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ABSTRACT 

In order to optimize the use of programs, it has become 

necessary to focus on issues like software reliability. In this 

work, the parameters of Software Reliability Growth Models 

(SRGMs) were estimated in depending on failure data and 

Swarm Intelligence, namely, Grey Wolf Optimizer (GWO). 

Then, the (GWO) was hybrid with Real Coded Genetic 

Algorithm (RGA) to obtain Hybrid GWO (HGWO). 

The results that obtained from (GWO) are compared to the 

results of five algorithms: Particle Swarm Optimization 

(PSO), Artificial Bee Colony (ABC), the Dichotomous 

Artificial Bee Colony (DABC), Classic Genetic Algorithm 

(CGA) and the Modified Genetic Algorithm (MGA). 

The results showed that (GWO) outperformed the rest of the 

algorithms in parameters estimating accuracy and 

performance using identical datasets. Sometimes, the (DABC) 

showed better performance than (GWO). 

Other comparisons were made between (GWO) and (HGWO) 

and the results show that the hybrid algorithm outperformed 

the original one. 

General Terms 

Swarm Intelligence. 

Keywords 

Genetic algorithms, Grey Wolf optimizer, Software 

Reliability Growth Models . 

1. INTRODUCTION 
Software reliability is a key attribute to software quality. 

Reliability can be defined as "how well software meets its 

requirements" and also "the probability that the software will 

operate without failure for the specified period of time in a 

specified environment" [1]. Those software failures are 

introduced during different stages of software development 

life cycle by the system analysts, designers, programmers and 

managers [2]. 

The presence of a fault in a system may lead to a system 

failure, a failure causes the system performance to diverge 

from the specified performance. A fault (also called a defect) 

is an erroneous state of the system. There are no fixed 

definitions of a fault because they are different from different 

systems and in different situations, but in general, a fault can 

be defined as an existing portion in the system which can be 

removed by correcting the erroneous portion of the system [3]. 

Defect detection is usually a failure during a test phase; test 

software may discover a defect and the test continue its 

operation [4]. 

One of the hard issues is to develop reliable software 

specifically when the software modules are interdepending on 

each other and a lot of current   software has this 

interdependency. Another hard issue is to know whether the 

delivered software to customers is reliable or not. The 

reliability can be known to software vendors after the software 

is delivered, the vendors receive customer feedback-problem 

reports, system outages, complaints or compliments, but by 

then it is too late. The reliability of software must be known 

before it is shipped to customers. Software reliability models 

(SRMs) attempt to provide that information to software 

vendors before the software is released [4].  

Software reliability growth models (SRGMs) is one of the 

most well-known (SRMs), it bases on failure detection during 

a test phase. The parameters of (SRGMs) are generally 

unknown and have to be estimated based on collected failure 

data. Two of the most popular estimation techniques are 

Maximum Likelihood Estimation (MLE) and Least Squares 

Estimation (LSE) [5], these two methods are suitable for linear 

problems but most of the Software Reliability Growth Models 

are nonlinear, so the researchers are finding many other 

methods for parameter estimations [6]. 

In recent years, the meta- heuristics algorithms have gained 

popularity in solving the optimization problem of scientific 

fields [5]. Therefore, in this work, we will use the Grey Wolf 

Optimizer (GWO) to estimate the parameter of the (SRGMs). 

Then, we will attempt to hybrid (GWO) with Real Coded 

Genetic Algorithm (RGA) to improve the performance of 

estimations. The rest of this paper is organized as follows: 

Section 2 surveys various types of SRGMs and past researches 

that we will compare our work with. In Section 3 and 4, GWO 

and RGA are explained. In section 5, the proposed HGWO 

was introduced for parameters estimation. Then, the 

experimental results based on two groups of datasets are 

presented and discussed in Section 6. Finally, some 

conclusions are given in Section 7. 

2. LITERATURE REVIEW 

2.1 Survey of SRGMs 
Through the last years, many software reliability growth 

models (SRGMs) have been suggested and investigated for 

measuring the software reliability. 

(SRGMs) are mathematical models that represent software 

failures as a random process and can be used to evaluate 
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development status during the test phase; most of (SRGMs) 

depend on some assumptions and distributions [7]. 

There are some classifications of (SRGMs) and the following 

classification according to the modeling strategy which was 

used in the model definition [8]: (1) General Order Statistics 

Models whose models are described with respect to the failure 

times. (2) Non-homogenous Poisson process (NHPP) whose 

models are described with respect to the number of observed 

failures.  

There are many software reliability growth models, but the 

most frequently used is Non Homogeneous Poisson process 

Model (NHPP model) which shows more accuracy than the 

other models [9].  

These models can help software practitioners to make 

decisions like the reliability of a software product has reached 

an accepted limit and when the software system is ready for 

release [10]. 

(NHPP) models are also called failure count models which are 

based on the number of failures that happen in different time 

intervals. The number of failures that detected is modeled as a 

stochastic process, where N(t) indicates the number of failures 

that have occurred at time t. What we mean by the Poisson 

process is non-homogenous is that the failure intensity is not 

constant, which means that the expected number of faults 

found at time t cannot be described as a function linear in time 

(an ordinary Poisson process can be described by that) [11]. 

NHPP models assume that the number of defects discovered 

during the time (t) follows (NHPP) with mean value function 

μ(t). The mean value function derivative leads to λ(t) which is 

the failure intensity function of the software that usually 

decreases as faults are detected and removed [12]. There are 

many (NHPP) models; we will explain four of them that were 

used in this work, namely: 

2.1.1 Goel-Okumoto Model (G_O): 
This model was first introduced by Goel and Okumoto in 

(1979), it also called (Exponential NHPP Model) [12, 13]. The 

)µ t) and λ(t) can be given as: 

               ………………….…... (1)               

             ...… ……...……….….….. (2) 

Where:  

(a) Denote the initial estimate of the total failure recovered at 

the end of the testing process. 

(b) Represents fault detection rate. 

(t) Time of failure. 

2.1.2 Power Model (POW): 
It is one of the oldest models suggested by Duane in (1964). 

Basically is a graphical approach to perform analysis of 

reliability growth data and it is simple and easy to understand 

[6]. The )µ t) and λ(t) can be given as: 

           ………….….………...………….. (3) 

 λ            ……………   ………….….. (4)   

2.1.3 Delayed S-shaped Model (DSS) [12, 14]: 
It was first introduced in Yamada et al. in (1983). The )µ t) and 

λ(t) can be given as: 

                     ….………… (5)  

             ………………………….......(6) 

2.1.4 Inflection S-shaped Model (INFS): 
Was proposed by Ohba in (1984). The )µ t) and λ(t) can be 

given as: 

 μ    
         

       
………………………............(7)       

      
            

         
 ………………….…..….…(8) 

   
   

 
  …………………………………..….….(9) 

Where: 

(c) Denote inflection parameter. 

(1>r>0) Called the inflection rate that indicates the ratio of 

detectable faults to the total number of faults in the software.  

(c) Denote inflection parameter. 

(1>r>0) Called the inflection rate that indicates the ratio of 

detectable faults to the total number of faults in the software.  

The model becomes equivalent to the Exponential Growth 

Model if the inflection rate equals to 1, which is the same to 

assuming that from the beginning of a test all faults of a 

program are detectable. The model approaches the Logistic 

Curve Model as the inflection rate lean towards 0, which is the 

same to assuming that at the beginning of a test only a few 

faults of a program are detectable and faults rapidly become 

detectable [15]. 

The first three models have two parameters to be estimated (a 

and b) whereas the (INFS) model has three parameters to be 

estimated (a, b and c).  

2.2 Related Work 
(SRGMs) were frequently studied throughout the literatures, 

so here we will explain the studies that we will compare our 

work with them: 

2.2.1. Sheta’s Study [16]:  
Used Particle Swarm Optimization (PSO) to solve the 

parameter estimation problem.  

2.2.1.1 Experimental Data: 
A Test/Debug dataset of 111 measurements is used. By taking 

70% of the measurements to estimate the model parameters 

and the rest of the dataset is used to validate the developed 

model. 

2.2.1.2 Fitness Function:  
Root Mean Square Error (RMSE) is used to give each solution 

fitness value and whenever the (RMSE) is less that means the 

best solution we have.  

      
 

 
         

 
     ………….…... (10) 

Where: 

(N) Represents the number of measurements used for 

estimating the model parameters. 

(mi) Is the actual failure number in time t. 

(    ) Is the expected failure number by time t. 
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2.2.1.3 Models: 
Three models were used: G_O, POW and DSS. 

2.2.1.4 The tuning parameters: 
The tuning parameters and search space for PSO are given in 

Table 1. 

Table 1: The tuning parameters for the PSO 

Operator value 

Domain of search for a [-1000,1000] 

Domain of search for b [-1,1] 

Maximum Cycle Number (MCN) 1000 

 

2.2.2 Sharma’s et al. Study [17]: 
Propose Dichotomous Artificial Bee Colony (DABC) to 

estimate the parameters of (SRGMs) and compared it with 

original (ABC). The study used the same data, fitness 

function, models and tuning parameters that used in [16].  

2.2.3 Chao-Jung Hsu and Chin-Yu Huang’s Study 

[5]: 
Proposed a Modified Genetic Algorithm (MGA) to estimate 

the parameters of (SRGMs) and compared it with Classical 

Genetic Algorithm (CGA). 

2.2.3.1 Experimental Data: 
Three sets of real software failure data are used. The detailed 

information of these datasets is listed in Table 2. 

 

Table 2: Software Failure Data 
Dataset Time Units No. of failures 

DS1 [15] 19 weeks 328 

DS2 [18] 20 weeks 100 

DS3 [19] 34 weeks 181 

 

2.2.3.2 Fitness Function: 
Least Squares Estimation (LSE) is used to give each 

chromosome a fitness value and the bigger value of fitness 

function means better solution. The fitness function is as 

follow: 

           
 

        
  

   

   .…………...(11) 

The Mean Square Error (MSE) is used for quantitative 

comparisons. It is defined as: 

    
 

 
        

  
   ………….……....... (12) 

A smaller MSE indicates a smaller fitting error, and better 

overall performance. 

2.2.3.3 Models: 
Two models were used: G_O and INFS. 

2.2.3.4 The tuning parameters: 
The tuning parameters and operators for (CGA and MGA) are 

given in Table 3. 

 

Table 3: The tuning parameters for the MGA and CGA 

 MGA CGA 

Chromosome 

Representation 

Binary Encoding 

32-Bit 

Binary 

Encoding 16-Bit 

Selection 

Roulette Wheel 

Selection  + 

Rebuilding 

Roulette Wheel 

Selection 

Crossover Uniform Crossover 

Mutation Weighted Bit Bit Mutation 

Mutation 

Maximum 

Generations No. 
1000 

Population Size 100 

Crossover Rate 0.5 

Mutation Rate 0.1 

No. Of Runs 100 

 

3. GREY WOLF OPTIMIZER (GWO) 
A new swarm intelligence algorithm introduced by Mirjalili in 

(2014) inspired by grey wolves (Canis lupus). This algorithm 

simulates the leadership grading and hunting mechanism of 

grey wolves in nature. Four types of grey wolves (alpha α, 

beta β, delta δ , and omega ω) are used to  simulating the 

leadership grading [20]. The leader is called alpha, the alpha is 

frequently responsible for making the essential decisions about 

sleeping place, hunting, time to wake, and so on. The second 

level in the grading of grey wolves is beta. The betas are 

secondary wolves that help the alpha in decision-making or 

other activities. The lowest ordering grey wolf is omega. 

Omega wolves always have to bow to all the other overriding 

wolves. If a wolf is not an alpha, beta, or omega, it is called 

delta. Delta wolves have to submit to alphas and betas, but 

they control the omega.  

The grey wolf hunting has three main steps as follows [21]:  

1) Tracking, chasing, and approaching the prey.  

2) Pursuing, encircling, and harassing the prey until it stops 

moving.  

3) Attack towards the prey.  

3.1 Mathematical Model for the Algorithm 
 3.1.1 Search for prey (exploration): 
Grey wolves frequently search according to the position of the 

leader alpha (first best solution), beta (second best solution), 

and delta (third best solution). They separate from each other 

to search for prey and converge to attack the prey [20]. 

3.1.2 Encircling prey [22]: 
The following equations are offered to mathematically model 

encircling behavior of grey wolves: 

                             …………………(13) 

                         ……………... (14) 

Where: 

(t) Indicates the current cycle. 

(A) and (C) Are coefficient vectors. 

(Xp) Is the position vector of the prey. 

(X) Is the position vector of a grey wolf. 

The vectors A and C are calculated as follows: 

                    ……………………….(15) 

               ………………….…………..(16) 

Where: 

(a) Is linearly decreased from 2 to 0 over the course of cycles. 

( r1 and r2) are random vectors in [0, 1]. 

3.1.3 Hunting [20]: 
There is no clue around the location of the solution ( the prey 

in this case) in the search space, so to mathematically mimic 

(first best candidate solution) beta (second best candidate 

solution), and delta (third best candidate solution)  have better 
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knowledge about the potential location of prey. Therefore, 

these three best solutions are saved and the other search agents 

update their positions according to the position of the best 

search agents. The following equations are for position update: 

  
                   

           ………………………. ….(17) 

  
         

         
          

        ………………………(18) 

  
                                ……………….………(19) 

  
                  

          
        ……………….… .....(20) 

  
                  

              ………………………….(21) 

  
         

         
          

         …………….…… …(22) 

         
                       

 
    ………………… …(23) 

3.1.4 Attacking prey (exploitation)[22]: 
The grey wolves finish the hunt by attacking the prey when it 

stops moving. To mathematically model attacking the prey, 

the value of (a) is linearly decreased from 2 to 0 over the 

course of cycles. 

                    ………....(24) 

The general steps of the GWO algorithm are illustrated in 

Figure 1 [20]: 

Grey Wolf Optimizer 

Begin 

Initialize the grey wolf population Xi (i=1,2,….., n) 

Initialize a, A, and C 

Calculate the fitness of each search agent 

Xα= the best search agent 

Xβ= the second best search agent 

Xδ= the third best search agent 

While (t < Max number of iteration) 

For each search agent 

Update the position of current search agent 

End for 

Update a, A, and C 

Calculate the fitness of each search agent 

Update Xα, Xβ  and  Xδ 

t=t+1 

End while 

Return Xα 

End 

Fig. 1: Pseudo code of the (GWO) 

 

4. REAL CODED GENETIC 

ALGORITHM (RGA) 
(GA) is a searching technique, firstly studied by John Holland 

in the early (1970). Apparently, GA is based on the 

mechanism of natural evolution ‘survival of the fittest’, this 

concept can be useful to find the solution of complicated 

optimization problems [23]. 

4.1 Chromosome Representation: 
There are many types of encoding and we will explain the type 

that we used in this work [24]: 

4.1.1 Value Encoding 

Each chromosome is represented as the string of specific 

value. This Value can be float number, integer, character or 

some object. In this work, we used encoding with real 

numbers. 

4.2 Genetic Algorithm Cycle: 
As shown in Figure 2, (GA) has the following steps [25]: 

 

 
Fig. 2: (GA) cycle 

 

4.2.1 Generate Initial Population: 
The initial populations are generated randomly. Each 

individual in the population is called a chromosome which 

represents a possible solution for the problem to be solved. 

 

4.2.2 Evaluation: 
Evaluation is made by defining fitness function for each 

chromosome, this fitness function is an indicator that shows 

how close this chromosome is to the desired solution [5]. 

4.2.3 Termination method: 

        The Termination method determines when the genetic 

process will stop evolving. In this work, the genetic process 

will end either if there is no change in the population best 

fitness for 10 generations, or maximum number of generations 

has been reached [25]. 

 

4.2.4 Generate New Population: 
Involves the following three steps: 

1) Selection:                                                               

Selection is used to choose the fittest chromosomes from the 

population, these chosen chromosomes will create offsprings 

for the next generation [26]. 

There are many types of selection and we will explain the type 

that we used in this work.  

 Top- Mate Selection 

The first parent is selected by the fitness order, whereas the 

second parent is selected randomly [25]. 

2) Crossover: 

Crossover is a process of exchange some genes between two 

selected parents chromosomes to create two new 

chromosomes (offsprings) [27]. There are many types of 

crossover and we will explain the type that we used in this 

work: 

 Heuristic Crossover 

This type of crossover is used with chromosomes with value 

encoded. Two offsprings chromosomes will be generate from 

two parents chromosomes. The first offspring is the parent 

whose fitness is better than the other parent, this parent is 

passed over to the next generation without any processing, so, 
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the generated offspring is a copy of its parent. The second 

offspring is generated from manipulation of the other parent as 

shown in the following equations [28, 29]: 

                                             

                               …………..…  (25) 

                               
                                                              ….…. (26) 

Where (r) is a random value between 0 and 1. 

3) Mutation: 

Mutation is a process of altering gene(s) in offspring 

chromosome [27]. There are many types of mutation and we 

will explain the type that we used in this work: 

  Non-Uniform Mutation 

The value of the parent chromosome is altered in a limited 

range by considering the number of the current generation. 

The relationship between the range of changing the 

chromosome and the number of the current generation is 

opposite, when the number of the current generation is small, 

the range of changing the chromosome is large. As the 

generations pass, the range decreases [30]. The equation is as 

follow: 

         = 

 
                                  

  
                                  

  …..(27) 

Where: 

f(G): is the range function considering the number of the 

current generation (G). The function f(G) is as follows: 

           
 

    
  

 
 ……...………..(28) 

Where: 

(Gmax): Is the maximum number of generations  

(b): Is a shape parameter. 

(r): Is a uniform random number between 0 and 1. 

The general steps of the RGA are illustrated in Figure 3: 

Real Coded Genetic Algorithm  

Begin 

Generate the initial population of chromosomes 

Define fitness function f (x), x = (x1, x2, ..., xd)  

Calculate fitness function of all individual  

chromosomes 

Select parents by top-mate selection 

Initial probabilities of crossover (pc) and 

mutation (pm)  

While (t < Max Generation) or (stop criterion);  

If pc >rand 

Generate new solution by Heuristic  

Crossover 

End if  

If pm >rand 

Generate new solution by Non-Uniform    

Mutation 

End if  

Put the solutions in the new generation 

End while  

End  

Fig. 3: Pseudo code of the (RGA) 

5. PROPOSED HYBRID GWO WITH 

RGA (HGWO) 
The inspiration of developing (HGWO) approach is to chain 

the advantages of both (GWO) algorithm and (RGA) to obtain 

a hybrid algorithm that is easy to implement and has a good 

balance between global search and local search and has a fast 

convergence. In the proposed (HGWO), the total numbers of 

iterations are equally shared by both (RGA) and (GWO). In 

the first step, the first half of the iterations are given to (RGA) 

that explores the global search place, then the solution that 

obtained from (RGA) is given to (GWO). In the second step 

(GWO) explores search space starting with the solution 

obtained by RGA that is set as initial population of (GWO) 

and continue the manipulation to find new enhanced solutions. 
Figure 4 represents the flowchart of the hybrid algorithm. 

 

Start

Generate initial 

population of N 

chromosome

Calculate fitness

Top-mate 

selection

Heuristic 

crossover

Non-uniform 

mutation

Terminal 

condition

Initial population of 

GWO=final best 

population of RGA

Calculate fitness

Find Alpha, 

Beta and Delta

Update wolfs positions 

according to Alpha, 

Beta and Delta

Terminal 

condition

End

Size of current

 generation <N

Yes

No

No Yes

No

Yes

Best solution 

Alpha

 

Fig. 4: The flowchart of the (HGWO) 

6. EXPERIMENTAL RESULTS AND 

DISCUSSION 

6.1 Experimental Dataset: 
In this work, the parameters of SRGMs are estimated by using 

two groups of datasets accordance to those referenced by other 

researchers with which the comparisons were made. 

6.2 Comparison with Other Algorithms 
6.2.1 By using the first group of dataset 
Two comparisons were made to test the efficiency of the 

search algorithm employed in this work: 

1) A comparison between (GWO) and the algorithms in ([16] 

and [17]) are made. 

2) Then, (HGWO) is compared with the (GWO) to see the 

improvement of the original algorithm. 

The tuning parameters for the (GWO) for the first comparison 

are in Table 4. 
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Table 4: The tuning parameters for the GWO 

Operator Value 

Domain of search for a [-1000,1000] 

Domain of search for b [-1,1] 

Domain of search for c [0,1000] 

Search dimensions 
3 for INFS 

2 for rest models 

No. of search agents 20 

Maximum Cycle Number 1000 

Three models were used: (G_O, POW and DSS). For the 

comparison criteria, (RMSE) is used. Here (GWO) is run for 

one time. 

 Results in Table 5 show the (RMSE) for (PSO, ABC, DABC 

and GWO), as we mentioned before whenever the (RMSE) is 

less that means the best solution we have. The (GWO) 

outperformed the (PSO) and (ABC) for all models and 

outperformed (DABC) in (DSS) model only. 

For the second comparison between (HGWO) and (GWO) the 

maximum number of  iterations for (HGWO) is set to 1000, 

and as we mentioned before this number is equally shared by 

(RGA) and (GWO) (500 iteration for each). First, the (RGA) 

is executed and the result will set as initial solution for 

(GWO). Tuning parameters for the (RGA) are in Table 6. 

Table 6: The tuning parameters for the RGA 

Operator Value 

Domain of search for a [-1000,1000] 

Domain of search for b [-1,1] 

Domain of search for c [0,1000] 

No. of chromosomes 20 

Maximum No. of generations 500 

Chromosome representation Value encoding 

Selection Top-mate selection 

Crossover Heuristic Crossover 

Mutation Non-Uniform Mutation 

Crossover rate 0.5 

Mutation rate 0.1 

For (GWO), the tuning parameters are the same as in Table 4 

except that the maximum cycle number is set to 500. The total 

number of iterations needed by (HGWO) to reach optimal 

solution is the sum of iterations needed by (RGA) and 

(GWO). 

Results in Table 7 show the (RMSE) for (GWO and HGWO) 

by using three models: (G_O, POW and DSS). The origin and 

hybrid algorithm reach nearly the same (RMSE) but (HGWO) 

needs less iterations to reach it.

Table 5: Comparison GWO with (PSO, ABC and DABC) using first group of dataset 

Best values by GWO RMSE-testing (30%of data) Model 

b a GWO DABC ABC PSO  

0.017 684.424 77.901 72.018 119.642 80.896 G_O 

0.728 22.388 146.33 81.923 158.675 149.96 POW 

0.063 501.897 16.667 29.805 17.091 17.063 DSS 

 

Table7: Comparison GWO with HGWO using first group of dataset 

 

Figure 5 illustrate the convergence fitness function for (GWO) and (HGWO) for the three models. In G_O model both algorithms 

converge at fitness value 25.1845 but (HGWO) needs less iteration than the needed by (GWO) to reach this fitness value. Also for 

POW model and DSS model the (HGWO) converge faster than (GWO) at fitness values equal to 32.9521 and 20.7244 respectively. 

 
Fig. 5:  convergence graph for GWO and HGWO for first group of dataset 

Hybrid GWO GWO 

Model Total no. of cycles 

by HGWO 

No.  Of cycles 

by GWO 

No.  Of cycles by 

RGA 

RMSE-

testing 
No.  Of cycles 

RMSE-

testing 

516 486 30 77.893 978 77.901 G_O 

505 475 30 146.426 961 146.330 POW 

513 493 20 16.497 987 16.667 DSS 
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6.2.2 By using the second group of dataset 
Two comparisons were made to test the efficiency of the 

search algorithm employed in this work: 

1) A comparison between (GWO) and the algorithms in ([5]) 

are made. 

2) Then, the (HGWO) is compared with the (GWO) to see the 

improvement of the original algorithm. 

For the first comparison, two models were used: (G_O 

and INFS). For the comparison criteria, (MSE) is used.  

(GWO) is run 100 times repeatedly, and the minimum (MSE) 

of each model in all dataset (DS1, DS2 and DS3) is obtained. 

Then, the average values for reaching the minimum value of 

(MSE) are collected. Notice that the number of generations is 

rounded to an integer.  

In Tables 8, 9 and 10 results show the (MSE) for (CGA, MGA 

and GWO), all three algorithms reach the same (MSE) but 

(GWO) outperformed the (CGA) and (MGA) for all models 

according to the average number of generations needed to 

reach optimal solution. 

 
Table 8: Comparison GWO with (CGA and MGA) using DS1 

Best values found by GWO GWO MGA CGA 

Model 
Data

set 
c b a 

Av. No.  Of 

gen. 
MSE 

Av. No.  

Of gen. 
MSE 

Av. No. 

Of gen. 
MSE 

- 0.0323 760.5316 834 139.8151 5341 139.815 13415 139.815 G_O 

DS1 
2.886 0.1788 382.3867 891 82.7040 15664 82.704 78664 82.704 INFS 

 

Table 9: Comparison GWO with (CGA and MGA) using DS2 

Best values found by GWO GWO MGA CGA 

Model Dataset 

c b a 
Av. No.  

Of gen. 
MSE 

Av. No.  

Of gen. 
MSE 

Av. No. 

Of gen. 
MSE 

- 0.0832 130.2074 42 11.6171 7331 11.617 48104 11.617 G_O 

DS2 
1.2047 0.1720 110.8352 268 8.9792 17490 8.98 77889 8.98 INFS 

 

Table 10: Comparison GWO with (CGA and MGA) using DS3 

Best values found by GWO GWO MGA CGA 

Model Dataset 

c b a 
Av. No.  

Of gen. 
MSE 

Av. No.  

Of gen. 
MSE 

Av. No. 

Of gen. 
MSE 

- 0.0061 1000 38 20.3895 3350 22.863 39209 22.863 G_O 

DS3 

3.6893 0.0875 229.3826 684 5.8200 20749 5.82 83578 5.82 INFS 

 

For the second comparison, (HGWO) is run 100 times 

repeatedly, for each run (MSE) is obtained and the needed 

iterations by (RGA) and (GWO) is added to obtain the total 

iterations needed by (HGWO) to reach this (MSE). After we 

gained 100 (MSE), the minimum (MSE) of each model in all 

dataset (DS1, DS2 and DS3) is obtained. Then, the average 

values for reaching the minimum value of (MSE) are 

collected. Notice that the number of generations is rounded to 

an integer. 

Results in Table 11 show that (HGWO) reach nearly the same 

(MSE) for (GWO) but in less iteration.   

    

Table 11: Comparison GWO with (CGA and MGA) using second group of dataset (DS1, DS2 and DS3) 

HGWO GWO 
Model Data set 

Av. No. Of gen. 

by HGWO 

No.  Of cycles 

by GWO 

No.  Of cycles 

by RGA 

MSE-testing Av. No. 

Of gen. 

MSE-testing 

367 458 50 139.8151 834 139.8151 G-O DS1 

548 494 60 82.7467 891 82.7040 INFS 

30 2 20 11.6171 42 11.6171 G-O DS2 

82 95 20 8.9798 268 8.9792 INFS 

28 9 20 20.3895 38 20.3895 G-O DS3 

84 64 20 5.8210 684 5.8200 INFS 
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Figure 6 illustrate the convergence fitness function for (GWO) and (HGWO) for the two models using DS1. Both algorithms converge 

at fitness value equal to 3.76×10-4  for G_O model and 6.36×10-4 for INFS model but (HGWO) needs less iteration than the needed by 

(GWO) to reach these fitness values. 

 
Fig. 6:  convergence graph for GWO and HGWO for DS1 

Figure 7 illustrate the convergence fitness function for (GWO) and (HGWO) for the two models using DS2. Both algorithms converge 

at fitness value equal to 4.3×10-3 for G_O model and 5.6×10-3 for INFS model but (HGWO) needs less iteration than the needed by 

(GWO) to reach these fitness values. 

 

 
Fig. 7: Convergence graph for GWO and HGWO for DS2. 

 

In Figure 8, both (GWO) and (HGWO) converge at the same value (1.4×10-3 for G_O model, 5.1×10-3 for INFS model) but the 

(HGWO) converge faster than (GWO). 

Figure 8 illustrate the convergence fitness function for (GWO) and (HGWO) for the two models using DS3. Both algorithms converge 

at fitness value equal to 1.4×10-3 for G_O model an 5.1×10-3 for INFS model but (HGWO) needs less iteration than the needed by 

(GWO) to reach these fitness values. 

 

Fig. 8: Convergence graph for GWO and HGWO for DS3
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7. CONCLUSION AND FUTURE WORK 
In this work, (GWO) and (HGWO) were used to estimate the 

parameters of four (SRGMs) models: G_O, POW, DSS and 

INFS by using two groups of datasets. Two comparisons were 

made for each group of datasets, the first comparison compare 

(GWO) with other algorithms: PSO, ABC, DABC, CGA and 

MGA and the results have shown that the (GWO) present 

more accurate solution when it’s compared with these 

algorithms. The second comparison compares (GWO) with 

the proposed (HGWO) which is a hybridization between 

genetic algorithm and original (GWO). The comparisons 

between the origin and the hybrid algorithm show that both 

algorithms present optimal solutions but (HGWO) needs less 

iteration than (GWO) to reach the solution, so the 

enhancement gained from the hybridization process lay in 
speeding the process of finding the best solution. 

As for further recommendations, many other swarm 

intelligence can be used for parameters estimation problem 

and compared to our work. Future work might also include a 

different hybrid method with (RGA) or hybrid with other 
swarm algorithms for better performance. 
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