considered zero and CPU

burst time has been taken in random orders. A ready queue

with five processes P1, P2, P3, P4, and P5 has been

considered as shown in table 1.

Table 1. Processes with their arrival and burst time (Case

I)

Process Arrival Time Burst Time

P1 0 12

P2 0 28

P3 0 8

P4 0 25

P5 0 15

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.13, June 2017

51

The comparison result of RR, IRR, IRRVQ and proposed

DTQRR is shown in Table 2. Figure 1 and Figure 2 show the

Gantt chart representation of RR with time quantum 5 and 10

respectively. Figure 3 and Figure 4 show the Gantt chart

representation of IRR with time quantum 5 and 10

respectively. Figure 5 shows the Gantt chart representation of

IRRVQ with dynamic time quantum. Figure 6 shows the

Gantt chart representation of our proposed DTQRR with

dynamic time quantum.

Table 2. Comparison of RR, IRR, IRRVQ and DTQRR (Case I)

Algorithm
Time Quantum (TQ

in ms)

Average Waiting Time

(ms)

Average Turnaround Time

(ms)

Number of Context

Switches

RR 5, 10 47.6, 47.2 65.2, 64.8 18, 10

IRR 5, 10 40.2, 34.0 57.8, 51.6 15, 6

IRRVQ 8, 4, 3, 10, 3 37.2 54.8 13

DTQRR 8, 17 26.2 43.8 6

Fig 1: Gantt chart representation of RR with TQ = 5 (Case I)

Fig 2: Gantt chart representation of RR with TQ = 10 (Case I)

Fig 3: Gantt chart representation of IRR with TQ = 5 (Case I)

Fig 4: Gantt chart representation of IRR with TQ = 10 (Case I)

P1 P1 P2 P3 P4 P5 P5 P2 P2 P4 P4

 0

10

12

22

30

40

50

55

65

73

83

Time (ms)

TQ = 10

88

P1 P2 P3 P3 P4 P5 P1 P1 P2 P4 P5 P2 P4 P5 P2 P4 P2 P2 P4

 5

Time (ms)

TQ = 5

0

10

15

18

23

28

33

35

40

45

50

55

60

65

70

75

80

83

88

P1 P2 P3 P4 P5 P1 P2 P4 P5 P2 P4

 0

10

20

28

38

48

50

60

70

75

83

Time (ms)

TQ = 10

88

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P4 P5 P2 P4 P2 P4 P2

 5

Time (ms)

TQ = 5

0

10

15

20

25

30

35

38

43

48

50

55

60

65

70

75

80

85

88

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.13, June 2017

52

Fig 5: Gantt chart representation of IRRVQ with dynamic TQ (Case I)

Fig 6: Gantt chart representation of DTQRR with dynamic TQ (Case I)

4.2.2 Case I – Non - Zero Arrival Time
In this case arrival time has been considered non-zero and

CPU burst time has been taken in random orders. A ready

queue with five processes P1, P2, P3, P4, and P5 has been

considered as shown in table 3.

Table 3. Processes with their arrival and burst time (Case

II)

Process Arrival Time Burst Time

P1 0 9

P2 3 21

P3 6 7

P4 11 29

P5 15 16

The comparison result of RR, IRR, IRRVQ and proposed

DTQRR is shown in Table 4. Figure 7 and Figure 8 show the

Gantt chart representation of RR with time quantum 5 and 10

respectively. Figure 9 and Figure 10 show the Gantt chart

representation of IRR with time quantum 5 and 10

respectively. Figure 11 shows the Gantt chart representation

of IRRVQ with dynamic time quantum. Figure 12 shows the

Gantt chart representation of our proposed DTQRR with

dynamic time quantum.

Table 4. Comparison of RR, IRR, IRRVQ and DTQRR (Case II)

Algorithm
Time Quantum (TQ

in ms)

Average Waiting Time

(ms)

Average Turnaround Time

(ms)

Number of Context

Switches

RR 5, 10 35.0, 29.0 51.4, 45.4 17, 9

IRR 5, 10 25.0, 23.0 41.4, 39.4 12, 6

IRRVQ 9, 7, 5, 8 23.6 40.0 8

DTQRR 9, 12 22.2 38.6 6

Fig 7: Gantt chart representation of RR with TQ = 5 (Case II)

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P2 P4 P5 P2 P4 P5 P2 P4 P4

 5

Time (ms)

TQ = 5

0

10

15

20

25

29

34

36

41

46

51

56

61

66

71

72

73

78

82

P3 P1 P1 P5 P5 P4 P2 P4 P2 P2

 0

8

16

20

28

35

43

51

68

85

Time (ms)

TQ = 8

TQ = 17

88

P3 P1 P5 P4 P2 P1 P5 P4 P2 P5 P4 P2 P4 P2 P2

 8

Time (ms)

TQ = 8

0

16

24

32

40

44

48

52

56

59

62

65

75

85

88

TQ = 4

TQ = 3

TQ = 10

TQ = 3

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.13, June 2017

53

Fig 8: Gantt chart representation of RR with TQ = 10 (Case II)

Fig 9: Gantt chart representation of IRR with TQ = 5 (Case II)

Fig 10: Gantt chart representation of IRR with TQ = 10 (Case II)

Fig 11: Gantt chart representation of IRRVQ with dynamic TQ (Case II)

Fig 12: Gantt chart representation of DTQRR with dynamic TQ (Case II)

4.2.3 Analysis of Results
In this section, we provide the comparative analysis of results

of our experiments with the help of bar chart. The graphical

representation of results of case I (zero arrival time) and case

II (non- zero arrival time) are shown in Figure 13 and Figure

14 respectively. The comparative results clearly prove that the

proposed DTQRR algorithm is giving better result (reduction

in average waiting time, average turnaround time and number

of context switches) than RR, IRR and IRRVQ CPU

scheduling algorithms.

P1 P2 P3 P4 P5 P5 P2 P4 P4

 0

9

18

25

34

43

50

62

74

Time (ms)

TQ = 9

TQ = 12

P1 P2 P3 P4 P5 P5 P2 P4 P2 P4 P4

 0

9

18

25

34

43

50

57

64

69

74

Time (ms)

TQ = 9

82

TQ = 7

TQ = 5

TQ = 8

P1 P2 P3 P4 P5 P1 P2 P4 P5 P2

 0

9

19

26

36

46

52

62

63

73

Time (ms)

TQ = 10

82

P1 P1 P2 P3 P3 P4 P5 P2 P4 P5 P2 P4 P5 P5 P2 P2 P4 P4 P4

 5

Time (ms)

TQ = 5

0

9

14

19

21

26

31

36

41

46

51

56

61

62

67

68

73

78

82

P1 P2 P3 P4 P5 P1 P2 P4 P5 P2

 0

9

19

26

36

46

56

66

72

73

Time (ms)

TQ = 10

82

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.13, June 2017

54

Fig 13: Bar chart representation of average waiting time, average turnaround time and number of context switches (Case I)

Fig 14: Bar chart representation of average waiting time, average turnaround time and number of context switches (Case II)

5. CONCLUSION
In this paper, a new approach of CPU scheduling algorithm

was proposed. The proposed DTQRR CPU scheduling

algorithm together with RR, IRR, and IRRVQ CPU

scheduling algorithms were implemented and their results

were compared based on three scheduling criterion waiting

time, turnaround time and context switch. The experimental

results show that DTQRR performs better than the RR, IRR

and IRRVQ in terms of reducing average waiting time,

average turnaround time and number of context switches.

Simulation results also prove the correctness of the theoretical

results. The proposed algorithm can be integrated to improve

the performance of the systems in which RR is a preferable

choice.

6. REFERENCES
[1] R. K. Yadav, A. K. Mishra, N. Prakash, and H. Sharma,

“An Improved Round Robin Schedduling Algorithm for

CPU Scheduling”, International Journal on Computer

Science and Engineering, Vol. 2, No. 4, 2010, 1064-

1066.

[2] Silberschatz, A., Galvin, P. B., and Gagne, G. 2005.

Operating System Concepts. John Wiley and Sons Inc.

[3] M. K. Mishra, and A. K. Khan, “An Improved Round

Robin CPU Scheduling Algorithm”, Journal of Global

Research in Computer Science, Vol. 3, No. 6, 2012, 64-

69.

[4] M. K. Mishra, and F. Rashid, “An Improved Round

Robin CPU Scheduling Algorithm with Varying Time

Quantum”, International Journal of Computer Science,

Engineering and Applications (IJCSEA), Vol.4, No.4,

2014, 1-8.

[5] R. J. Matarneh, “Self-Adjustment Time Quantum in

Round Robin Algorithm Depending on Burst Time of

Now Running Processes”, American J. of Applied

Sciences, Vol. 6, No. 10, 2009, 1831-1837.

[6] H. S. Behera, R. Mohanty and D. Nayak, “A New

Proposed Dynamic Quantum with Re-Adjusted Round

Robin Scheduling Algorithm and Its Performance

Analysis”, International Journal of Computer

Applications, Vol. 5, No. 5, 2010, 10-15.

[7] M. Lavanya, and S. Saravanan, “Robust Quantum Based

Low-power Switching Technique to improve System

Performance”, International Journal of Engineering and

Technology, Vol. 5, No. 4, 2013, 3634-3638.

[8] T. Helmy, and A. Dekdouk, “Burst Round Robin as a

Proportional-share Scheduling Algorithm”, IEEEGCC,

2007, Available: http://eprints.kfupm.edu.sa/1462/.

[9] D. Nayak, S. K. Malla, and D. Debadarshini, “Improved

Round Robin Scheduling using Dynamic Time

Quantum”, International Journal of Computer

Applications, Vol. 38, No. 5, 2012, 34-38.

0

10

20

30

40

50

60

70

Average Waiting Time Average Turnaround
Time

Number of Context
Switches

RR (TQ = 5)

RR (TQ = 10)

IRR (TQ = 5)

IRR (TQ = 10)

IRRVQ (TQ = 8,4,3,10,3)

DTQRR (TQ = 8,17)

0

10

20

30

40

50

60

Average Waiting Time Average Turnaround
Time

Number of Context
Switches

RR (TQ = 5)

RR (TQ = 10)

IRR (TQ = 5)

IRR (TQ = 10)

IRRVQ (TQ = 9,7,5,8)

DTQRR (TQ = 9,12)

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.13, June 2017

55

[10] M. Neshat, M. Sargolzaei, A. Najaran, and A. Adeli,

“The New method of Adaptive CPU Scheduling using

Fonseca and Fleming’s Genetic Algorithm”, Journal of

Theoretical and Applied Information Technology, Vol.

37, No. 1, 2012, 1-16.

[11] H. S. Behera, R. Mohanty, J. Panda, D. Thakur, and S.

Sahoo, “Experimental Analysis of a New Fare-Share

Scheduling Algorithm with Waited Time Slice for Real

Time Systems”, Journal of Global Research in Computer

Science, Vol. 2, No. 2, 2011, 54-60.

[12] H. S. Behera, S. Patel, and B. Panda, “A new dynamic

Round-robin and SRTN algorithm using variable original

time slice and dynamic intelligent time slice for soft real

time system”. International Journal of Computer

Applications, Vol. 2, No.1, 2011, 54-60.

[13] H. S. Behera, J. Panda, D. Thakur, and S. Sahoo, “A

New Proposed Two Processor Based CPU Scheduling

Algorithm with Varying Time quantum for Real Time

Systems”, Journal of Global Research in Computer

Science, Vol. 2, No. 4, 2011, 81-87.

[14] A. Noon, A. Kalakech, and S. Kadry, “A New Round

Robin based Scheduling Algorithm for Operating

Systems: Dynamic Quantum Using the Mean Average”,

International Journal of Computer Science Issues, Vol. 8,

Issue 3, No. 1, 2011, 224-229.

[15] M. K. Srivastav, S. Pandey, I. Gahoi, and N. K. Namdev,

“Fair Priority Round Robin with Dynamic Time

Quantum”, International Journal of Modern Engineering

Research, Vol. 2, Issue 3, 2012, 876-881.

[16] A. Abdulrahim, S. Aliyu, A. M. Mustapha, and S. E.

Abdullahi, “An Additional Improvement in Round Robin

(AAIRR) CPU Scheduling Algorithm”, International

Journal of Advanced Research in Computer Science and

Software Engineering, Vol. 4, Issue 2, 2014, 601-610.

[17] A. Abdulrahim, S. E. Abdullahi, and J. B. Sahalu, “An

New Improved Round Robin (NIRR) CPU Scheduling

Algorithm”, International Journal of Computer

Applications, Vol. 90, No. 4, 2014, 27-33.

[18] A. R. Dash, S. K. Sahu, and S. K. Samantra, “An

Optimized Round Robin CPU Scheduling Algorithm

with Dynamic Time Quantum”, International Journal of

Computer Science, Engineering and Information

Technology, Vol. 5, No. 1, 2015, 7-25.

IJCATM : www.ijcaonline.org

