
International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.14, June 2017

7

A Novel Heuristic Auditor for Revealing Strong

Consistency Violations in Cloud

Y. Narasimha Rao, PhD
Professor ,Department of Computer Science

School of Computing & Informatics,
Mizan-Tepi University, Ethiopia

D. Sudha
Assistant Professor, Department of CSE

KCG College of Technology
Tamilnadu, India

ABSTRACT

To ensure that the services are always-on and globally

distributed, cloud service providers sacrifice consistency for

availability. Most Cloud Service Provider’s provide only

eventual consistency which is a form of weak consistency.

Strong Consistency is required for certain applications which

are interactive. In such cases an SLA is to be engaged

between the Cloud Service Provider and the users which

stipulate the level of consistency the cloud service provider

should provide to the users of the data cloud. Existing

Commercial clouds provide strong consistency guarantees but

it is hard for the users to verify it. This paper proposes a

Novel Heuristic Auditor based on loosely synchronized clocks

which help the users to verify whether the data cloud provides

the assured level of consistency as stated in the SLA. It uses a

two level auditing structure to check for strong consistency

violations namely Read-After-Write(RAW) consistency and

Monotonic-Write(MW) consistency. Experiments were done

to verify the strong consistency guarantees provided by

Google Cloud Storage (GCS). The different types of storage

buckets are tested for consistency violations and are

quantified with different metrics.

Keywords

Cloud Computing, Strong Consistency, Data Staleness,

Heuristic Auditor, Google Cloud Storage.

1. INTRODUCTION
Cloud computing while at its peak has greater impact on our

everyday life as the number of users leveraging cloud is

constantly increasing. It has been predicted that the annual

global data centre IP traffic will nearly triple over the next

five years and more than 75 percent of the workload will be

processed by cloud data centres. This is the result of cheaper

processors and cheaper storage options available today. While

there is a significant growth in the use of cloud services such

as Saas, Paas and Iaas there has been humongous growth in

the use of consumer cloud storage as well. Users can store

their music, photos, videos and documents in any of the cloud

storage options available at a relatively low or no cost. The

consumer internet population who will use personal cloud

storage will definitely increase in the near future.

When considering the design of distributed data storage

systems it is necessary to consider the CAP theorem. The

CAP principle states that only two among the three factors

namely Consistency, Availability and Partition tolerance can

be achieved. Many distributed data stores offer availability

and partition tolerance over strong consistency. The reason

being stated is that short intervals of data staleness are less

problematic than short intervals of unavailability. Hence most

of the Cloud Service Providers (CSP) promise only eventual

consistency which informally guarantees that if no new

updates are made to a given data item, eventually all accesses

to that item will return the last updated value.

Actually different applications have different consistency

requirements. Not all applications could cope up with

eventual consistency. Several applications require strong

consistency which means that data viewed immediately after

an update will be consistent for all observers of the entity.

Some use cases that require strong or immediate consistency

are “Online Document Storage systems where a group of

users work collaboratively on a set of documents”, “banking

transactions that check balance, withdraw money or deposit

money”,” Online shopping systems” and so on.

It is imperative that these actions do not leave the database in

an incorrect state even for split second. In such cases strong

consistency is mandatory. If such applications which have

strong consistency requirements needs to be deployed in cloud

then an SLA should be engaged between the cloud user and

the cloud service provider to ensure that these requirements

are met. A third party auditor can be assigned to perform such

auditing works but it may lead to disclosure of data or other

important information related to the data to the third party

auditor.

Let us consider an online shopping system where the users are

geographically dispersed and several transactions are done in

a single minute. The lists of available stocks are updated by a

stock manager once a user has purchased a set of items. It is

important that the list of available stocks is updated with

strong consistency. Failing to do so will have adverse effects.

A user may order an item which is out of stock or the sales

report may vary by a large margin if a high valued transaction

is not updated.

Fig 1. An application that require Strong Consistency

Hence it is important that such an application should be

updated with strong consistency and no stale data exists.

Even when a cloud service provider promises strong

consistency guarantees for its users, it is not evident for the

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.14, June 2017

8

users whether the assured level of consistency is actually

provided or not.

This paper proposes a novel heuristic auditor which verifies

whether strong consistency requirements of an application are

met. A group of users of a data cloud can perform auditing

themselves and can measure the severity of consistency

violations. Also we should notice that maintaining a global

clock in such a scenario can be complex. Hence loosely

synchronized clocks are used to maintain a global ordering

among operations. The loosely synchronized clock is based on

vector clocks algorithm which uses timestamping of events to

achieve a global ordering among them.

The auditor proposed is used to verify whether strong

consistency violations namely Read-After-Write (RAW)

consistency and Monotonic-Write (MW) consistency are

violated. A two-level auditing strategy to verify the above

strong consistency models is proposed which can be done by

the users and an auditor who is elected by the users. Finally

the severity of such violations is measured.

2. RELATED WORKS
The three major factors of a distributed storage system are

consistency, Availability and Partition Tolerance. Ref [3]

made a comparison about ACID (Atomicity-Consistency-

Isolation-Durability) Vs. BASE (Basically Available Soft

state Eventual consistency) and mentioned traits about several

systems that forfeits the above mentioned factors. It also

suggested to keep consistency and availability within a single

cluster but it is hard to reach at present.

Ref [6] analysed the historical perspective of consistency and

how this changed after the introduction of distributed

databases. The two ways of looking at consistency namely

developer/client point of view i.e. how clients observe data

updates and the later the server view which represents how

updates flow through the system, are analysed. Strong and

weak consistency and the variations of such consistency

models are also presented.

Ref[7] which forms the base of trace based verifications

aimed to check whether a series of events is safe, regular or

atomicity analysing the trace of interactions between the client

machine and the data store. By obtaining a global trace which

is a list of read/write requests from all the clients, as well as

the value retrieved or stored, it proposed algorithms to

quantify the traces. It also verified the consistency provided

by pahoehoe, a cloud storage system designed to offer

extreme availability.

 Ref [9] proposed online verification algorithms i.e. how to

detect a violation as soon as one happens and proposed ways

to quantify the severity of atomicity and commonality

violations. It attempted to quantify the maximum staleness of

all reads and the commonality of such violations.

Ref [10] proposed a Consistency-as-a-service model where a

group of users of a data cloud can form a group to verify the

consistency provided by the cloud service provider. A two

level auditing structure is proposed to verify Monotonic Read

Consistency and Read-Your-Write Consistency by means of

local auditing and preserving Causal consistency through

global auditing. An auditor was chosen randomly from the

group of users of the audit cloud and was assigned to perform

the global auditing task. A graph was constructed based on the

events and if the resultant graph was acyclic then a violations

was not encountered. The severities of such violations are

quantified using different metrics. Data staleness and

Commonality were the most commonly used metrics. A

Heuristic Auditing Strategy (HAS) is proposed to reveal as

many violations as possible.

Ref [11] used an approach of geographically distributed

servers combined with a writer to fit the benchmarking

system. They aimed to evaluate Amazon S3 in terms of

consistency guarantees and their results proved that S3

frequently violates monotonic read consistency. Their

findings justify the two-level auditing strategy used in this

paper. Ref [13] assessed Amazon, Google and Microsoft’s

service and verified their consistency properties. The results

proved that Amazon S3 doesn’t provide its promised level of

consistency and only eventual consistency was achieved

which cannot be tolerated by all applications.

3. PRELIMINARIES
In this section we describe the structure of the user operation

table (UOT) through which each user timestamps his own

events. They form the basis for partial ordering of events in

the system. The strategy used by the auditor as well as the

users are briefed as well.

3.1 User Operation Table (UOT)
Each user maintains a user operation table (UOT) which

comprises the entire list of operation done by him. Each user

performs auditing through his user operation table. Each UOT

comprise of operation, logical vector, physical vector and

timestamp. Unlike the work of [10] an additional factor of

timestamp is added to the UOT for the logging. The

timestamp may represent the local time of the user’s machine.

Each operation in the system can be either a write W(K,a)

which represents writing the value a to data identified by the

key K or a read R(K,a) which represents reading the data a

from the entity identified by the key K. . Each entity in the

data store is identified by a key. Each W(K,a) has several

dictated reads which are reads from same or other processes

where a read R(K,a) will have a single dictated write as a read

will represent value from a single write and not too many

versions of it.

Each user will maintain two vectors apart from the operation

id and timestamp namely the logical vector and physical

vector. Each vector is an array of N elements where N is the

number of users using the system, also 1≤ i≤ N where I is the

user id of the user. For example if Bob’s user id is 1 and the

number of users of the system is 3 then the logical vector

would be of the form <LC1, LC2, LC3> where LC1

represents his own logical clock. In a similar way physical

vector is also an array of n elements <PC1, PC2, …, PCN>

and each user maintains his own physical clock at PCi.

Initially all the clocks are initialized to zero. These two

vectors are always incremented and they are never

decremented. The logical vector and physical vector are

updated in a similar way except that a physical vector is

updated nevertheless an event occurs or not whereas a logical

vector is updated only when an event occurs. An event can be

one among the following: Read, Write, Send a message,

Receive a message. The users of the system communicate

asynchronously through messages. When a user sends a

message to another user he appends his last entry in UOT

along with the message so that the receiver can update his

UOT in case he is not aware about others clock value.

 The logical vector is updated via vector clocks algorithm.

The vector clocks algorithm has the following four rules:

R1: Initially all values are zero.

R2: The local clock value is incremented at least once before

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.14, June 2017

9

each atomic event.

R3: The current value of the entire timestamp array is

piggybacked on every outgoing signal.

R4: Upon receiving a message, a process sets the value of

each entry in the timestamp array to be the maximum of the

two corresponding values in the local array, and in the

piggybacked array received.

 if localarray[q] := other_array[q]

 then localarray[q] := 1 + other_array[q];

for i := 1 ton do locaLarray[i] := max(locaLarray[i],

other_array[i]);

Fig 2. Use of Timestamped Arrays for Asynchronous

Communication

3.2 Overview of Strong Consistency models
Read-After-Write Consistency:

Read-after-write consistency, guarantees immediate visibility

of new data to all the clients. With read-after-write

consistency, a newly created object or file or table row will

immediately be visible, without any delays. There’s also read-

after-update and read-after-delete. Read-after-update

consistency would allow edits to an existing file or changes to

an already-existing object or updates of an existing table row

to be immediately visible to all clients. That’s not the same

thing as read-after-write, which is only for new data.

Read-after-write consistency allows you to build distributed

systems with less latency. Without read-after-write

consistency we need to incorporate some kind of delay to

ensure that the data you just wrote will be visible to the other

parts of your system.

Monotonic Write Consistency:

A write operation by a process on a data item x is completed

before any successive write operation on x by the same

process (i.e. a write operation on a copy of data item is

performed only if that copy has been brought up to date by

mean of any preceding write operation, even if taken place on

another copy of x.)

4. AUDITING STRATEGY
In this section we describe the auditing strategy used by the

auditor as well as the users. Each user individually performs

local auditing and the auditor performs global auditing.

4.1 Local Auditing
Local auditing (Alg. 1) can be done by each user as and when

he is performing a read/write operation. This paper aims to

verify strong consistency violations in a data store and hence

require auditing reads as well as auditing writes to perform the

auditing operation.

Algorithm 1 Local Auditing

Initial UOT with ∅

while issue an operation op do

 if op = W(a)

 if W(a) → W(b)

where W(b) is the last write in the UOT

then

 Delay write

Monotonic write consistency is violated

 record W(a) in UOT

R(c) ∈ UOT is the last read

 if op = r(a) then

 if W(a) → W(c) then

 Read-after-write consistency is violated

 record r(a) in UOT

Let W(a) denote user’s current write operation, if there is

another W(b) from the same process that has not yet been

updated then the current write must be delayed until all the

replicas are updated. Hence monotonic write consistency is

violated. The number of violations is increased by 1 and the

write entry is updated in the UOT. Let R(a) denote user’s

current read operation and its dictating write is W(a). If the

last read entry in the UOT is R(c) whose dictating write is

W(c) and if W(a) happens before W(c) then Read-after-write

consistency violated. The read entry is updated in the UOT.

4.2 Global Auditing
An auditor is chosen among the users of the data cloud and is

assigned to perform the global auditing work. Each user send

their UOT entries to the auditor to obtain a global trace of

operations. The consistency property is verified by

constructing a directed graph. If the resultant graph is a

Directed Acyclic Graph (DAG) then causal consistency is

preserved else it is violated. This solution is inspired by [7]

and their results justify the solution. An edge is added to the

graph under the following conditions:

 1) Time edge. For operation op1 and op2, if op1 → op2, then

a directed edge is added from op1 to op2.

2) Data edge. For operations R(a) and W(a) that come from

different users, a directed edge is added from W(a) to R(a).

3) Causal edge. For operations W(a) and W(b) that come from

different users, if W(a) is on the route from W(b) to R(b), then

a directed edge is added from W(a) to W(b).

The algorithm used for constructing the graph is shown

below:

Algorithm 2 Global Auditing

Each operation in the global trace is denoted by a vertex

for any two operations op1 and op2 do

if op1 → op2 then

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.14, June 2017

10

A time edge is added from op1 to op2

 if op1 = W(a), op2 = R(a), and two operations come from

different users then

A data edge is added from op1 to op2

if op1 = W(a), op2 = W(b), two operations come from

different users, and W(a) is on the route from W(b) to R(b)

then A causal edge is added from op1 to op2

Check whether the graph is a DAG by topological sorting

Global Auditing is performed to verify if causal consistency is

preserved. In order to verify if the constructed graph is DAG,

topological sort is performed on the nodes. The users can

delete their UOT entries except the last read and write to save

some space and through this way the last read and write are

always available to the auditor.

5. EVALUATION OF GOOGLE CLOUD

STORAGE
Google Cloud Storage is an Internet service to store data in

Google's cloud. Google Cloud Storage allows world-wide

storage and retrieval of any amount of data and at any time.

This paper aims to test the consistency provided by Google

Cloud Storage (GCS). It is mentioned by Google that Google

Cloud Storage provides strong read-after-write consistency for

all upload and delete operations. This means that after an

object is uploaded successfully we can immediately download

it, delete it, or get its metadata. Likewise, any attempt to

access an object immediately after it is successfully deleted

will result in a 404 Not Found status code. List operations are

eventually consistent from anywhere on the Internet. In order

to test GCS an instance of GCS is created. The application is

designed to store files to the GCS bucket. The GCS bucket is

by default placed in a high replication region hence a number

of replicas of it are available. Any user of Google can access

the application and can store files in the GCS bucket. As

mentioned above each user has a user operation table and

performs auditing as per the strategy mentioned. The auditor

is not chosen at random as in [10]. A modified auditor

election scheme is used.

5.1 Modified Auditor Election Scheme
Instead of choosing the auditor randomly among the users it

would be wise to choose based on the user’s abilities. There

are several factors like availability, CPU, memory, bandwidth

which can be considered. Here we choose bandwidth and

availability as the two factors to choose the auditor. A user

who has more bandwidth and who is more available at the

system is the one who might perform well. Hence this scheme

is more effective than choosing an auditor randomly. Each

users bandwidth is tested when he login to the application.

This data is cached and if there is a drastic change in the

bandwidth at a later stage before he logs out then it is again

recalculated. The amount of time the user was available at the

system is logged. This process continues for a predetermined

amount of time and once the time elapses a new auditor is

elected based on the logged data.

5.2 Evaluation
Each user of the application logs their operations in the UOT.

The UOT has a timestamp entry to mark the time of action

performed. The UOT is updated as mentioned in section 3.

Fig 3. Sample UOT from the application

As soon as a file is uploaded it is checked for monotonic write

consistency if the file has been updated in all the replicas by

making continuous read request to the uploaded files. The

delay in making the write operation is also noted.

In order to verify monotonic consistency a predefined number

of auditing reads are performed on the updated file. The time

is divided into time slices and if a violation occurs in a

timeslice then it is considered abnormal. The number of

auditing reads in a timeslice i depends on the number of

violations occurred in the i-1 timeslice. If a violation occur

then it is more possible to continue in the upcoming timeslices

too. The test runs are conducted several times. Each time the

average delay for committing the write is noted and this is

used as the adjusting factor so that a delay in write cannot be

considered a violation.

Fig 4a Average Delay noted in Standard GCS bucket

Fig 4 shows the average delay noted during the sample runs in

Standard bucket. Similar to other works trying to verify the

consistency properties of Amazon S3, here we try to deploy

several auditing reads at different geographical regions. These

auditing reads are performed from an application deployed in

a Google App Engine project. This application uses a cloud

SQL instance belonging to D0 — 128 MB RAM and a storage

of up to 256 GB. In GCS the standard storage bucket can

reside in 3 different regions. A standard storage bucket is

created in the Asia region. The Reader processes as well as

the SQL instance were deployed in the US region. The storage

bucket and the reader processes are at different geographical

locations. Objects in the standard bucket were continuously

updated using cron jobs at very short intervals and the reader

processes where made to read the updated data. Such reads

are called as auditing reads. The number of such reads are not

chosen at random but based on the number of violations that

occurred at a specific interval. The physical time is divided

into timeslices or intervals and several auditing reads are

performed during these intervals. If a violation occurs at

specific interval then it is more possible to occur at the

upcoming intervals too and hence the numbers of such

auditing reads are increased with the increase in violations.

These runs were plotted using the average delay experienced

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.14, June 2017

11

during each interval. At each interval the number of auditing

reads is increased. As seen in Figure 4 the three runs

experienced different delays, with runs having an average

delay reaching 0.3 seconds. This can be used to set the

threshold value after which such an operation can be

considered a violation. This threshold value can be set after an

extended set of runs.

The other type of storage bucket available in GCS bucket is

Durable Reduced Availability (DRA) Bucket. All type of

operations available in a standard GCS bucket is also

available in a DRA bucket at a relatively low cost with a

trade-off in availability. While a standard can be placed only

in continental regions a DRA bucket can be placed in specific

regions within the three main continental regions. Since they

are less available the number of requests that could be

processed in a minute is less compared to a standard GCS

bucket. A DRA bucket is created in the Asia-East region. The

reader process and the DRA bucket are present at different

geographical region.

Fig 4b Average Delay noted in DRA bucket

 They are less available than a standard bucket. Figure 4

shows the average delay noted in a DRA bucket. Cron jobs

were deployed each minute with a timeslice of 10 seconds.

The number of reader process deployed are less than the

standard GCS bucket since the availability factor should also

be considered. From the above two figures (Fig 3 and Fig 4) it

can be seen that objects in DRA bucket experience larger

delays than an object in the standard bucket. Since a DRA

bucket is available at a relatively low cost this can be tolerable

but there reads in timeslices 10-20 and 40-50 experiencing a

delay of more than 2 seconds which is unacceptable. Such

operations are considered as violations.

Nearline buckets are currently available as a Beta Release and

have the same durability and nearly same availability

characteristics as a standard bucket. They can be used to store

data which are not frequently accessed for a long duration. A

Nearline storage bucket is created in the Asia Region.

Fig 5. Average Delay noted in Nearline Bucket

 The delays noted in Nearline buckets as seen in Fig 5 are

randomly distributed with delays mostly averaging 0.25

seconds. The number of auditing reads performed on a

Nearline Bucket within a single timeslice is very much lesser

than the other two buckets. If the number of reads in a

timeslice is increased the read operations quit with a fatal

error. These types of buckets are mostly used as cold backup

and cannot be accessed more frequently. As seen in Fig 5

objects in the nearline bucket experience very large delays.

Such buckets cannot be considered for normal operations

within an application. An SLA cannot be engaged for a

Nearline bucket in GCS. Leaving out the delays it has been

found that there have been few inconsistencies during the list

and update operations in Google Cloud Storage and only

eventual consistency was achieved. This is not the case of an

Upload/ Delete operation in the GCS. They are strongly

consistent.

The modified election scheme proves worthy as the auditor

chosen based on the abilities performs well than a randomly

chosen one.

6. CONCLUSION
In this paper we presented a Heuristic Auditor which verifies

whether the data cloud provides the promised level of

consistency. Here we considered only the strong consistency

models like monotonic write consistency and read after write

consistency. Such strong consistency is mandatory for

interactive and several other critical applications. The users

who deploy such applications can themselves verify whether

the cloud service provider is actually providing the promised

level of strong consistency. Google Cloud Storage is

evaluated for strong consistency violations. Several reader

processes called auditing reads where deployed to read data

which could reveal violations. This work could be extended

with other major cloud service providers who offer strong

consistency guarantees to their users.

7. REFERENCES
[1] Kopetz, Hermann, ‘Clock Synchronization in Distributed

Real-Time Systems’, IEEE Transactions On Computers,

Volume:C-36 , Issue: 8, Page(S): 933 - 940 Aug. 1987.

[2] Cong Wang, Kui Ren, Wenjing Lou and Jin Li, ‘Toward

Publicly Auditable Secure Cloud Data Storage Services’,

IEEE Transactions On Network, Volume:24 ,Issue: 4,

Page(s): 19 - 24 July-August 2010.

[3] E. Brewer, “Towards robust distributed systems,” in

Proc. 2000 ACM PODC.

[4] Mehdi Sookhak, Hamid Talebian, Ejaz Ahmed, Abdullah

Gani, Muhammad Khurram Khan ‘A review on remote

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.14, June 2017

12

data auditing in single cloud server: Taxonomy and open

issues’, Elsevier Journal On Network And Computer

Applications Volume 43 Page(s): 121–141 25 April2014.

[5] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou and Jin

Li, ‘Enabling Public Auditability and Data Dynamics for

Storage Security in Cloud Computing’, IEEE

Transactions On Parallel And Distributed Systems, Vol.

22, No. 5, Page(s): 847 - 859 May 2011.

[6] Werner Vogels, “Eventually consistent,” Commun.

ACM, vol. 52, no. 1, 2009.

[7] E. Anderson, X. Li, M. Shah, J. Tucek, and J. Wylie,

“What consistency does your key-value store actually

provide,” in Proc. 2010 USENIX

[8] R. Zhang and L. Liu, “Security models and requirements

for healthcare application clouds,” in IEEE 3rd Int. Conf.

on Cloud Computing, 2010, pp. 268–275.

[9] Marian K. Iskander, Tucker Trainor, Dave W.

Wilkinson, Adam J. Lee and Panos K. Chrysanthis,

‘Balancing Performance, Accuracy, and Precision for

Secure Cloud Transactions’, IEEE Transactions On

Parallel And Distributed Systems, Vol. 25, No. 2,

Page(s): 417 - 426 February 2014.

[10] Qin Liu, Guojun Wang, and Jie Wu, ‘Consistency as a

Service: Auditing Cloud Consistency’, IEEE

Transactions On Network And Service Management,

Vol. 11, No. 1, Page(s): 25 - 35 March 2014.

[11] W. Vogels, “Data access patterns in the Amazon.com

technology platform,” in Proc. 2007 VLDB.

[12] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou and Jin

Li, ‘Enabling Public Auditability and Data Dynamics

for Storage Security in Cloud Computing’, IEEE

Transactions On Parallel And Distributed Systems, Vol.

22, No. 5, Page(s): 847 - 859 May 2011.

[13] D. Kossmann, T. Kraska, and S. Loesing, “An evaluation

of alternative architectures for transaction processing in

the cloud,” in Proc. 2010 ACM SIGMOD.

IJCATM : www.ijcaonline.org

