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ABSTRACT 

Scene analysis is a prior stage in many computer vision and 

robotics applications. Thanks to recent depth camera, we 

propose a fast plane segmentation approach for obstacle 

detection in indoor environments. The proposed method Fast 

RANdom Sample Consensus (FRANSAC) involves three 

steps: data input, data preprocessing and 3D RANSAC. 

Firstly, range data, obtained from 3D camera, is converted 

into 3D point clouds. Next, a preprocessing stage is 

introduced where a pass through and voxel grid filters are 

applied. Finally, planes are estimated using a modified 3D 

RANSAC. The experimental results demonstrate that our 

approach can segment planes and detect obstacles about 7 

times faster than the standard RANSAC without losing the 

discriminative power.   
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1. INTRODUCTION 
Understanding the structural information of the surrounding 

environment is a principal issue for most computer vision 

applications, robots, and wearable obstacle avoidance devices. 

Man-made environments consist of many planes which are the 

basic units of objects. Plane detection and segmentation is the 

fundamental technique for understanding such scenes and can 

be used in many important applications, such as 3D 

reconstruction [1]–[6], object recognition [7]–[9], virtual 

reality [10], [11] and 3D mapping [12].  

Undoubtedly, the accuracy of plane segmentation is highly 

related to the performance of the whole scene understanding 

system. In addition, plane segmentation should be processed 

in real-time as the basic step of scene understanding systems. 

Recently, three-dimensional (3D) sensors have emerged 

which help acquiring data about the surrounding environment. 

A comparison of the most common sensors is listed in Table 

1. One example of 3D sensors is the LASER scanners [1] 

which can cover large areas accurately. However, LASER 

scanners can only process few frames per second (FPS). 

Furthermore, LASER scanners are also very expensive and 

require high power.  

Moreover, another example of 3D sensors is structured light 

scanners [2] where a light pattern is projected on the object 

before the distortion between the received and the projected 

light is calculated. Based on triangulation structured light 

scanners can give a depth map with high resolution (640 x 

480 pixels). Structured light scanners are recently popular in 

computer vision applications because they are relatively low 

cost, low power and give higher frame rate 30 FPS and more. 

Unfortunately, structured light scanners are limited to few 

meters unlike LASER scanners. 

Table 1. Comparison of various 3D sensors 

Graphics Range Speed Cost 

Laser High Slow High 

Structured light Medium Fast Low 

ToF Low Very Fast Medium 

 

Time of Flight (ToF) scanners is another choice for acquiring 

3D point clouds. Photonic Mixer Devices [3] (PMD), for 

example, uses pulsed LEDs for illumination. The principle of 

PMD is modulating the outgoing beam with an RF carrier and 

detects the phase shifted beams by the receiver. Although 

large number of frames can be processed (120 FPS), its range 

is limited to 1 meter with small resolution (160 x 120 pixels). 

This paper presents a fast RANSAC enhancement for 3D 

plane segmentation using structured light sensors. Firstly, the 

depth image is obtained from the sensor. Then, it is converted 

to a 3D point cloud. After that a preprocessing stage is applied 

to the point cloud where a pass through and voxelization 

filters are used. The segmentation is then performed using the 

3D enhanced RANSAC. 

The paper is organized as follows: The following section 

includes a brief overview of the RANSAC. Section 3 

discusses previous work related to our research. Then our 

proposed approach Fast FRANSAC is shown in Section 4. 

Section 5 includes methodology and experimental analysis of 

our proposed approach. Finally, the paper is then concluded in 

Section 6. 

2. THE RANSAC 
Many plane segmentation algorithms have been proposed in 

recent years. Each segmentation method has its own pros and 

cons. Most significantly, the RANSAC is one of the most 

commonly used algorithms for plane detection which is firstly 

introduced by Fischler and Bolles [13] for 2D estimations. 

The RANSAC is a global iterative method that robustly finds 

model parameters from a set of data points. In addition, the 

RANSAC treats depth data as 2d images where each pixel is 

in the range of 0 to 255. 

Figure 1 shows an example of applying RANSAC for 2D line 

fitting problem. By assuming data as a collection of inliers, 

points belong to the line, and outliers, points outside the line, 

the RANSAC can robustly estimate the parameters of planes 
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with high degree of accuracy even number of outliers exceed 

50% of the sample points. Unlike other statistical sampling 

techniques such as M-estimators and least-median squares 

[14], [15] that use as much as possible of the data, the 

RANSAC uses the smallest data set (starting from three points 

for a plane model) and proceeds to enlarge this set with 

consistent inliers. 

 

Fig 1: 2D line fitting using RANSAC. 

The RANSAC algorithm simply consists of two steps: a 

hypothesis stage, where a random selection of inliers and 

computing the model parameters, and an evaluation stage, 

where a verification of the hypothesized model to the entire 

dataset is done. 

In the hypothesis step, the RANSAC randomly selects a 

subset of data points, then the parameters of the mod-el are 

estimated from the sample points. After the model parameters 

have been estimated, an evaluation is essential to ensure that 

the candidate model is the best one exists, which is supported 

by the largest number of inlier candidates. Likewise, a model 

is considered as an inlier model when the distance error is 

within a predefined threshold (d) that can be calculated as the 

distance from point P = (x1, y1, z1) to the plane Ax + By + Cz 

+ D = 0 from the following equation: 

 
222

111

C+B+A

D+Cz+By+Ax
d   (1) 

3. RELATED WORK  
Although RANSAC is one of the most distinct plane detection 

algorithms, RANSAC suffers from one major drawback. 

RANSAC is a heavy computation approach that requires 

many processing time cycles. Consequently, several 

enhancements have been proposed to eliminate this problem 

that are figured out in the following subsections. 

3.1 Randomized RANSAC (RRANSAC) 
A new randomized version of the RANSAC is introduced by 

Matas and Chum [16]. RRANSAC enhances the time for 

evaluating the hypothesis (TE) by adding a preliminary test 

(Td,d Test) before the hypothesis evaluation stage.  

Hypothesis evaluation is first performed using a small number 

of data points d from the total of N points (where d << N). 

The Td,d test is passed if all d data points out of d randomly 

selected are consistent with the hypothesized model. Setting 

of the length d of the Td,d test to 0, means standard RANSAC, 

where setting of d = 1 is  recommended as the optimal value. 

3.2 The Voxel RANSAC 
Researchers in [17], [18]⁠ proposed a preprocessing stage. 

By applying this filtering process, the amount of data points is 

reduced without losing the main features of the point cloud. 

As a result, the computational speed is significantly increased. 

The used down sampling filter is a voxel grid filter. 

A voxel grid filter is a set of small 3D boxes that have 

identical size. Firstly, this filter is applied to all data points of 

the point cloud. Then, in each 3D box, all data points in each 

3D box are approximated with their equivalent center. Using 

the centroid could be costlier than using the center of the 

cube, but this maintains the geometric features of the whole 

point cloud.  

3.3 Hardware accelerated RANSAC 

approaches 
In contrast to the mentioned earlier approaches that enhance 

the speed of RANSAC using some modifications in the 

software, some methodologies make use of the advances in 

the hardware as well. In [19], different parallel 

implementations based on OpenMP, POSIX Threads, and 

CUDA. The results show that CUDA is the best choice. 

However, in such situations where no GPU exists, using 

POSIX threads is a better choice compared with OpenMP 

because POSIX allows programmers to manage and control 

thread more directly, and hence boosting their performance. 

Unfortunately, this approach is not suitable for robotics and 

embedded devices thanks to its high power consumption. 

Other approaches in [20]–[22]⁠ implements a Field 

Programmable Gate Array (FPGA). A hardware architecture 

and organization of the RANSAC for feature-based image 

registration are proposed in [20]. Additionally, a 

hardware/software co-design platform of RANSAC algorithm 

for real-time affine geometry estimation is presented in [21]. 

The most intensive computation, i.e. fitness scoring task, is 

performed on the hardware by using double buffering 

technique to enable process pipelining. In [22], the proposed 

system is capable to perform tasks extremely fast due to its 

high level of parallelism. 

4. FAST RANSAC (FRANSAC) 
Fast RANdom Sample Consensus (FRANSAC), as 

demonstrated in Fig. 2, consists of three main stages: Firstly, 

the range data is obtained from the sensor then it is converted 

to 3D point cloud. After that, a preprocessing stage is applied 

to the point cloud where pass-through filter and voxelization 

are used. Thirdly, the ground plane is then segmented using 

the 3D RANSAC. 

4.1 Data Input Stage 
The input of our proposed approach comes from a 3D 

structured light sensor, for instance, the Xbox Kinect which 

consists of two cameras and IR projector. One of the cameras 

is a standard RGB camera, while the other camera is an IR 

camera which, along with the IR projector, forms the 3D 

image. Thus, the depth is calculated using the disparity of 

each pixel using the projected pattern and the IR camera. 
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Fig 2: Our proposed approach FRANSAC 

The Kinect gives a 2D depth map in which each pixel holds 

the distance information. After that, this map is converted to a 

point cloud representation which is a set of data points in 

some coordinate system. In a 3D coordinate system, X, Y, and 

Z coordinates usually define these points, and often are 

intended to represent the external surface of an object. 

4.2 Preprocessing Stage 
The Kinect sensor can provide a depth data with 307200 

(640x480) points. However, this is a large number of in-

formation to process even with simple operations. The 

complexity will be O(n), n is the number of points, if we 

perform a simple operation on every point of the cloud. 

Therefore, a reduction of the number of points is essential to 

eliminate complexity, processing time and efficiency 

problems. As a consequence, two filtering operations are 

introduced which are Pass Through and Voxel Grid filters. 

4.2.1 Pass Through Filter 
The accuracy of the sensor depends on the distance, for 

example, far objects suffers from lower accuracy than near 

ones. In order to solve that limitation, a pass through filter is 

introduced to remove inaccurate far data points. It passes 

points in a point cloud based on constraints for one particular 

field, for such as Z-axis, by iterating through the entire input 

cloud, and automatically filters non-relevant points. In fact, 

this stage is very vital to remove unnecessary objects far away 

from the Kinect. 

4.2.2 Voxel Grid Filter 
After using a pass through filter, the whole point cloud is then 

down sampled giving back an equivalent point cloud with 

fewer points. A 3D voxel grid filter is used for this purpose 

which divides the input point cloud into small 3D boxes with 

a line length of 3 cm. Then the points in each voxel (3D box) 

are down sampled to a single point. As a result, there are two 

options as to how to represent the distribution of points in a 

voxel by a single point: first option is to take the centroid or 

spatial average of the point distribution. Second option is to 

take the geometrical center of the voxel. The first option is 

more accurate since it takes into account the point distribution 

inside the voxels. However, it is more computationally 

intensive since the centroid must be computed for each voxel. 

The computational cost increases linearly with the number of 

points in the cloud and the number of voxels. 

4.3 Plane Segmentation using 3D RANSAC 
The next step is to identify the most representative planes of 

the scene from the point cloud. The algorithm used for plane 

detection is RANSAC (RANdom SAmple Consensus) which 

simply consists of two steps: a hypothesis stage, where a 

random selection of inliers and computing the model 

parameters, and an evaluation stage, where a verification of 

the hypothesized model to the entire dataset is done.  

In the hypothesis stage, The RANSAC algorithm provides a 

robust estimation of the dominant plane parameters, 

performing a random search in the space of solutions. After 

that, the RANSAC randomly selects a subset of data points, 

before the parameters of the model are estimated from the 

input points. If the given model is plane, Ax + By + Cz + D = 

0, and M = [A, B, C, D] T are the parameters to be estimated. 

In contrast to common regression techniques such as least 

square method, the RANSAC is a resampling technique that 

generate candidate solutions using the smallest number of 

points. In other words, the RANSAC converts the estimation 

problem from the continuous domain to the discrete domain. 

In order to obtain a good plane, the RANSAC loops for 

number of iterations Nit, which can be obtained from the 

following equation: 

 
 Sit

q1log

p1log
=N




 (2) 

Where p is the probability of finding a good plane from the 

input points, q is the probability that a point is an inlier, and S 

is the number of points in the sample. 

After the hypothesis stage, the RANSAC evaluates the 

candidate hypotheses to find the most suitable one, which is 

supported by the largest number of inlier candidates. Input 

data is considered inliers if only they fall below a predefined 

distance threshold (d), as given in Eq. (1). 
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Fig 3: Example of real data testing. From the top: Original depth frame; Input point cloud; Detected planes by RANSAC; 

Detected planes by RRANSAC; Detected planes by Voxel RANSAC; Detected planes by FRANSAC 
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Fortunately, the RANSAC does not have to extensively 

evaluate all the input data points, since two termination 

criteria can be used before that. Firstly, the evaluation process 

may finish if the probability of finding a better model than the 

current best candidate falls below a predefined threshold. 

Secondly, the termination could be achieved if the number of 

evaluated samples exceeds the number expected to select an 

uncontaminated sample 

5. EXPERIMENTAL ANALYSIS 

5.1 Test Data 
The TUM dataset [23] is used which contains a large number 

of color and depth images of a Microsoft Kinect sensor 

recorded at full frame rate (30 fps) with 640x480 resolutions. 

The selected point clouds have a gradual complexity in the 

sense of the number of objects. 

5.2 Initialization Parameters 
Some parameters are common between all mentioned 

algorithms such as number of selected inliers (n), maxi-mum 

number of iterations (I) and distance threshold (d), as given in 

Table 2. 

Table 2. RANSAC parameters 

Parameter Value 

Number of random inliers (n) 3 

Maximum number of iterations (I) 1000 

Distance threshold (d) 1 cm 

 

Moreover, our algorithm FRANSAC filters out all points with 

Z values not in the [0-4.5] meters range. The size of every 

voxel is 2x2x2 cm3, which means only one point per every 8 

cm3 will survive. Table 3 shows additional parameters for 

FRANSAC. 

Table 3. Supplementary FRANSAC parameters 

Parameter Value 

Pass through limits 0-4.5 m 

Size of voxels 2x2x2 cm3 

 

5.3 Experimental environment 
The algorithms are all implemented with C++ under the Linux 

Ubuntu 14.04 LTS operating system. A personal computer 

with Intel Core i7, 2.4 GHz CPU, 8GB memory is used for the 

testing. The ground truth of ground segmentation for quality 

evaluation is obtained through manual editing. 

5.4 Evaluation metrics 
The metrics utilized to evaluate FRANSAC and the 

compared algorithms are computation time, precision, recall, 

and f1-score. 

Precision, also called Confidence, is the ratio of Predicted 

Positive points to the total number of retrieved points. 

Precision can be calculated as follows: 

FPTP

TP
Precision


  (3) 

Recall, also called Sensitivity, is the proportion of Real 

Positive points that are correctly Predicted Positive. Re-call 

can be calculated as follows: 

FNTP

TP
Recall


  (4) 

F-Score, also called F-measure or F1, is a measure of the 

test’s accuracy. It considers both the precision (P) and recall 

(R) as follows: 

RP

RP
2ScoreF




  (5) 

6. RESULTS AND DISCUSSION 
In this section results of applying metrics in Sect. 5.4 to 

different RANSAC enhancements are presented and analyzed 

as given in Fig. 3. Algorithms are applied to 7 scenes from 

datasets mentioned in Sect. 5.1. The following subsections 

present the results obtained: 

6.1 Runtime Speed 
Figure 4 shows the results obtained by applying the test for 

each point cloud. Note that the Runtime Speed results varies 

among the chosen point clouds because of the different 

semantic features of each scene. Overall, FRANSAC has the 

highest average of processing frame per seconds with 39.5 

fps, which is almost 7 times faster than standard RANSAC. In 

contrast, the lowest performance of only 4 fps are occupied by 

RRANSAC. RRANSAC’s behavior is random and cannot be 

expected and good hypotheses may be neglected. Voxel 

RANSAC comes secondly behind FAN-RANSAC with 

average of 9.35 fps. 

 

 

Fig 4: Runtime speed results. 

6.2 Precision 
Table 4 illustrates the results for the Precision as described in 

Sect. 5.4. Precision takes all retrieved points into account, 

which can be used for random errors description or a measure 

of statistical dispersion.  

By far the most common trend is that FRANSAC, standard 

RANSAC and Voxel RANSAC obtains the best proportions 

of about 100%. On the other hand, RRANSAC has the lowest 

percentage of 90% because of its unexpected random 
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behavior. This approaches succeeded in most scenes such as 3 

and 4, but it returns unreliable results on scene 7. 

Table 4. Precision results 

Scene 
RANSA

C 

RRANSA

C 

Voxel 

RANSAC 

FRANSA

C 

1 99.91 96.24 99.58 99.70 

2 100.00 87.21 100.00 100.00 

3 100.00 99.16 100.00 99.98 

4 100.00 98.62 100.00 99.99 

5 100.00 97.09 99.98 99.99 

6 99.81 93.32 99.99 99.99 

7 100.00 58.00 99.98 99.90 

Avera

ge 
99.96 89.95 99.93 99.94 

 

6.3 Recall 
Results obtained for the Recall by applying Eq. 4 are given in 

Table 5. Recall is called sensitivity, which can be explained as 

the ability to detect relevant points from the retrieved input 

data. The most striking feature is that FRANSAC returns the 

lowest Recall percentages with average of 77.5%. In contrast, 

RANSAC ranked first giving about 90% on average. It is 

trivial to achieve a Recall of 100% by returning all input data 

points as shown in scenes 1, 3 and 4 by RRANSAC. 

Table 5. Recall results 

Scene 
RANS

AC 

RRANS

AC 

Voxel 

RANSAC 

FRANS

AC 

1 97.48 100.00 97.66 99.07 

2 86.20 60.14 74.65 70.20 

3 92.55 100.00 82.38 73.89 

4 94.16 100.00 86.37 83.97 

5 90.10 88.37 73.49 66.63 

6 84.89 98.30 75.39 72.44 

7 83.99 56.08 76.09 76.40 

Avera

ge 
89.91 86.13 80.86 77.51 

 

6.4 F1-score 
Table 6 gives an overview of the results obtained for the F-

Score measurements. F-Score considers both Precision (P) 

and Recall (R) of the test to compute the score as illustrated in 

Eq. 5 and it can be used to indicate the test’s accuracy. It can 

be seen that RANSAC ranks first giving back an average 

measurement of nearly 94.5%. Moreover, FRANSAC, 

RRANSAC and Voxel RNASAC are very similar with 

averages of 87%, 87.5% and 89% respectively. 

7. CONCLUSION 
In this work a simple, yet very fast approach to segment range 

images and 3D point clouds. Firstly, the 3D point cloud is 

obtained from the sensor then a pre-processing stage is 

applied to the point cloud where pass-through filter and 

voxelization are used before plane segmentation is performed 

using enhanced 3D RANSAC.  

The performance and quality are assessed using the public 

Technische Universität München dataset which contains a 

large number of scenes with gradual increase in complexity. 

Experimental evaluation has shown that our approach excels 

in runtime speed result with about 40 fps in average. In 

addition, our approach does not considerably rank behind 

state-of-the-art depth image segmentation techniques in case 

of quality metrics. 

Table 6. F-score results 

Scene 
RANS

AC 

RRANS

AC 

Voxel 

RANSAC 

FRANS

AC 

1 98.68 98.08 98.61 99.39 

2 92.59 71.19 85.49 82.49 

3 96.13 99.58 90.34 84.98 

4 96.99 99.30 92.69 91.28 

5 94.79 92.53 84.72 79.97 

6 91.75 95.74 85.97 84.02 

7 91.30 57.02 86.41 86.58 

Avera

ge 
94.60 87.64 89.17 86.96 
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