
International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.4, June 2017

24

Use of Firefly Algorithm in Optimization and

Prioritization of Test Paths Generated from UML

Sequence Diagram

Gufran Ahmad Ansari, PhD

Department of Information Technology
College of Computer, Qassim University

Al-Qassim Saudi Arabia (KSA)

ABSTRACT

Software testing is the primary activity to produce reliable

software. Reliability of software is very much dependent on

the way of testing performed. Software testing, which is

usually last activity of the software development cycle is

performed under the pressure. Quality and reliability of

software are much dependent on test paths which are executed

by test cases. Generation of optimized test paths is a

challenging part of the software testing process. In this paper,

an important effort is made to propose a new technique to

obtain the optimized test paths from UML sequence diagram.

A tailored algorithm called as Firefly Algorithm is used to get

the critical paths. Firefly algorithm is metaheuristic and

inspired from flashing behavior of fireflies. A case study of

Patient registration system are is used as to explain the

proposed approach. Information Flow Metric and their

cyclomatic complexity are used for prioritization of test paths.

Results indicated that optimized paths from sequence diagram

have no redundancy and produced the better results.

General Terms

Optimized Test Path from UML

Keywords

UML, Software Testing, Sequence Diagram, Quality

Software, Optimized test paths

1. INTRODUCTION
Software testing is an important process that frequently used

to validate the quality of the software. The correct testing can

increase software product quality. With the rising demand for

reliable software, software testing can add up to 50% of the

total software cost. Software testing has not only evolved for

look errors or bugs in the software but it becomes a discipline

for evaluating the quality software [1]. According to IEEE

testing is, “The process of exercising or evaluating system or

system components by manual or automated means to verify

that it satisfies specified requirements” [2]. It can be

performed manually or automatically. Automated software

testing is found to be better than manual testing. Software

testing process needs more effort with a human interface. In

this research paper author mainly generating prioritization and

optimization based test paths from UML sequence diagram

using Firefly Algorithm. Software testing generally used two

methods which are black box testing and white box testing.

White box testing is known as structural testing) is to test

systematically the internals of the particular program module,

black box testing focuses only the output of the software

testing is known as functional testing which using functional

criteria [3, 4]. Mostly software tester engineer uses test cases

to find out whether software system fulfills the predefined

requirements or not. Now a day’s many models are used by

the tester that can generate test cases automatically. With the

big demand, complexity and size software systems require

orderly, scalable and automated testing approach. Sequences

of conditions that fulfill certain coverage criteria are called

test cases. Test Case Generation by means of Unified

Modeling Language, UML Sequence Diagrams, and Labeled

Transition Systems introduced UML Sequence diagram in the

field of test case generation [5]. Test cases generated from

these models help to find uncertainty and inconsistencies in

the requirement and design of the system. Generated test cases

should apply in such a way that it can give maximum

throughput by the uncovering fault. Due to inherent

complexity, big systems are very difficult to test the system

because it’s needed big numbers of test cases that are required

to test these types of the systems. Generating test cases is a

challenging task in software testing. Prioritization and

optimization frequently applied to run the test cases in order

which may disclose faults earlier in the process of testing.

Test case prioritization is a proficient technique to ensure

trustworthy and good quality software. For good quality

software product must be optimized and delivered on time. A

test case is the triplet [I, S, O], where I is the initial state of the

system, S is the input test data and O is the expected output of

the system [6]. Data flow information and Control flow are

generally getting from software source code. Data flow

information and Control flow have an important impact on

test case generation process. Selecting right sequence is a

difficult part in software testing [7]. Generally, Test cases are

generated from the source code of the program. After the

analysis and designed the software code can be generated. So

testing the software in beginning or early stage is very

difficult. For avoiding wasting time, effort and cost in testing

process its need that the test cases should be designed at

designed level and for doing this reliability of the software

will be increased [8, 9]. Good test cases are directly linked to

the accuracy of the model and the system which will be used

for generation of test cases. Test cases are generated from the

system model which effectively gathers attribute of the

implementation under test will make available high

probability of finding bugs or defects. It is necessary that Test

cases should be updated with the change in the design of the

system which is not all the time feasible physically. Therefore

manually creation and execution of test cases are error prone

also costly. Automated test case generation can enhance the

software reliability with the increase in coverage and decrease

the development cost of the software testing. There is an

urgent need to plan test cases in such way that it can get better

fault detection and coverage rate [10].

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.4, June 2017

25

Through UML Object-oriented systems can be easily

modeled. Sequence diagrams are used for describing the

behavior by modeling the flow of messages in a system.

Sequence diagram illustrates how an object, or group of

objects, work together within a system. The sequence diagram

shows how the messages are exchanged between the objects.

Sequence diagrams are well appropriate for objected oriented

software. Sequence diagram demonstrates how the objects

interact each other and messages exchanged between the

objects. Communication in a sequence diagram is a sequence

of messages between the objects to perform a specific task

[11, 12]. In the early stage of software development cycle,

researchers are used UML based testing for many years. At

the same time, Code based prioritization techniques are

investigated by most researchers and prioritization of test

cases from UML diagrams has not been given much attention

by researchers so far [13]. The creation of test sequence has

been an issue under consideration for many years to help such

solutions to the testing problems which are proficient and

helpful in nature. In 1992, some formal methods were

reviewed by H. Ural. He reviewed some Finite State Machine

(FSM) based specifications for test sequence generation [14].

Li et al. [15] generated test sequences using Euler circuit

algorithm. Although generated test paths are minimized with

some redundant transitions. For the generation of the

optimized test sequence, Srivastava et al used Cuckoo search

[16]. Rhmann and Saxena [30] generated test cases from

UML sequence diagram using Extenics theory. Authors

converted the Message Flow Graph (MFG) of Sequence

diagram into it’s the dual graph and then generated minimized

test cases from the dual graph. XML is drawn from Sequence

diagram and from XML MFG is created. A case study of

aircraft departure activity is used to validate the proposed

approach.

The proposed approach generates prioritized and optimized

test sequences from sequence diagram. This approach employ

in the Firefly algorithm which is inspired by flashing behavior

of firefly and developed by Yang [17]. Firefly algorithm is

successfully applied in the different field of research like

image processing [18], energy conservation [19] in wireless

sensor network [20] and structural optimization [21].

Information Flow Metric [22] is applied to the component of

the system design. Authors considered nodes of MFG as

components. For each node IF value is calculated. For each

node IF value is calculated from the given equation (1)

      2AFANOUTAFANINAIF  (1)

Where FANIN (A) is a number of nodes that call to node A

and FANTOUT (A) is a number of nodes called by node A.

Software complexity can be measured by Cyclomatic

complexity. Software modules which have the higher value of

cyclomatic complexity have a higher probability of containing

errors.

UML is a standardized modeling language and it based on a

standard of Object Management Group (OMG). The UML is

heavily used in software engineering as visual modeling

language which is used to make and document the artifacts of

software [23-24].The Unified Modeling Language developed

by G. Booch which provides the graphical tool for modeling

and designing software and hardware problems. OMG has

defined several UML specifications and standard

representation of UML [25-26]. Ansari, G.A, Rhmann and

Saxena V., proposed, a novel technique of test cases

prioritization from UML state diagram by taking account risk.

State machine diagram is transformed into WEFSM

(Weighted Extended Finite State Machine) and a case study of

ATM system is used to evaluate the proposed approach [31].

Authors provided a survey on the UML state machine

diagram that has been measured for generating test cases.

They generated test data for concurrent state and events from

UML state machine [27].

This paper includes introduction work in section (1)

introduction, (2) Background,(3) Proposed methodology for

generation of test paths and optimization, (4) Sequence

Diagram (5) Adjacency Matrix (6) Conclusion.

2. BACKGROUND

2.1 UML Sequence Diagram
The sequence diagram is made up of objects and messages. In

the sequence diagram, objects are shown as rectangular boxes

on the top of the diagram. A sequence diagram shows object

interactions set in time sequence. The communication objects

show by an arrow and the message on that arrow. The

sequence diagram passes the message from top to bottom.

Sequence diagrams are also called event diagrams.

2.2 Firefly Algorithm
Firefly algorithm is used to solve optimization problems. It is

inspired from flashing behavior of firefly. Three main rules

are used in firefly algorithm based optimization [17]: Each

firefly can be attracted to other firefly and attraction of

fireflies is determined by the brightness value of firefly. An

objective function is a use for calculation of brightness value

of firefly. Firefly with less brightness value will move to

higher brightness value firefly. The Pseudo code of firefly is

summarized in Fig. 1. The attractiveness of firefly and

variation of light intensity are two main factors used in firefly

algorithm. As source move away attractiveness decreases.

Intensity of light can be defined as

  2..

0
ijr

ij eIrI


 (2)

Where γ is light absorption coefficient, rij is the distance

between fireflies i and j are for xi and xj respectively.

Update formula for Firefly i being attracted to another more

attractive Firefly j is calculated by equation 5.

  i

t

i

t

i

t

i

t

ji XXXieXXijeX
r

  1,
2




 (3)

Where t is generation number, ei is random vector and a is

randomization parameter. Firefly algorithm [24] is given

below in pseudo code form:

Firefly_ algorithm()

objective function f(x), where x=(x1,….., xd)
T

initial population of firefly xi (i=1,2……..,n)

the brightness of firefly xi is Ii determined by f(xi)

light absorption coefficient v is defined

while(t<MaxGeneration)

for i=1:n all n fireflies

 for j=1:n all n fireflies

if(Ii<Ij), move firefly i towards j;

end if

vary attractiveness with

distance r via exp[-γr]

evaluate new solutions and

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.4, June 2017

26

update light intensity

end for j

end for i

rank the firefly and current

global best g is find

end while

result and visualization

3. PROPOSED METHODOLOGY

The following is the procedure for optimized test cases

generation from UML Sequence diagram:

1. Generate UML Sequence diagram from requirement

specification of the given project;

2. Draw Message Flow Graph(CFG) from the Sequence

diagram;

Message Flow Graph (MFG) from Sequence diagram is

designed where each node represents a message and flows

of messages are represented by edges connecting the

nodes [25];

3. Convert the Message Flow Graph(MFG) into Adjacency

Matrix;

4. Information flow metric and cyclomatic complexity of

each node is calculated from the Adjacency Matrix of

MFG;

Cyclomatic Complexity of directed graph G is calculated

using the following formula:

    ;degRe1
1









 



n

i

ieeducedOutGv (4)

Where for each node reduced out degree is one less than

the out degree of that node [26]. Cyclomatic complexity

for each node of MFG is calculated from adjacency matrix

of the CFG. Authors counted reduced out degree of nodes

above the node in adjacency matrix for which cyclomatic

complexity is being calculated and added 1;

5. Optimized test paths from sequence diagram are generated

using Firefly algorithm. A new matrix decision matrix

[28] is introduced which contains decision factor for each

edge of MFG.

   )10.010

1




iNCC
DF

i

i (5)

Where, N is a total number of nodes, CCi is the

cyclomatic complexity of node i. Decision factor

determine the brightness value of the nodes;

6. Test paths are prioritized by applying three fire flies at

each node of the MFG of the Sequence diagram. The

brightness value of each firefly is determined by the

formula given by equation 8:

d

B
Bi




1

0 (6)

Where brightness value of firefly at node 1 is B0 and

ii CCIF 

Information Flow Metric and cyclomatic complexity at node I

are defined as IFi and CCi

For a node d is random distance calculated from start node to

node of MFG at which fireflies are deployed.

Mean of brightness of firefly at each node is used to

determine the priority of test path. For each test path mean of

brightness is calculated. Higher mean brightness value paths

are assigned higher priority.

4. SEQUENCE DIAGRAM
Now, let us consider a case study of Patient Registration

System whose sequence diagram is designed and represented

in given Fig1.

Fig 1: Sequence Diagram for Patient Registration System

In Fig: 1, different activities of the patient registration process

are shown. The first patient goes Out Door Patient and asks

for the registration form. OPD counter person gives the form

to the patient and patient fill the form and along with charges

submit the form to the OPD. After that OPD issues an ID card

to the patient. Patients take the ID card and go to MSW

department for screening, later than MSW department send

patient to concern doctor. Concern doctor sees the patients

and if the patient condition, is not serious give prescription to

the patient and if patient condition is serious then ask for the

admission. In the serious condition patient pay charges to the

bill section and bill section provide the payment record slip to

the patient. The patient is seen by the doctors and if patient

condition is stable then doctors prescribed additional drugs to

the patient and if patient condition is non-stable then refer to

the patient to medical college. MFG for Patient Registration

System shown below in Fig: 2.

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.4, June 2017

27

5. ADJACENCY MATRIX
In adjacency matrix, each node represents corresponding

message node 7 and 11 have two edges coming out as there all

fragments.

 Fig 2: Message Flow Graph (MFG) for Patient

Registration System

Cyclomatic Complexities are computed from adjacency

matrix using equation 4 and are given below:

Cyclomatic Complexity

(CC at node 1 to 6 = 3)

(CC at node 7 to 10 = 2)

(CC at node 11 to 13 = 1)

The adjacency matrix is used to calculate out degree of each

node. Each node’s out-degree is calculated from the sum of a

number of 1’s in each row. This is recorded in Table 1.

Table 1. Adjacency Matrix for Patient Registration

System

N
o

d
es

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

O
u

t D
eg

ree

1

1

1

2

1

1

3

1

1

4

1

1

5

1

1

6

1

1

7

1 1

2

8

1 1

9

1

1

10

1

1

11

1 1

2

12

1 1

13

1 1

14

0

Information flows metric values for each node calculated from

MFG using equation 1.

IF 1 = 0, IF 2 = to IfF6 = 1, IF 7 = 4, IF 8 = to IF 10 = 1, IF 11 =

4, IF12 = 1, IF 13 = 1, IF 14 = 0

Decision factor for each node is calculated using equation 5

and given below:

DF1=1/ [10× {CCi× (N-i)-0.1)}] = DF1=1/ [10× {3× (14-1)-

0.1)}] = 0.00239

DF2 = 1/ [10× {CCi× (N-i)-0.1)}] = 1/ [10× {3× (14-2)-0.1)}]

= 1/ 10×3×11.9 = 1/357 = 0.0028011

DF3=1/327 = 0.00305, DF4=1/297 = 0.00336, DF5=1/267 =

0.00374, DF6=1/237 = 0.00421, DF7=1/207 = 0.00483,

DF8=1/118 = 0.00847, DF9=1/98 = 0.0102, DF10=1/78 =

0.0128, DF11=1/58 = 0.0172, DF12=1/19 = 0.0526, DF13=1/9=

0.0111

DF14=1000

Algorithm for test path generation traverse edge from

adjacency matrix if there are two edges coming-out from a

node then select node with higher decision value and print that

node.

Remove all selected nodes from adjacency matrix while

traversing the matrix and replace 1 with 0 in matrix. Repeat

this process till adjacency matrix becomes null matrix.

Cyclomatic complexity, Information flow metric and decision

factor of each node are calculated using Equations 1, 6 and 7

respectively. For each node the values of the cyclomatic

complexity, information flow metric and decision factor are

computed and recorded in Table 1:

14

11

8

9

10

1

4

5

2

3

6

7

12 13

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.4, June 2017

28

Table 2. Decision Table for message Flow metric and Decision Factor

Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 0.0024 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0.00280 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0.0031 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0.0034 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0.00374 0 0 0 0 0 0 0

6 0 0 0 0 0 0.00421 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0.0085 0.0102 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 1000

9 0 0 0 0 0 0 0 0 0 0.013 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0.17 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0.53 0.111 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 1000

13 0 0 0 0 0 0 0 0 0 0 0 0 0 1000

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Test paths are generated by traversing the MFG. For selection

of node in test path in case of decision node, node with the

higher decision factor are selected. Generated test paths are

given below in Table 3.

Table 3. Test paths generated from UML sequence

diagram

Test Path 1: 1- 2- 3- 4 -5- 6 - 7 - 9- 10 - 11 -13 -14

Test Path 2: 11-12-14

Test Path 3: 7-8-14

Generate three firefly at each node:

Take a look at node 1, value of A at node 1 is taken as 100

and distances of node 2, 3, ---- are taken from node 1.

Table 4. Different nodes and brightness of fireflies at each

node of MFG

N
o

d
e

N
u

m
b

er

di


d

B
Bi




1

0

N
o

d
e

N
u

m
b

er

di


d

B
Bi




1

0

2

1.1

4

18.518

8

7.1

3

4.484

1.2 17.241 7.2 4.424

1.3 16.129 7.3 4.366

3

2.1

4

10.204

9

8.1

3

3.952

2.2 10.638 8.2 3.906

2.3 9.803 8.3 3.861

4

3.1

4

7.462

10

9.1

3

3.533

3.2 7.246 9.2 3.496

3.3 7.042 9.3 3.460

5

4.1

4

5.747

11

10.1

5

1.941

4.2 5.617 10.2 1.923

4.3 5.499 10.3 1.904

6

5.1

4

4.672

12

11.1

2

4.310

5.2 4.587 11.2 4.273

5.3 4.504 11.3 4.237

7

6.1

6

2.659

13

12.1

2

3.968

6.2 2.617 12.2 3.937

6.3 2.577 12.3 3.906

Table 5 shows test paths generated from Firefly algorithm and

test paths prioritization values are calculated from the mean of

the brightness values on each node of MFG.

Table 5. Test paths with their prioritized values

TS1 1-2 -3- 4 -5- 6 -7 - 9- 10 - 11 -13 -14

13.403

TS 2 11-12-14

2.065

TS3 7-8-14

2.347

Table 6 shows the paths generated from proposed approach on

case study taken by [29]. Authors also generated test paths

from Genetic algorithm based approach. Test paths generated

from Genetic Algorithm have redundant edges and nodes.

Table 6. Test paths generated by proposed approach and

by Genetic algorithm [29]

Test paths by Firefly Algorithm Test paths by GA

1 1-2-6 1 1,2,3,4,5,2,3,4,2,3,4,2,6

2 2-4-5 2 1,2,4,5,2,4,5,4,2,4,2,6

3 2-3-5-4 3 1,2,4,5,4,5,2,3,4,5,2,6

4 3-4-2 4 1,2,6,4,5,4,2,3,4,2,6

5 5-2 5 1,2,4,5,2,4,5,4,2,6

 6 1,2,6

Fig3. Shows the comparison of our Firefly Algorithm based

approach with Genetic Algorithm based approach [29]. It is

observed that Firefly Algorithm based test paths have no

redundant nodes or edges. Such elimination of redundancy

can save huge cost associated with testing.

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.4, June 2017

29

Fig 3: Comparison of our approach with Genetic

Algorithm based approach [29]

6. CONCLUSIONS
This paper presents firefly algorithm based test paths

generation from UML sequence diagram. UML sequence

diagram can be very helpful in cluster level testing of the

software. Test paths are usually used by software engineers to

check the functionality of the software. There may be an

infinite number of test paths for even small size software.

Testing all paths in not feasible as testing is usually performed

in pressure. Optimized test paths generated from sequence

diagram can be very helpful in identification of faults in

interactions of objects. Identification of faults earlier in testing

can save resources and time. Results indicated that our

approach is better in the removal of redundancy in test paths.

Redundancy in test paths takes the extra cost to check the

functionality. We compared our approach with Genetic

Algorithm and found that Firefly Algorithm is better in

comparison of Genetic Algorithm for test path prioritization.

7. REFERENCES
[1] R. A. Khan and R.K Choudhary, “Software Testing

Process: A Perspective Framework” ACM SIGSOFT

Software Engineering Notes” Volume 36, Number 4, pp

1-5, July 2011.

[2] Rajvir Singh, “Test Case Generation for Object-Oriented

Systems: A Review” IEEE, Fourth International

Conference on Communication Systems and Network

Technologies, 2014

[3] R. S. Pressman, Software Engineering: A Practitioner’s

Approach, 7th Edition, McGraw-Hill, 2010.

[4] Soma Sekhara Babu Lam et al. “Automated Generation

of Independent Paths and Test Suite Optimization Using

Artificial Bee Colony” Procedia Engineering, Elsevier

pp. 191-200, 2012.

[5] Emanuela G. Cartaxo, Francisco G. O. Neto, and

Patr´ıcia D. L. Machado, "Test Case Generation by

means of UML Sequence Diagrams and Labeled

Transition Systems", IEEE 2007.

[6] Vikas Panthi and D.P. Mohapatra, “ Test Scenarios

generation Using Path Coverage”, International Journal

of Computer Science and Informatics, pp 64-68, Volume

3, Issue 2, 2013

[7] P. R. Srivastav a, K. Baby and G. Raghurama, “An

approach of optimal path generation using ant colony

optimization”, In: Proceedings of the TENCON 2009 -

2009 IEEE Region 10 Conference, Singapore, pp.1-6,

2009,

[8] Abdurazik, A., Offutt, J., “Using UML collaboration

diagrams for static checking and test generation”, In:

Proceedings of the 3rd International Conference on the

UML. Lecture Notes in Computer Science, vol. 1939, pp.

383–395. Springer, New York (2000)

[9] Ali, S., Briand, L.C., Jaffar-ur-Rehman, M., Asghar, H.,

Zafar, Z., Nadeem, A. “A state based approach to

integration testing based on UML models”, J. Inf. Softw.

Technol. 49(11–12), 1087–1106 (2007)

[10] S Gosh, R France, C. Braganza, N. Kawane, A Andrews

and O Pilskalns, “Test adequacy assessment for UML

design model testing”, In: Proceeding of the

international symposium on the software reliabilty

engineering, Denver, CO., 2003, pp. 332-343.

[11] Rumbaugh, J., Jacobson, I., Booch, G.: The UML

Reference Manual. Addison-Wesley, Reading (2001)

[12] Ajay Kumar Jena et al, “Model Based Test Case

Generation from UML Sequence and Interaction

Overview Diagrams” Proceedings of the International

Conference on “Computational Intelligence in Data

Mining Springer (ICCIDM-2014)

[13] Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jun, Li

Xuandong and Zheng Guoliang, “ Generating Test cases

from UML Activity diagram based on Gray-box

Method”, Proceeding of the 11th APSEC’ 04, IEEE.

[14] Hasan Ural: Formal methods for test sequence

generation. Computer Communications 15(5): 311-325

(1992).

[15] Liping Li, Xingsen Li, Tao He and Jie Xiong, “Extenics

based test case generation from UML Activity diagram”,

Information Technology and Quantitative Management,

2013, pp. 1186-1193.

[16] Praveen Ranjan Srivastava, Chandolu Sravya, Ashima,

Sai Kamisetti and Manogna Lakshmi, “Test sequence

optimization: an intelligent approach via cuckoo search”,

International Journal of Bio-Inspired Computation, Vol.

4, No. 3, 2012.

[17] X. S. Yang, “Firefly algorithms for multimodal

optimization, in Stochastic Algorithm: Foundations and

Applications”, SAGA, Lecture Notes in Computer

Science, 2009, 169-178.

[18] Ming Huwi Horng, “Vector quantization using the

firefly algorithm for image compression”, Expert

Systems and Applications, Vol. 39, 2012, pp. 1078-1091.

[19] Lendro Das Santos Coelho and Viviana Coco Mariani,

“Imroved firefly algorithm approach applied to chiller

loading for energy conservation”, Energy and Buildings,

Vol. 59, 2013, pp. 273-278.

[20] Philipp Sommer and Roger Wattenhofer,“Gradient

Clock Synchronization in wireless sensor networks”, In

Proceeding of IEEE International Conference on

Information processing in sensor networks, USA, 2009,

pp. 37-48.

0

10

20

30

40

50

60

70

80

Firefly

Algorithm

Genetic

Algorithm

Percentage of

redundancy in test

paths

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.4, June 2017

30

[21] Amir Hossein Gandomi, Xin She Yang and Amair

Hossein Alavi, “Mixed Variable structural optimization

using Firefly algorithm”, Computer and Structures, Vol.

89, 2011, pp. 2325-2336.

[22] Pankaj Jalote, An Integrated Approach to Software

Engineering, 3rd edition, Springer, 2005.

[23] Ali Al-Khalifah and Ansari, G.A., “Modeling of E-

procurement System through UML using Data Mining

Technique for Supplier Performance”, IEEE

International Conference on Software Networking

(ICSN), South Korea 2016.

[24] G. Booch, Object Oriented Analysis and Design with

Applications, 2nd edition, Addison Wesley, 1994.

[25] OMG, Unified Modeling Language Specification,

available online via http://www.omg.org.,2011

[26] OMG, OMG XML Metadata Interchange (XMI)

Specification, available online via http://omg.org.

[27] Aggarwal M, Sabharwal S. Test case generation from

UML state machine diagram: A survey. IEEE 3rd

International Conference on Computer and

Communication Technology (ICCCT); pp. 133–40.Nov

23–25, Allahabad 2012.

[28] Wasiur Rhmann and Vipin Saxena, Optimized and

Prioritized Test Paths Generation using Firefly

Algorithm from UML Activity Diagram, International

Journal of Computer Application, Vol. 145, No. 6, pp.

16-22, 2016.

[29] Hoseini and Saeed Jalis, “Automatic Test path

generation from sequence diagram using Genetic

Algorithm”, International Symposium on

telecommunication, IEEE, 2014, pp. 106-111.

[30] Wasiur Rhmann and Vipin Saxena “Generation of Test

Cases from UML Sequence Diagram using Extenics

Theory”, British Journal of Mathematics and Computer

Science, Vol. 16, No. 1 , 2016, pp. 1-16.

[31] Ansari, G.A, Rhmann and Saxena V., “Risk based Test

Case Prioritization using UML State Machine Diagram”

International Journal of Applied Information Systems

(IJAIS) Vol. 11, No.-7, pp. 15-21, December 2016.

IJCATM : www.ijcaonline.org

http://www.omg.org.,2011/
http://omg.org/

