
International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.3, June 2017

12

The Use of Original and Hybrid Grey Wolf Optimizer

in Estimating the Parameters of Software Reliability

Growth Models

Jamal Salahaldeen Majeed Alneamy, PhD

Software Engineering Department,
Computer and Mathematics Science College,

University of Mosul, Iraq

Marwah Marwan Abdulazeez Dabdoob
Software Engineering Department,

Computer and Mathematics Science College,
University of Mosul, Iraq

ABSTRACT

In order to optimize the use of programs, it has become

necessary to focus on issues like software reliability. In this

work, the parameters of Software Reliability Growth Models

(SRGMs) were estimated in depending on failure data and

Swarm Intelligence, namely, Grey Wolf Optimizer (GWO).

Then, the (GWO) was hybrid with Real Coded Genetic

Algorithm (RGA) to obtain Hybrid GWO (HGWO).

The results that obtained from (GWO) are compared to the

results of five algorithms: Particle Swarm Optimization

(PSO), Artificial Bee Colony (ABC), the Dichotomous

Artificial Bee Colony (DABC), Classic Genetic Algorithm

(CGA) and the Modified Genetic Algorithm (MGA).

The results showed that (GWO) outperformed the rest of the

algorithms in parameters estimating accuracy and

performance using identical datasets. Sometimes, the (DABC)

showed better performance than (GWO).

Other comparisons were made between (GWO) and (HGWO)

and the results show that the hybrid algorithm outperformed

the original one.

General Terms

Swarm Intelligence.

Keywords

Genetic algorithms, Grey Wolf optimizer, Software

Reliability Growth Models .

1. INTRODUCTION
Software reliability is a key attribute to software quality.

Reliability can be defined as "how well software meets its

requirements" and also "the probability that the software will

operate without failure for the specified period of time in a

specified environment" [1]. Those software failures are

introduced during different stages of software development

life cycle by the system analysts, designers, programmers and

managers [2].

The presence of a fault in a system may lead to a system

failure, a failure causes the system performance to diverge

from the specified performance. A fault (also called a defect)

is an erroneous state of the system. There are no fixed

definitions of a fault because they are different from different

systems and in different situations, but in general, a fault can

be defined as an existing portion in the system which can be

removed by correcting the erroneous portion of the system [3].

Defect detection is usually a failure during a test phase; test

software may discover a defect and the test continue its

operation [4].

One of the hard issues is to develop reliable software

specifically when the software modules are interdepending on

each other and a lot of current software has this

interdependency. Another hard issue is to know whether the

delivered software to customers is reliable or not. The

reliability can be known to software vendors after the software

is delivered, the vendors receive customer feedback-problem

reports, system outages, complaints or compliments, but by

then it is too late. The reliability of software must be known

before it is shipped to customers. Software reliability models

(SRMs) attempt to provide that information to software

vendors before the software is released [4].

Software reliability growth models (SRGMs) is one of the

most well-known (SRMs), it bases on failure detection during

a test phase. The parameters of (SRGMs) are generally

unknown and have to be estimated based on collected failure

data. Two of the most popular estimation techniques are

Maximum Likelihood Estimation (MLE) and Least Squares

Estimation (LSE) [5], these two methods are suitable for linear

problems but most of the Software Reliability Growth Models

are nonlinear, so the researchers are finding many other

methods for parameter estimations [6].

In recent years, the meta- heuristics algorithms have gained

popularity in solving the optimization problem of scientific

fields [5]. Therefore, in this work, we will use the Grey Wolf

Optimizer (GWO) to estimate the parameter of the (SRGMs).

Then, we will attempt to hybrid (GWO) with Real Coded

Genetic Algorithm (RGA) to improve the performance of

estimations. The rest of this paper is organized as follows:

Section 2 surveys various types of SRGMs and past researches

that we will compare our work with. In Section 3 and 4, GWO

and RGA are explained. In section 5, the proposed HGWO

was introduced for parameters estimation. Then, the

experimental results based on two groups of datasets are

presented and discussed in Section 6. Finally, some

conclusions are given in Section 7.

2. LITERATURE REVIEW

2.1 Survey of SRGMs
Through the last years, many software reliability growth

models (SRGMs) have been suggested and investigated for

measuring the software reliability.

(SRGMs) are mathematical models that represent software

failures as a random process and can be used to evaluate

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.3, June 2017

13

development status during the test phase; most of (SRGMs)

depend on some assumptions and distributions [7].

There are some classifications of (SRGMs) and the following

classification according to the modeling strategy which was

used in the model definition [8]: (1) General Order Statistics

Models whose models are described with respect to the failure

times. (2) Non-homogenous Poisson process (NHPP) whose

models are described with respect to the number of observed

failures.

There are many software reliability growth models, but the

most frequently used is Non Homogeneous Poisson process

Model (NHPP model) which shows more accuracy than the

other models [9].

These models can help software practitioners to make

decisions like the reliability of a software product has reached

an accepted limit and when the software system is ready for

release [10].

(NHPP) models are also called failure count models which are

based on the number of failures that happen in different time

intervals. The number of failures that detected is modeled as a

stochastic process, where N(t) indicates the number of failures

that have occurred at time t. What we mean by the Poisson

process is non-homogenous is that the failure intensity is not

constant, which means that the expected number of faults

found at time t cannot be described as a function linear in time

(an ordinary Poisson process can be described by that) [11].

NHPP models assume that the number of defects discovered

during the time (t) follows (NHPP) with mean value function

μ(t). The mean value function derivative leads to λ(t) which is

the failure intensity function of the software that usually

decreases as faults are detected and removed [12]. There are

many (NHPP) models; we will explain four of them that were

used in this work, namely:

2.1.1 Goel-Okumoto Model (G_O):
This model was first introduced by Goel and Okumoto in

(1979), it also called (Exponential NHPP Model) [12, 13]. The

)µ t) and λ(t) can be given as:

 ………………….…... (1)

 ...… ……...……….….….. (2)

Where:

(a) Denote the initial estimate of the total failure recovered at

the end of the testing process.

(b) Represents fault detection rate.

(t) Time of failure.

2.1.2 Power Model (POW):
It is one of the oldest models suggested by Duane in (1964).

Basically is a graphical approach to perform analysis of

reliability growth data and it is simple and easy to understand

[6]. The)µ t) and λ(t) can be given as:

 ………….….………...………….. (3)

 λ …………… ………….….. (4)

2.1.3 Delayed S-shaped Model (DSS) [12, 14]:
It was first introduced in Yamada et al. in (1983). The)µ t) and

λ(t) can be given as:

 ….………… (5)

 ………………………….......(6)

2.1.4 Inflection S-shaped Model (INFS):
Was proposed by Ohba in (1984). The)µ t) and λ(t) can be

given as:

 μ

………………………............(7)

 ………………….…..….…(8)

 …………………………………..….….(9)

Where:

(c) Denote inflection parameter.

(1>r>0) Called the inflection rate that indicates the ratio of

detectable faults to the total number of faults in the software.

(c) Denote inflection parameter.

(1>r>0) Called the inflection rate that indicates the ratio of

detectable faults to the total number of faults in the software.

The model becomes equivalent to the Exponential Growth

Model if the inflection rate equals to 1, which is the same to

assuming that from the beginning of a test all faults of a

program are detectable. The model approaches the Logistic

Curve Model as the inflection rate lean towards 0, which is the

same to assuming that at the beginning of a test only a few

faults of a program are detectable and faults rapidly become

detectable [15].

The first three models have two parameters to be estimated (a

and b) whereas the (INFS) model has three parameters to be

estimated (a, b and c).

2.2 Related Work
(SRGMs) were frequently studied throughout the literatures,

so here we will explain the studies that we will compare our

work with them:

2.2.1. Sheta’s Study [16]:
Used Particle Swarm Optimization (PSO) to solve the

parameter estimation problem.

2.2.1.1 Experimental Data:
A Test/Debug dataset of 111 measurements is used. By taking

70% of the measurements to estimate the model parameters

and the rest of the dataset is used to validate the developed

model.

2.2.1.2 Fitness Function:
Root Mean Square Error (RMSE) is used to give each solution

fitness value and whenever the (RMSE) is less that means the

best solution we have.

 ………….…... (10)

Where:

(N) Represents the number of measurements used for

estimating the model parameters.

(mi) Is the actual failure number in time t.

() Is the expected failure number by time t.

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.3, June 2017

14

2.2.1.3 Models:
Three models were used: G_O, POW and DSS.

2.2.1.4 The tuning parameters:
The tuning parameters and search space for PSO are given in

Table 1.

Table 1: The tuning parameters for the PSO

Operator value

Domain of search for a [-1000,1000]

Domain of search for b [-1,1]

Maximum Cycle Number (MCN) 1000

2.2.2 Sharma’s et al. Study [17]:
Propose Dichotomous Artificial Bee Colony (DABC) to

estimate the parameters of (SRGMs) and compared it with

original (ABC). The study used the same data, fitness

function, models and tuning parameters that used in [16].

2.2.3 Chao-Jung Hsu and Chin-Yu Huang’s Study

[5]:
Proposed a Modified Genetic Algorithm (MGA) to estimate

the parameters of (SRGMs) and compared it with Classical

Genetic Algorithm (CGA).

2.2.3.1 Experimental Data:
Three sets of real software failure data are used. The detailed

information of these datasets is listed in Table 2.

Table 2: Software Failure Data
Dataset Time Units No. of failures

DS1 [15] 19 weeks 328

DS2 [18] 20 weeks 100

DS3 [19] 34 weeks 181

2.2.3.2 Fitness Function:
Least Squares Estimation (LSE) is used to give each

chromosome a fitness value and the bigger value of fitness

function means better solution. The fitness function is as

follow:

 .…………...(11)

The Mean Square Error (MSE) is used for quantitative

comparisons. It is defined as:

 ………….……....... (12)

A smaller MSE indicates a smaller fitting error, and better

overall performance.

2.2.3.3 Models:
Two models were used: G_O and INFS.

2.2.3.4 The tuning parameters:
The tuning parameters and operators for (CGA and MGA) are

given in Table 3.

Table 3: The tuning parameters for the MGA and CGA

 MGA CGA

Chromosome

Representation

Binary Encoding

32-Bit

Binary

Encoding 16-Bit

Selection

Roulette Wheel

Selection +

Rebuilding

Roulette Wheel

Selection

Crossover Uniform Crossover

Mutation Weighted Bit Bit Mutation

Mutation

Maximum

Generations No.
1000

Population Size 100

Crossover Rate 0.5

Mutation Rate 0.1

No. Of Runs 100

3. GREY WOLF OPTIMIZER (GWO)
A new swarm intelligence algorithm introduced by Mirjalili in

(2014) inspired by grey wolves (Canis lupus). This algorithm

simulates the leadership grading and hunting mechanism of

grey wolves in nature. Four types of grey wolves (alpha α,

beta β, delta δ , and omega ω) are used to simulating the

leadership grading [20]. The leader is called alpha, the alpha is

frequently responsible for making the essential decisions about

sleeping place, hunting, time to wake, and so on. The second

level in the grading of grey wolves is beta. The betas are

secondary wolves that help the alpha in decision-making or

other activities. The lowest ordering grey wolf is omega.

Omega wolves always have to bow to all the other overriding

wolves. If a wolf is not an alpha, beta, or omega, it is called

delta. Delta wolves have to submit to alphas and betas, but

they control the omega.

The grey wolf hunting has three main steps as follows [21]:

1) Tracking, chasing, and approaching the prey.

2) Pursuing, encircling, and harassing the prey until it stops

moving.

3) Attack towards the prey.

3.1 Mathematical Model for the Algorithm
 3.1.1 Search for prey (exploration):
Grey wolves frequently search according to the position of the

leader alpha (first best solution), beta (second best solution),

and delta (third best solution). They separate from each other

to search for prey and converge to attack the prey [20].

3.1.2 Encircling prey [22]:
The following equations are offered to mathematically model

encircling behavior of grey wolves:

 …………………(13)

 ……………... (14)

Where:

(t) Indicates the current cycle.

(A) and (C) Are coefficient vectors.

(Xp) Is the position vector of the prey.

(X) Is the position vector of a grey wolf.

The vectors A and C are calculated as follows:

 ……………………….(15)

 ………………….…………..(16)

Where:

(a) Is linearly decreased from 2 to 0 over the course of cycles.

(r1 and r2) are random vectors in [0, 1].

3.1.3 Hunting [20]:
There is no clue around the location of the solution (the prey

in this case) in the search space, so to mathematically mimic

(first best candidate solution) beta (second best candidate

solution), and delta (third best candidate solution) have better

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.3, June 2017

15

knowledge about the potential location of prey. Therefore,

these three best solutions are saved and the other search agents

update their positions according to the position of the best

search agents. The following equations are for position update:

 ………………………. ….(17)

 ………………………(18)

 ……………….………(19)

 ……………….…(20)

 ………………………….(21)

 …………….…… …(22)

 ………………… …(23)

3.1.4 Attacking prey (exploitation)[22]:
The grey wolves finish the hunt by attacking the prey when it

stops moving. To mathematically model attacking the prey,

the value of (a) is linearly decreased from 2 to 0 over the

course of cycles.

 ………....(24)

The general steps of the GWO algorithm are illustrated in

Figure 1 [20]:

Grey Wolf Optimizer

Begin

Initialize the grey wolf population Xi (i=1,2,….., n)

Initialize a, A, and C

Calculate the fitness of each search agent

Xα= the best search agent

Xβ= the second best search agent

Xδ= the third best search agent

While (t < Max number of iteration)

For each search agent

Update the position of current search agent

End for

Update a, A, and C

Calculate the fitness of each search agent

Update Xα, Xβ and Xδ

t=t+1

End while

Return Xα

End

Fig. 1: Pseudo code of the (GWO)

4. REAL CODED GENETIC

ALGORITHM (RGA)
(GA) is a searching technique, firstly studied by John Holland

in the early (1970). Apparently, GA is based on the

mechanism of natural evolution ‘survival of the fittest’, this

concept can be useful to find the solution of complicated

optimization problems [23].

4.1 Chromosome Representation:
There are many types of encoding and we will explain the type

that we used in this work [24]:

4.1.1 Value Encoding

Each chromosome is represented as the string of specific

value. This Value can be float number, integer, character or

some object. In this work, we used encoding with real

numbers.

4.2 Genetic Algorithm Cycle:
As shown in Figure 2, (GA) has the following steps [25]:

Fig. 2: (GA) cycle

4.2.1 Generate Initial Population:
The initial populations are generated randomly. Each

individual in the population is called a chromosome which

represents a possible solution for the problem to be solved.

4.2.2 Evaluation:
Evaluation is made by defining fitness function for each

chromosome, this fitness function is an indicator that shows

how close this chromosome is to the desired solution [5].

4.2.3 Termination method:

 The Termination method determines when the genetic

process will stop evolving. In this work, the genetic process

will end either if there is no change in the population best

fitness for 10 generations, or maximum number of generations

has been reached [25].

4.2.4 Generate New Population:
Involves the following three steps:

1) Selection:

Selection is used to choose the fittest chromosomes from the

population, these chosen chromosomes will create offsprings

for the next generation [26].

There are many types of selection and we will explain the type

that we used in this work.

 Top- Mate Selection

The first parent is selected by the fitness order, whereas the

second parent is selected randomly [25].

2) Crossover:

Crossover is a process of exchange some genes between two

selected parents chromosomes to create two new

chromosomes (offsprings) [27]. There are many types of

crossover and we will explain the type that we used in this

work:

 Heuristic Crossover

This type of crossover is used with chromosomes with value

encoded. Two offsprings chromosomes will be generate from

two parents chromosomes. The first offspring is the parent

whose fitness is better than the other parent, this parent is

passed over to the next generation without any processing, so,

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.3, June 2017

16

the generated offspring is a copy of its parent. The second

offspring is generated from manipulation of the other parent as

shown in the following equations [28, 29]:

 …………..… (25)

 ….…. (26)

Where (r) is a random value between 0 and 1.

3) Mutation:

Mutation is a process of altering gene(s) in offspring

chromosome [27]. There are many types of mutation and we

will explain the type that we used in this work:

 Non-Uniform Mutation

The value of the parent chromosome is altered in a limited

range by considering the number of the current generation.

The relationship between the range of changing the

chromosome and the number of the current generation is

opposite, when the number of the current generation is small,

the range of changing the chromosome is large. As the

generations pass, the range decreases [30]. The equation is as

follow:

 =

 …..(27)

Where:

f(G): is the range function considering the number of the

current generation (G). The function f(G) is as follows:

 ……...………..(28)

Where:

(Gmax): Is the maximum number of generations

(b): Is a shape parameter.

(r): Is a uniform random number between 0 and 1.

The general steps of the RGA are illustrated in Figure 3:

Real Coded Genetic Algorithm

Begin

Generate the initial population of chromosomes

Define fitness function f (x), x = (x1, x2, ..., xd)

Calculate fitness function of all individual

chromosomes

Select parents by top-mate selection

Initial probabilities of crossover (pc) and

mutation (pm)

While (t < Max Generation) or (stop criterion);

If pc >rand

Generate new solution by Heuristic

Crossover

End if

If pm >rand

Generate new solution by Non-Uniform

Mutation

End if

Put the solutions in the new generation

End while

End

Fig. 3: Pseudo code of the (RGA)

5. PROPOSED HYBRID GWO WITH

RGA (HGWO)
The inspiration of developing (HGWO) approach is to chain

the advantages of both (GWO) algorithm and (RGA) to obtain

a hybrid algorithm that is easy to implement and has a good

balance between global search and local search and has a fast

convergence. In the proposed (HGWO), the total numbers of

iterations are equally shared by both (RGA) and (GWO). In

the first step, the first half of the iterations are given to (RGA)

that explores the global search place, then the solution that

obtained from (RGA) is given to (GWO). In the second step

(GWO) explores search space starting with the solution

obtained by RGA that is set as initial population of (GWO)

and continue the manipulation to find new enhanced solutions.
Figure 4 represents the flowchart of the hybrid algorithm.

Start

Generate initial

population of N

chromosome

Calculate fitness

Top-mate

selection

Heuristic

crossover

Non-uniform

mutation

Terminal

condition

Initial population of

GWO=final best

population of RGA

Calculate fitness

Find Alpha,

Beta and Delta

Update wolfs positions

according to Alpha,

Beta and Delta

Terminal

condition

End

Size of current

 generation <N

Yes

No

No Yes

No

Yes

Best solution

Alpha

Fig. 4: The flowchart of the (HGWO)

6. EXPERIMENTAL RESULTS AND

DISCUSSION

6.1 Experimental Dataset:
In this work, the parameters of SRGMs are estimated by using

two groups of datasets accordance to those referenced by other

researchers with which the comparisons were made.

6.2 Comparison with Other Algorithms
6.2.1 By using the first group of dataset
Two comparisons were made to test the efficiency of the

search algorithm employed in this work:

1) A comparison between (GWO) and the algorithms in ([16]

and [17]) are made.

2) Then, (HGWO) is compared with the (GWO) to see the

improvement of the original algorithm.

The tuning parameters for the (GWO) for the first comparison

are in Table 4.

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.3, June 2017

17

Table 4: The tuning parameters for the GWO

Operator Value

Domain of search for a [-1000,1000]

Domain of search for b [-1,1]

Domain of search for c [0,1000]

Search dimensions
3 for INFS

2 for rest models

No. of search agents 20

Maximum Cycle Number 1000

Three models were used: (G_O, POW and DSS). For the

comparison criteria, (RMSE) is used. Here (GWO) is run for

one time.

 Results in Table 5 show the (RMSE) for (PSO, ABC, DABC

and GWO), as we mentioned before whenever the (RMSE) is

less that means the best solution we have. The (GWO)

outperformed the (PSO) and (ABC) for all models and

outperformed (DABC) in (DSS) model only.

For the second comparison between (HGWO) and (GWO) the

maximum number of iterations for (HGWO) is set to 1000,

and as we mentioned before this number is equally shared by

(RGA) and (GWO) (500 iteration for each). First, the (RGA)

is executed and the result will set as initial solution for

(GWO). Tuning parameters for the (RGA) are in Table 6.

Table 6: The tuning parameters for the RGA

Operator Value

Domain of search for a [-1000,1000]

Domain of search for b [-1,1]

Domain of search for c [0,1000]

No. of chromosomes 20

Maximum No. of generations 500

Chromosome representation Value encoding

Selection Top-mate selection

Crossover Heuristic Crossover

Mutation Non-Uniform Mutation

Crossover rate 0.5

Mutation rate 0.1

For (GWO), the tuning parameters are the same as in Table 4

except that the maximum cycle number is set to 500. The total

number of iterations needed by (HGWO) to reach optimal

solution is the sum of iterations needed by (RGA) and

(GWO).

Results in Table 7 show the (RMSE) for (GWO and HGWO)

by using three models: (G_O, POW and DSS). The origin and

hybrid algorithm reach nearly the same (RMSE) but (HGWO)

needs less iterations to reach it.

Table 5: Comparison GWO with (PSO, ABC and DABC) using first group of dataset

Best values by GWO RMSE-testing (30%of data) Model

b a GWO DABC ABC PSO

0.017 684.424 77.901 72.018 119.642 80.896 G_O

0.728 22.388 146.33 81.923 158.675 149.96 POW

0.063 501.897 16.667 29.805 17.091 17.063 DSS

Table7: Comparison GWO with HGWO using first group of dataset

Figure 5 illustrate the convergence fitness function for (GWO) and (HGWO) for the three models. In G_O model both algorithms

converge at fitness value 25.1845 but (HGWO) needs less iteration than the needed by (GWO) to reach this fitness value. Also for

POW model and DSS model the (HGWO) converge faster than (GWO) at fitness values equal to 32.9521 and 20.7244 respectively.

Fig. 5: convergence graph for GWO and HGWO for first group of dataset

Hybrid GWO GWO

Model Total no. of cycles

by HGWO

No. Of cycles

by GWO

No. Of cycles by

RGA

RMSE-

testing
No. Of cycles

RMSE-

testing

516 486 30 77.893 978 77.901 G_O

505 475 30 146.426 961 146.330 POW

513 493 20 16.497 987 16.667 DSS

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.3, June 2017

18

6.2.2 By using the second group of dataset
Two comparisons were made to test the efficiency of the

search algorithm employed in this work:

1) A comparison between (GWO) and the algorithms in ([5])

are made.

2) Then, the (HGWO) is compared with the (GWO) to see the

improvement of the original algorithm.

For the first comparison, two models were used: (G_O

and INFS). For the comparison criteria, (MSE) is used.

(GWO) is run 100 times repeatedly, and the minimum (MSE)

of each model in all dataset (DS1, DS2 and DS3) is obtained.

Then, the average values for reaching the minimum value of

(MSE) are collected. Notice that the number of generations is

rounded to an integer.

In Tables 8, 9 and 10 results show the (MSE) for (CGA, MGA

and GWO), all three algorithms reach the same (MSE) but

(GWO) outperformed the (CGA) and (MGA) for all models

according to the average number of generations needed to

reach optimal solution.

Table 8: Comparison GWO with (CGA and MGA) using DS1

Best values found by GWO GWO MGA CGA

Model
Data

set
c b a

Av. No. Of

gen.
MSE

Av. No.

Of gen.
MSE

Av. No.

Of gen.
MSE

- 0.0323 760.5316 834 139.8151 5341 139.815 13415 139.815 G_O

DS1
2.886 0.1788 382.3867 891 82.7040 15664 82.704 78664 82.704 INFS

Table 9: Comparison GWO with (CGA and MGA) using DS2

Best values found by GWO GWO MGA CGA

Model Dataset

c b a
Av. No.

Of gen.
MSE

Av. No.

Of gen.
MSE

Av. No.

Of gen.
MSE

- 0.0832 130.2074 42 11.6171 7331 11.617 48104 11.617 G_O

DS2
1.2047 0.1720 110.8352 268 8.9792 17490 8.98 77889 8.98 INFS

Table 10: Comparison GWO with (CGA and MGA) using DS3

Best values found by GWO GWO MGA CGA

Model Dataset

c b a
Av. No.

Of gen.
MSE

Av. No.

Of gen.
MSE

Av. No.

Of gen.
MSE

- 0.0061 1000 38 20.3895 3350 22.863 39209 22.863 G_O

DS3

3.6893 0.0875 229.3826 684 5.8200 20749 5.82 83578 5.82 INFS

For the second comparison, (HGWO) is run 100 times

repeatedly, for each run (MSE) is obtained and the needed

iterations by (RGA) and (GWO) is added to obtain the total

iterations needed by (HGWO) to reach this (MSE). After we

gained 100 (MSE), the minimum (MSE) of each model in all

dataset (DS1, DS2 and DS3) is obtained. Then, the average

values for reaching the minimum value of (MSE) are

collected. Notice that the number of generations is rounded to

an integer.

Results in Table 11 show that (HGWO) reach nearly the same

(MSE) for (GWO) but in less iteration.

Table 11: Comparison GWO with (CGA and MGA) using second group of dataset (DS1, DS2 and DS3)

HGWO GWO
Model Data set

Av. No. Of gen.

by HGWO

No. Of cycles

by GWO

No. Of cycles

by RGA

MSE-testing Av. No.

Of gen.

MSE-testing

367 458 50 139.8151 834 139.8151 G-O DS1

548 494 60 82.7467 891 82.7040 INFS

30 2 20 11.6171 42 11.6171 G-O DS2

82 95 20 8.9798 268 8.9792 INFS

28 9 20 20.3895 38 20.3895 G-O DS3

84 64 20 5.8210 684 5.8200 INFS

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.3, June 2017

19

Figure 6 illustrate the convergence fitness function for (GWO) and (HGWO) for the two models using DS1. Both algorithms converge

at fitness value equal to 3.76×10-4 for G_O model and 6.36×10-4 for INFS model but (HGWO) needs less iteration than the needed by

(GWO) to reach these fitness values.

Fig. 6: convergence graph for GWO and HGWO for DS1

Figure 7 illustrate the convergence fitness function for (GWO) and (HGWO) for the two models using DS2. Both algorithms converge

at fitness value equal to 4.3×10-3 for G_O model and 5.6×10-3 for INFS model but (HGWO) needs less iteration than the needed by

(GWO) to reach these fitness values.

Fig. 7: Convergence graph for GWO and HGWO for DS2.

In Figure 8, both (GWO) and (HGWO) converge at the same value (1.4×10-3 for G_O model, 5.1×10-3 for INFS model) but the

(HGWO) converge faster than (GWO).

Figure 8 illustrate the convergence fitness function for (GWO) and (HGWO) for the two models using DS3. Both algorithms converge

at fitness value equal to 1.4×10-3 for G_O model an 5.1×10-3 for INFS model but (HGWO) needs less iteration than the needed by

(GWO) to reach these fitness values.

Fig. 8: Convergence graph for GWO and HGWO for DS3

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.3, June 2017

20

7. CONCLUSION AND FUTURE WORK
In this work, (GWO) and (HGWO) were used to estimate the

parameters of four (SRGMs) models: G_O, POW, DSS and

INFS by using two groups of datasets. Two comparisons were

made for each group of datasets, the first comparison compare

(GWO) with other algorithms: PSO, ABC, DABC, CGA and

MGA and the results have shown that the (GWO) present

more accurate solution when it’s compared with these

algorithms. The second comparison compares (GWO) with

the proposed (HGWO) which is a hybridization between

genetic algorithm and original (GWO). The comparisons

between the origin and the hybrid algorithm show that both

algorithms present optimal solutions but (HGWO) needs less

iteration than (GWO) to reach the solution, so the

enhancement gained from the hybridization process lay in
speeding the process of finding the best solution.

As for further recommendations, many other swarm

intelligence can be used for parameters estimation problem

and compared to our work. Future work might also include a

different hybrid method with (RGA) or hybrid with other
swarm algorithms for better performance.

8. REFERENCES
[1] Sheakh, T. H., Singh, V. P., 2012,"Taxonomical Study

Of Software Reliability Growth Models", International

Journal of Scientific and Research Publications, Volume
2, Issue 5, pp.1-3.

[2] Kaswan, K.S., Choudhary , S., Sharma, K., 2015,"

Software Reliability Modeling using Soft Computing

Techniques: Critical review", J Inform Tech Softw Eng

5: 144.

[3] Xie, M., Dai, Y. S., Poh, K. L., 2004, "Computing

System Reliability Models and Analysis", Springer,

ISBN-10: 030648496X, ISBN-13:978-0306484964,
pp.1-293.

[4] Wood, A., 1996, "Software Reliability Growth Models",

Tandem Tech., Technical Report, Vol. 96.1, Tandem

Computers Inc., Corporate Information Center,
Cupertino Calif., Part Number 130056.

[5] Hsu, C.J., Huang, C.Y., 2010," A Study on the

Applicability of Modified Genetic Algorithms for the

Parameter Estimation of Software Reliability Modeling "

, IEEE 34th Annual Computer Software and Applications

Conference, pp.531-540.

[6] Shanmugam, L., Florence, L., 2012, "A Comparison of

Parameter Best Estimation Method for Software

Reliability Models", International Journal of Software

Engineering & Applications (IJSEA), Vol.3, No.5,

pp.91-102.

[7] Su, Y.S., Huang, C.Y., 2006," Neural-network-based

approaches for software reliability estimation using

dynamic weighted combinational models ", The Journal
of Systems and Software 80, pp.606–615.

[8] AL-Saati, N., Abd-AlKareem, M.,2013," The Use of

Cuckoo Search in Estimating the Parameters of Software

Reliability Growth Models", International Journal of

Computer Science and Information Security, Vol. 11,
No. 6.

[9] Kelanibandara, K.W.K.B.P.L.M.,2012," Software

Reliability Estimation Using Cubic Splines Network

Model", thesis, University of Colombo School of

Computing , pp.1-72.

[10] Lai, R., Garg, M., 2012, "A Detailed Study of NHPP

Software Reliability Models", Journal of Software,
Vol.7, No.6, pp.1296-1306.

[11] Wohlin, C., Höst, M., Runeson, P., Wesslén, A., 2001, "

Software Reliability", Encyclopedia of Physical Science

and Technology, Volume 15, pp.1-27.

[12] Meyfroyt, P. H. A., 2012,"Parameter Estimation for

Software Reliability Models", thesis, Eindhoven:

Technische Universiteit Eindhoven, pp.1-65.

[13] Song, K. Y., Chang, I. H., 2014," Parameter Estimation

and Prediction for NHPP Software Reliability Model and

Time Series Regression in Software Failure Data", J.

Chosun Natural Sci., Vol. 7, No. 1, pp. 67 – 73.

[14] Williams, P., 2006,"prediction capability analysis of two

and three parameters software reliability growth models",
information technology journal 5(6), pp.1048-1052.

[15] Ohba, M., 1984,"software reliability analysis models",
IBM J. RES. DEVELOP. VOL. 28 NO. 4, pp.228-443.

[16] Sheta, A. F., 2007, " Parameter Estimation of Software

Reliability Growth Models by Particle Swarm

Optimization", AIML Journal, Volume (7), Issue (1),

pp.55-61.

[17] Sharma, T.K., Pant, M., Abraham, A., 2011,"

Dichotomous Search in ABC and its Application in

Parameter Estimation of Software Reliability Growth

Models ", Third World Congress on Nature and

Biologically Inspired Computing, pp.214-219.

[18] Wood A., 1996,"Predicting Software Reliability," IEEE
Computer, vol. 29, no. 11, pp. 69-77.

[19] Jeske, D. R., Zhang, X., Pham, L., 2005," Adjusting

Software Failure Rates That Are Estimated From Test

Data ", IEEE TRANSACTIONS ON RELIABILITY,

VOL. 54, NO. 1, pp.107–114.

[20] Mirjalili, S. A., Mirjalili , S. M., Lewis, A., 2014," Grey

Wolf Optimizer", Advances in Engineering Software 69,
pp. 46–61.

[21] Madadi, A., Motlagh, M. M., 2014," Optimal Control of

DC motor using Grey Wolf Optimizer Algorithm", Tech
J Engin & App Sci., 4 (4): 373-379.

[22] Mirjalili, S. A., 2015," How effective is the Grey Wolf

optimizer in training multi-layer perceptrons",The

International Journal of Artificial Intelligence, Neural

Networks, and Complex Problem-Solving Technologies
43:645.

[23] HERRERA, F., LOZANO, M., VERDEGAY, J.L.,

1998," Tackling Real Coded Genetic Algorithms:

Operators and Tools for Behavioural Analysis", Artificial

Intelligence Review 12: 265–319.

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.3, June 2017

21

[24] Kumar, A., 2013," ENCODING SCHEMES IN

GENETIC ALGORITHM", International Journal of

Advanced Research in IT and Engineering, Vol.2 ,No.3,

pp. 1-7.

[25] AL Neamy, J. S., 2006,"Brain Tumors Images Diagnosis

Using Hybrid Intelligency Techniques", Ph.D. Thesis,

college of computers and mathematics science/university
of Mosul.

[26] Goldberg, D. E., Deb, K., 1991, "A Comparative

Analysis of Selection Schemes Used in Genetic
Algorithms", pp.70-92.

[27] Achiche, S., Baron, L., Balazinski, M., 2004,"

Real/binary-like coded versus binary coded genetic

algorithms to automatically generate fuzzy knowledge

bases: a comparative study", S. Achiche et al. /

Engineering Applications of Artificial Intelligence 17,

pp.313–325.

[28] Peltokangas, R., Sorsa, A., 2008," Real-coded genetic

algorithms and nonlinear parameter identification",
Report A No 34, pp.1-28.

[29] KAYA, Y., UYAR, M., TEKDN, R., 2011, "A Novel

Crossover Operator for Genetic Algorithms: Ring

Crossover".

[30] Michalewicz,Z.,1996,"Genetic Algorithms Data

Structures =Evolution Programs", springer-verlag Berlin

Heidelberg New York.

IJCATM : www.ijcaonline.org

