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ABSTRACT 

In multiprogramming environment, CPU scheduling is the 

process to determine the most efficient way to service the 

requests of the processes waiting in the ready queue to be 

executed. The CPU scheduling algorithms focus on 

maximizing CPU utilization by minimizing waiting time, 

turnaround time and number of context switches for a set of 

processes. In time shared systems the preferred choice is 

Round Robin (RR) CPU scheduling in which performance of 

the system depends on the choice of the time quantum. This 

paper presents a dynamic time quantum based Round Robin 

CPU scheduling algorithm to enhance the CPU performance 

using the features of an Improved Round Robin (IRR) and an 

improved Round Robin CPU scheduling algorithm with 

varying time quantum (IRRVQ). The experimental and 

simulation results show that the proposed algorithm is proven 

better than the RR, IRR and IRRVQ in terms of decreasing 

the average waiting time, average turnaround time and 

number of context switches.   
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1. INTRODUCTION 
In multiprogramming environment multiple processes are 

being kept in memory for maximum utilization of CPU [1]. 

Switching CPU among waiting processes in the ready queue 

and running some process all the time can maximize the CPU 

utilization [2]. The CPU scheduling algorithms focus on 

maximizing CPU utilization by minimizing waiting time, 

turnaround time and number of context switches for a set of 

processes. This study focuses on improving the efficiency of 

Round Robin CPU scheduling algorithm by minimizing 

waiting time, turnaround time and number of context switches 

using dynamic quantum size. 

1.1  Performance Parameters 
A process can compete for the CPU as soon as it is loaded 

from input queue to the ready queue.  CPU should be busy all 

the time to optimize the systems performance. CPU is 

allocated to a waiting process from the ready queue whenever 

CPU is free [2]. The total CPU time needed by a process to 

complete execution is known as burst time of the process. The 

time a process loaded from input queue to the ready queue is 

known as arrival time of the process. When a process loaded 

into the ready queue, it may have to wait for some time before 

CPU is allocated to it. The total time a process is waiting for 

the CPU in the ready queue is known as waiting time of the 

process. The sum of burst time and waiting time is known as 

turnaround time of the process. When CPU becomes idle, it 

switches to another process waiting in the ready queue. This 

process is known as context switch. In the proposed dynamic 

time quantum based Round Robin (DTQRR) CPU scheduling 

algorithm, three parameters namely waiting time, turnaround 

time and number of context switches have been considered for 

performance evaluation. Our focus is to minimizing waiting 

time, turnaround time and number of context switches using 

dynamic quantum size by scheduling the processes from the 

ready queue effectively. 

1.2 CPU Scheduling Algorithms 
CPU scheduling algorithms allocate CPU to the processes 

waiting in the ready queue to be executed. Different CPU 

scheduling algorithms have been proposed by the research 

scholars. The process that loaded first from input queue to the 

ready queue gets the CPU first in First-Come-First-Served 

(FCFS) CPU scheduling algorithm. In this non-preemptive 

approach, CPU is occupied by one process until it finishes 

execution or terminates [2]. Since the average waiting time is 

quite long in FCFS, it is not suitable for the time sharing 

systems. Shortest Job First (SJF) CPU scheduling assigns the 

CPU to the process having minimum burst time. Compared to 

FCFS, SJF gives better performance in terms of reducing 

average waiting time and turnaround time. SJF is also not 

suitable for the time sharing systems since it does not give fair 

CPU time to the waiting processes in the ready queue. A 

process with highest priority gets the CPU time first in the 

Priority scheduling algorithm. Priority scheduling algorithm is 

also not considered appropriate for time sharing systems 

because of the same reason. Round Robin (RR) CPU 

scheduling is considered suitable for time sharing systems. A 

fixed time slice of the CPU is assigned to each process 

waiting for execution in the ready queue. This algorithm gives 

equal preference to all waiting processes. The performance of 

RR scheduling depends on time quantum. Time quantum is 

the CPU time that is assigned to each process. If time 

quantum is very large, RR behaves like FCFS scheduling. If it 

is too short, number of context switches increased. Time 

quantum affects the processes waiting time, turnaround time, 

response time and number of context switches. In this paper 

we have proposed a new algorithm that combined the 

approaches proposed in IRR [3] and IRRVQ [4] to reduce the 

waiting time, turnaround time and number of context 

switches.  

2. RELATED WORK 
Several CPU scheduling algorithms have been proposed by 

research scholars for improving the system performance. We 

have reviewed some CPU scheduling algorithms that are 

relevant to our study. A fixed time quantum value is allocated 
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to the processes waiting in the ready queue, only in first cycle 

and then SJF is used to select next process for execution in 

“An Improved Round Robin Scheduling Algorithm for CPU 

Scheduling” [1]. The CPU is allocated to the first process 

from the ready queue for a time interval of up to one time 

quantum in “An Improved Round Robin (IRR) CPU 

Scheduling Algorithm” [3]. After completion of process’s 

time quantum, the remaining CPU burst time of the currently 

running process is compared with the time quantum. If the 

burst time of the currently running process is less than one 

time quantum, the CPU is again allocated to the same process 

so that it can finish execution and removed from the queue. It 

reduces the waiting time of the process in the ready queue and 

hence improves the performance. “An improved Round Robin 

CPU scheduling algorithm with varying time quantum 

(IRRVQ)” combines the features of SJF and RR scheduling 

algorithms with varying time quantum [4]. In this approach 

initially the processes in the ready queue are arranged in the 

ascending order of their remaining burst time. CPU is 

allocated to the processes using RR scheduling with time 

quantum value equal to the burst time of first process in the 

ready queue. After each cycle, processes in the ready queue 

are arranged in the ascending order of their remaining burst 

time and CPU is allocated to the processes using RR 

scheduling with time quantum value equal to the remaining 

burst time of first process in the ready queue. In “Self-

Adjustment Time Quantum in Round Robin Algorithm” [5], 

time quantum is continuously adjusted according to the 

remaining burst time of the processes. The job mix order for 

the algorithm in [5] is used in “Dynamic Quantum with 

Readjusted Round Robin Scheduling Algorithm” [6]. A robust 

time quantum value has been proposed in [7] after arranging 

the process in the ascending order and calculating the average 

of minimum and maximum burst time of the processes 

waiting in the ready queue. In “Burst Round Robin (BRR)”, a 

new weighting technique is introduced for CPU Schedulers 

[8]. The processes having smaller burst time are given more 

CPU time, so that these processes can be removed from the 

ready queue in a short time span. Debashree Nayak et. al. [9] 

did the similar work as [5] [6]. After every cycle of execution, 

the optimal time quantum is assigned to each process waiting 

in the ready queue. Optimal time quantum is the average of 

highest CPU burst time and the median. In the “New Method 

of Adaptive CPU Scheduling using Fonseca and Fleming’s 

Genetic Algorithm” [10], the running processes are scheduled 

based on three parameters of CPU. These parameters are burst 

time, I/O service time, and priority of processes. A “New fare-

share scheduling with weighted time slice” [11] assigns a 

weight to each process waiting in the ready queue. The 

process having the minimum burst time is assigned the 

highest weight. Weighted time slice method is used to 

calculate the time quantum dynamically. “A new dynamic 

Round-robin and SRTN algorithm using variable original time 

slice and dynamic intelligent time slice for soft real time 

system” [12] calculates the original time slice suited to the 

burst time of each processes and then dynamic ITS 

(Intelligent Time Slice) is found out in conjunction with the 

SRTN algorithm [2]. The scheduling algorithm “A New 

Proposed Two Processor Based CPU Scheduling Algorithm 

with Varying Time quantum for Real Time Systems” [13] 

uses two processors, one processor is used to execute CPU-

intensive processes only and the other processor is used to 

execute I/O-intensive process. This gives better result in a two 

processor environment than [6]. “A New Round Robin based 

Scheduling Algorithm for Operating  Systems: Dynamic 

Quantum Using the  Mean Average” [14] is using dynamic 

time quantum equal to the average burst time of the processes 

waiting in the ready queue after every cycle. In the algorithm, 

“Fair Priority Round Robin with Dynamic Time Quantum” 

[15], the processes are scheduled for execution from ready 

queue by giving importance to both the user priority and 

shortest burst time priority. In this approach, deciding factor 

for individual time quantum for each process is based on both 

user priority and the burst time priority. “An Additional 

Improvement in Round Robin (AAIRR) CPU Scheduling 

Algorithm” [16] propose an improvement in the conventional 

RR and IRR [3] CPU scheduling. This approach is similar to 

the IRR but it chooses the process for execution from the 

ready queue whose remaining burst time is shortest. “A New 

Improved Round Robin (NIRR) CPU Scheduling Algorithm” 

[17] is again an improvement of IRR [3] which uses two 

queues, ARRIVE queue and REQUEST queue. It is giving 

significance performance improvement compared to IRR. “An 

Optimized Round Robin CPU Scheduling Algorithm with 

Dynamic Time Quantum” [18] uses the dynamic time 

quantum assigned to the processes waiting in the ready queue. 

The processes are first arranged in the ascending order of their 

burst time and the dynamic time quantum is set equal to the 

mean of the burst times of the processes after every cycle of 

execution. They compare their results with some existing 

algorithms and found that the proposed algorithm provides 

better performance metrics. 

3. PROPOSED DTQRR CPU 

SCHEDULING ALGORITHM 
The proposed dynamic time quantum based Round Robin 

(DTQRR) CPU scheduling algorithm takes the advantage of 

the approaches proposed in IRR [3] and IRRVQ [4]. It 

combines these two approaches to reduce the waiting time, 

turnaround time and number of context switches 

Initially the processes in the ready queue are arranged in the 

ascending order of their remaining burst time. Time quantum 

is assigned equal to the burst time of first process in the ready 

queue. CPU is allocated to the first process from the ready 

queue for a time interval of 1 time quantum. After completion 

of currently running process’s time quantum, the remaining 

burst time is checked. If it is less than 1 time quantum, CPU is 

allocated again to the same process for remaining burst time. 

In this case this process finishes execution and removed from 

the ready queue. The scheduler then proceeds to the next 

process in the ready queue. Otherwise, if the remaining burst 

time of the currently running process is more than 1 time 

quantum, the running process is put at the tail of the ready 

queue. The CPU scheduler then selects the next process in the 

ready queue. After each cycle, processes in the ready queue 

are arranged in the ascending order of their remaining burst 

time and CPU is allocated to the processes using RR 

scheduling with time quantum equal to the burst time of first 

process in the ready queue.  

Following is the proposed DTQRR CPU scheduling algorithm 

1. Make a ready queue RQUEUE of the processes 

submitted for execution. 

2. DO steps 3 to 9 WHILE queue RQUEUE becomes 

empty. 

3. Arrange the processes in REQUEUE in the 

ascending order of their remaining burst time. 

4. Set the time quantum value equal to the burst time 

of first process from RQUEUE. 

5. Allocate CPU to first process from RQUEUE for a 

time interval of up to 1 time quantum. Remove the 
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currently running process from RQUEUE, since it 

has finished execution and the remaining burst time 

is zero. 

6. Select the next process from RQUEUE, and allocate 

CPU for a time interval of up to 1 time quantum.  

7. IF the currently running process has finished 

execution and the remaining CPU burst time of the 

currently running process is zero, remove it from 

RQUEUE. 

8. IF the remaining CPU burst time of the currently 

running process is less than 1 time quantum THEN 

allocate CPU again to the currently running process 

for remaining CPU burst time. Remove the 

currently running process from RQUEUE, since it 

has finished execution and the remaining burst time 

is zero. ELSE put it at the tail of RQUEUE. 

9. REPEAT steps 6 to 8 for each process in RQUEUE. 

3.1 Illustration 
For illustration purpose, a ready queue with four processes P1, 

P2, P3 and P4 has been considered. The processes are arriving 

at time 0 with burst time 19, 9, 25 and 12 respectively. 

According to our proposed algorithm, the processes P1, P2, 

P3 and P4 are arranged in the ascending order of their burst 

time in the ready queue which gives the sequence P2, P4, P1 

and P3. The time quantum value is set equal to the burst time 

of first process in the ready queue i.e. TQ = 9. CPU is 

allocated to the first process P2 from the ready queue for a 

time quantum of 9 milliseconds (ms). Process P2 has finished 

execution and remaining burst time is 0. Hence it is removed 

from the ready queue. Now CPU is allocated to the next 

process P4 from the ready queue for a time quantum of 9 ms. 

After executing P4 for 9 ms, the remaining CPU burst time of 

P4 is 3 ms. Since the remaining CPU burst time of P4 is less 

than the TQ, CPU will be allocated again to P4 for a time 

interval of 3 ms. P4 has finished execution, it will be removed 

from the ready queue. CPU is allocated to the next process P1 

from the ready queue for a time quantum of 9 ms. Since the 

remaining CPU burst time of P1 is 10 which is more than the 

TQ, CPU will be allocated to the next process P3 from the 

ready queue for a time quantum of 9 ms. Remaining CPU 

burst time of P3 is 16 which is more than the TQ, it will not 

get CPU time again in the first cycle. After first cycle, the 

remaining burst time for P2, P4, P1 and P3 are 0, 0, 10 and 16 

respectively. The remaining processes P1 and P3 from the 

ready queue will be arranged in the ascending order of their 

remaining burst time which gives the sequence P1 and P3. 

The time quantum value will be updated and it will be set 

equal to the burst time of first process in the ready queue i.e. 

TQ = 10. CPU is allocated to the first process P1 from the 

ready queue for a time quantum of 10 ms. Process P1 has 

finished execution and remaining burst time is 0. Hence it is 

removed from the ready queue. Now CPU is allocated to the 

next process P3 from the ready queue for a time quantum of 

10 ms. After executing P3 for 10 ms, the remaining CPU burst 

time of P3 is 6 ms. Since the remaining CPU burst time of P3 

is less than the TQ, CPU will be allocated again to P3 for a 

time interval of 6 ms. Process P3 has finished execution and 

remaining burst time is 0. Hence it is removed from the ready 

queue. 

The waiting times are 30, 0, 40 and 9 for the processes P, P2, 

P3 and P4 respectively. The average waiting time is 19.75 ms. 

The average turnaround time is 36 ms and the number of 

context switch is 5. 

With the same set of process with same arrival and CPU burst 

times, the average waiting time is 25 ms, average turnaround 

time is 41.25 ms and number of context switch is 8 in IRRVQ 

algorithm. 

With the same set of process with same arrival and CPU burst 

times, the average waiting time is 26.25 ms, average 

turnaround time is 41.5 ms and number of context switch is 8 

in IRR algorithm for time quantum 5 ms. For time quantum 

10 ms, IRR gives average waiting time 24.25 ms, average 

turnaround time 40.5 ms and number of context switch 4.   

With the same set of process with same arrival and CPU burst 

times, the average waiting time is 33.75 ms, average 

turnaround time is 50 ms and number of context switch is 12 

in RR algorithm for time quantum 5 ms. For time quantum 10 

ms, RR gives average waiting time 31.75 ms, average 

turnaround time 48 ms and number of context switch 7. 

Above illustration clearly shows that the proposed DTQRR 

CPU scheduling algorithm is giving better performance than 

the IRRVQ, IRR and RR CPU scheduling algorithms in terms 

of reducing average waiting time, average turnaround time 

and number of context switches.  

4. EXPERIMENTAL ANALYSIS 

4.1 Assumptions 
For performance evaluation, we have assumed that all the 

processes joining the ready queue are having equal priority in 

uniprocessor environment. The number of processes and their 

respective burst times are known before submitting the 

processes for the execution. The CPU overhead has not been 

taken into account for arranging the processes in ascending 

order in the ready queue. All processes submitted for 

execution are CPU bound i.e. no process is I/O bound. The 

burst time and time quantum are measured in milliseconds 

(ms). 

4.2 Experiments Performed 
Two different cases have been taken for performance 

evaluation of our proposed DTQRR algorithm. In Case I, 

CPU burst time is in random orders and processes arrival time 

is assumed zero. In Case II, CPU burst time is in random 

orders and processes arrival time is assumed non zero. The 

CPU burst time in ascending or descending orders have not 

been considered since it gives the same result as the CPU 

burst time in random orders. 

4.2.1 Case I – Zero Arrival Time 
In this case arrival time has been considered zero and CPU 

burst time has been taken in random orders. A ready queue 

with five processes P1, P2, P3, P4, and P5 has been 

considered as shown in table 1. 

Table 1. Processes with their arrival and burst time (Case 

I) 

Process Arrival Time Burst Time 

P1 0 12 

P2 0 28 

P3 0 8 

P4 0 25 

P5 0 15 
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The comparison result of RR, IRR, IRRVQ and proposed 

DTQRR is shown in Table 2. Figure 1 and Figure 2 show the 

Gantt chart representation of RR with time quantum 5 and 10 

respectively. Figure 3 and Figure 4 show the Gantt chart 

representation of IRR with time quantum 5 and 10 

respectively. Figure 5 shows the Gantt chart representation of 

IRRVQ with dynamic time quantum. Figure 6 shows the 

Gantt chart representation of our proposed DTQRR with 

dynamic time quantum. 

 

Table 2. Comparison of RR, IRR, IRRVQ and DTQRR (Case I) 

Algorithm 
Time Quantum (TQ 

in ms) 

Average Waiting Time 

(ms) 

Average Turnaround Time 

(ms) 

Number of Context 

Switches 

RR 5, 10 47.6, 47.2 65.2, 64.8 18, 10 

IRR 5, 10 40.2, 34.0 57.8, 51.6 15, 6 

IRRVQ 8, 4, 3, 10, 3 37.2 54.8 13 

DTQRR 8, 17 26.2 43.8 6 

 

 
Fig 1:  Gantt chart representation of RR with TQ = 5 (Case I) 

 
Fig 2:  Gantt chart representation of RR with TQ = 10 (Case I) 

 
Fig 3:  Gantt chart representation of IRR with TQ = 5 (Case I) 

 
Fig 4:  Gantt chart representation of IRR with TQ = 10 (Case I) 
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Fig 5:  Gantt chart representation of IRRVQ with dynamic TQ (Case I) 

 

 
Fig 6:  Gantt chart representation of DTQRR with dynamic TQ (Case I) 

 

 
4.2.2 Case I – Non - Zero Arrival Time 
In this case arrival time has been considered non-zero and 

CPU burst time has been taken in random orders. A ready 

queue with five processes P1, P2, P3, P4, and P5 has been 

considered as shown in table 3. 

Table 3. Processes with their arrival and burst time (Case 

II) 

Process Arrival Time Burst Time 

P1 0 9 

P2 3 21 

P3 6 7 

P4 11 29 

P5 15 16 

 

The comparison result of RR, IRR, IRRVQ and proposed 

DTQRR is shown in Table 4. Figure 7 and Figure 8 show the 

Gantt chart representation of RR with time quantum 5 and 10 

respectively. Figure 9 and Figure 10 show the Gantt chart 

representation of IRR with time quantum 5 and 10 

respectively. Figure 11 shows the Gantt chart representation 

of IRRVQ with dynamic time quantum. Figure 12 shows the 

Gantt chart representation of our proposed DTQRR with 

dynamic time quantum. 

 

Table 4. Comparison of RR, IRR, IRRVQ and DTQRR (Case II) 

Algorithm 
Time Quantum (TQ 

in ms) 

Average Waiting Time 

(ms) 

Average Turnaround Time 

(ms) 

Number of Context 

Switches 

RR 5, 10 35.0, 29.0 51.4, 45.4 17, 9 

IRR 5, 10 25.0, 23.0 41.4, 39.4 12, 6 

IRRVQ 9, 7, 5, 8 23.6 40.0 8 

DTQRR 9, 12 22.2 38.6 6 

 

 
Fig 7:  Gantt chart representation of RR with TQ = 5 (Case II) 
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Fig 8:  Gantt chart representation of RR with TQ = 10 (Case II) 

 

 
Fig 9:  Gantt chart representation of IRR with TQ = 5 (Case II) 

 

 
Fig 10:  Gantt chart representation of IRR with TQ = 10 (Case II) 

 

 
Fig 11:  Gantt chart representation of IRRVQ with dynamic TQ (Case II) 

 

 
Fig 12:  Gantt chart representation of DTQRR with dynamic TQ (Case II) 

 
4.2.3 Analysis of Results 
In this section, we provide the comparative analysis of results 

of our experiments with the help of bar chart.  The graphical 

representation of results of case I (zero arrival time) and case 

II (non- zero arrival time) are shown in Figure 13 and Figure 

14 respectively. The comparative results clearly prove that the 

proposed DTQRR algorithm is giving better result (reduction 

in average waiting time, average turnaround time and number 

of context switches) than RR, IRR and IRRVQ CPU 

scheduling algorithms. 
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Fig 13:  Bar chart representation of average waiting time, average turnaround time and number of context switches (Case I) 

 

 
Fig 14:  Bar chart representation of average waiting time, average turnaround time and number of context switches (Case II) 

 

5. CONCLUSION 
In this paper, a new approach of CPU scheduling algorithm 

was proposed. The proposed DTQRR CPU scheduling 

algorithm together with RR, IRR, and IRRVQ CPU 

scheduling algorithms were implemented and their results 

were compared based on three scheduling criterion waiting 

time, turnaround time and context switch. The experimental 

results show that DTQRR performs better than the RR, IRR 

and IRRVQ in terms of reducing average waiting time, 

average turnaround time and number of context switches. 

Simulation results also prove the correctness of the theoretical 

results. The proposed algorithm can be integrated to improve 

the performance of the systems in which RR is a preferable 

choice. 
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