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ABSTRACT 

Mechanical failures in rotating machinery (e.g. wind turbines, 

generators, motor-derives etc.) may result in catastrophic 

failures. Different mechanical faults induce characteristic 

vibrations in the equipment structure. Online vibration 

monitoring helps mitigate catastrophic failures through early 

detection and identification of underlying mechanical faults. 

However, extracting characteristic vibration features that 

improve fault classification performance and are robust to 

various noises in the vibration signals is a challenging task. 

Various statistical and signal processing-based vibration-

features have been proposed in the literature. These vibration-

features were devised on the basis of prior knowledge about 

characteristics of vibration signals from different fault types. 

Recently, automatic feature extraction through unsupervised 

learning in deep neural architectures has resulted in state of art 

performance on image and speech recognition tasks. So, 

Instead of feature-engineering, we, here, hypothesized that 

feature learning on raw vibration signal possibly will extract 

vibration-features that can improve fault identification 

performance of subsequent classifier. To the purpose, we 

explored Convolutional Neural Network for unsupervised 

feature learning on vibration signals and Denoising Auto-

Encoder for extracting vibration features that are robust and 

invariant to the noises in vibration signals. We proposed a 

Hybrid deep-model consisting of a Multi-channel 

Convolutional Neural Network followed by a stack of 

Denoising Auto-Encoders (MCNN-SDAE) with a single 

classification layer at the top. We compared the fault 

identification and classification performance of the proposed 

model with other models employing tradition statistical and 

signal processing based vibration-features. We validated the 

performance of all models on a benchmark vibration data 

collected from an experimental test-rig specifically designed 

to study vibration characteristics of bearing related faults.  

General Terms 

Pattern Recognition, Fault identification and classification, 

Intelligent fault monitoring. 

Keywords 
Vibration-features learning, equipment condition monitoring, 

bearing fault identification, machine learning, online 

monitoring. 

 

1. INTRODUCTION 
Rotating machinery such as gear boxes, shafts, turbines, 

generators, motor-drives etc., are vulnerable to mechanical 

failures due to harsh conditions of operating environment and 

highly dynamic load changes. Online condition monitoring is 

essentially required to ensure safe, reliable and economical 

operations of these machines [1]. It helps reduce the 

catastrophic failures and maintenance cost through early fault 

detection and identification. Several online monitoring 

techniques had been investigated to estimate equipment 

condition from vibration, acoustic and process parameter data 

[2]. However, vibration analysis is the most known 

technology applied for condition monitoring of rotating 

equipment [3].  Shafts, couplers, bearings, gearboxes etc are 

the most critical parts which subject to frequent failures. 

Vibration signals are often adopted for their ease of 

acquisition and sensitivity to a wide range of faults related to 

rotating machinery [4].  

 Fault detection and identification using analytical, signal 

processing and statistical-based features of vibration signal 

are an active area of research. In case of passive-mode, the 

expert knowledge-based features are manually analyzed for 

fault identification [5]. On the contrary, the active-mode 

supplies the extracted features to a machine-learning based 

classification/fault identification model [6]. Machine learning 

approach is specifically interesting due to its data-driven 

nature and real time performance. A typical machine learning 

scheme involves feature extraction and learning a classifier 

model on vibration-features.  High dimensionality and 

inherent noisy nature of raw vibration-data prohibits its direct 

use as a feature in a fault diagnostic system is. Therefore, it’s 

essential to reduce dimensionality by extracting features from 

raw vibration signal that are compact without losing 

characteristic information. Moreover, performance of machine 

learning -based classifiers relies heavily on the represent 

ability and quality of the features extracted from raw data.  In 

literature, several signal processing and statistical based 

vibration features have been proposed, examples include 

wavelet packet transform (WPT), Fast Fourier Transform 

(FFT), cepstrum information, Short Time Fourier Transform 

(STFT), empirical mode decomposition (EMD), time-domain 

statistical features (TDSF) [5]. All these feature 

representations have their respective strengths and limitations 

and are extensively reviewed by [5]. Several fault-diagnostic 

models have been proposed by combining aforementioned 

vibration-features with suitable classifiers such as SVM, 

ANN, BPNN, PNN, Fuzzy Inference, ANFIS, multinomial 
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logistic regression. Example Feature-classifier combinations 

include WPT-BPNN/SVM/multinomial logistic regression, 

TDSF-ANN/SVM/MLP etc. [7-14]. These feature-classifier 

combinations have mostly been investigated in context of 

faults related to bearings, shafts, couplings and gearboxes. So, 

most of the features were engineered by incorporating expert-

based prior-knowledge about characteristic vibration 

signatures related to these faults. Though, some of the 

engineered-features have shown success for fault diagnostic in 

mechanical systems that exhibit similar vibration 

characteristic e.g. pump, engine etc. [15][16]. However the 

shallow and fault-specific nature of these features limits their 

performance for general vibration monitoring. Vibration 

signals from mechanical systems e.g. rotors, turbine-engines, 

Aircraft frame, loose-parts, high- pressure/velocity fluid flow 

systems etc. exhibits characteristic vibration-features specific 

to the semantics and dynamics of the underlying mechanical 

systems. So, instead of feature-extraction the feature-learning 

approach deem appropriate to capture domain specific failure-

features that results in high performance. The feature-learning 

approach alleviates dependence on prior knowledge of the 

problem, and proves beneficial in tasks where it is challenging 

to develop characterizing features. 

Recently, abstract level feature extraction through 

unsupervised learning in deep multi-layered neural models 

has resulted in state of art performance on image and speech 

recognition tasks [17][18]. To the purpose of machinery fault-

diagnostics, researchers investigated the potential of deep 

models to extract more abstract representations on traditional 

vibrations-features as well as raw-data [19]. Consequently, a 

variety of deep-models for vibration based equipment 

condition monitoring have appeared in literature. It includes 

Deep Belief Networks (DBN) [20-23], Auto-Encoder ELM 

[24], Stacked Denoising Auto-encoders (SDA) and CNN-

based fault-models [25][26]. These researches suggest deep-

architectures to be more effective at fault recognition than 

shallow ones. However, in these methods, features still need 

to be selected manually at first while deep-models serve as 

non-linear classifiers. WPT-DBN[20][22] and TDSF-DBN 

[27] are the two notable deep-models that employ engineered-

features as base-input for  bearing-fault location/severity 

identification and detection of early weak-faults in rolling 

bearing, respectively. A deep-model that can automatically 

extract the discriminative features from data is desired for 

general applicability. To the purpose, here, we proposed a 

deep-hybrid model composed of the Convolutional Neural 

Network and stacked denoising-autoencoder for unsupervised 

feature learning and classification on multi-channel vibration 

data. The proposed model is conceptualized to address the 

specific challenges as outlined in section 5.3.  The article is 

organized as follow. Section 5.4 identifies the potential deep 

learning architectures in context of vibration-features based 

mechanical fault modeling and address relevant challenges 

thereby posed by vibration signals. Section 5.5 discusses the 

feature learning on vibration signals under CNN architectures. 

The architecture of the proposed deep-hybrid model is 

elaborated in section 5.6. The MCNN-SDAE model is 

validated on a CWRU-benchmark vibration data-set collected 

from an experimental test-rig that was specifically setup to 

study bearing fault diagnostic methods [28]. 

 

 

2. CHALLENGES IN VIBRATION-

BASED FAULT DIAGNOSTICS 
Vibration-based fault diagnosis is a challenging task 

especially for the case of rotating machinery. Some of the 

difficulties are due to inadequacy of engineered features to 

capture non-linear fault dynamics hidden in the vibration-data. 

Vibration signals are often non-stationary with different time-

frequency characteristics which further complicate the 

feature-representation. Here we identified some key 

contributors to those challenges. 

1- Frequency spectrum of the vibration signal is often 

analyzed to detect presence of bearing related faults. 

Bearing specific frequencies i.e. BPFO, BPFI and 

BPF are calculated with the assumption that the 

rolling elements just roll on the raceways and do not 

exhibit sliding behavior. However, this assumption 

seldom holds. In practice, a bearing roll-element 

undergoes a combination of rolling and sliding. 

Consequently, the calculated bearing-frequencies 

may differ from the actual frequencies by a small 

percentage. This rolling-slipping behavior of 

bearing manifests itself in the form of frequency 

shifts. Usually these frequency-shifts are dynamic 

and exhibit a non-linear behavior against different 

bearing-faults and their severities. 

2- In case of bearing or gear faults the early vibration 

signals are often non-stationary and are dominated 

by vibrations from other components in the 

equipment and transmission path. So, the beneficial 

information in vibration signals may get distorted, 

thereby resulting in a reduced recognition rate. 

Obtaining useful information from a signal polluted 

by noise is essential for effective fault diagnosis 

methods.  

3- Multiple simultaneous faults can obfuscate 

important frequencies  

4- Interference from additional sources of vibration, 

i.e. bearing looseness may also obscure valuable 

features.  

 

Further, the following deficiencies in classical diagnostic 

models limit the classification performance especially under 

above-mentioned challenging scenarios.  

1- The features employed in the diagnostic model are 

manually extracted on the basis of prior knowledge 

about different fault types and the corresponding 

suitable signal processing techniques that can 

extract salient features to characterize the   

underlying faults. So the extracted features are 

specific to a particular diagnosis issue and might not 

be suitable for other fault types. 

2- Many diagnostic models, reported in the literature, 

uses classifiers that have shallow architectures. It 

limits the model-ability to model complex non-

linear relationships for effective fault diagnosis. 

3. POTENTIAL DEEP-LEARNING 

ARCHITECTURES 
Extracting features from vibration signals that are robust and 

global is a challenging task. Instead of extracting and 

selecting features manually, methods that can adaptively mine 

the distinctive features hidden in the measured signals are 

needed to reflect different health conditions of corresponding 

machinery. Deep learning [17] has the potential to address the 

http://www.sciencedirect.com/science/article/pii/S0888327015004859#bib16
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aforementioned deficiencies in current intelligent diagnosis 

methods. The deep learning is outstanding in its ability to 

model high-level abstractions in the data by using 

architectures composed of multiple non-linear learning layers. 

It learns the discriminative features and is helpful in tasks 

where it is difficult to manually develop the characterizing 

features. 

The deep-learning research has proposed several architectures 

e.g., Restricted-Boltzmann-Machine (RBM) and Denoising 

Auto-encoder (DAE) and their variants, to estimate 

underlying statistical structure in inputs [29][30]. These 

architectures have been successfully employed for 

unsupervised feature learning during greedy layer-wise 

training under deep-learning framework. 

However, Convolution Neural Network are specifically 

interesting due to their unique ability to maintain initial 

information regardless of shift and distortion in the input.. The 

CNN-models are optimized using an error-gradient algorithm 

[31]. CNNs are widely used in image classification [32] 

speech-processing tasks [33] and various other applications 

[34-36]. Feature learning through CNNs have several 

advantages over other deep-architectures. First, hierarichal 

multiple Convolutional-layers can autonomously learn 

complex feature representations on raw input data. Second, 

CNNs can effectively exploit the spatial structure in the data 

through local receptive fields, shared filter weights and spatial 

sub-sampling. In case of a frequency spectrum of a vibration 

signal, the spatial structure is defined as the ordered sequence 

of frequencies. The convolution operation across frequency 

provides the CNN-network with immunity to small spectral 

shifts, such as those introduced by slipping artifiacts of the 

rolling-bearings. Similarly, convolution across time can be 

useful in capturing temporal artifacts introduced by non-

stationary vibration signals.  Hence, making an effective use 

of convolution both in time and frequency domain might be 

helpful in extracting robust features on vibration data and 

could improve the fault detection performance. 

Similarly, classical autoencoders (AEs), that are trained to 

denoise an artificially corrupted version of their input, were 

found good at learning robust features on input-data.Vincent 

et.al.[37] further extended the classical denoising autoencoder 

with greedy layer-wise training procedure of deep learning 

algorithm that allowed stacking of multiple DA’s to construct 

a deep-model. Building a deep-model by stacking greedily-

trained classical DA’s is a concise and efficient method that 

can extract features that are robust and invariant to noises. The 

architecture is interesting for learning robust features from 

noisy vibration signals. It can improve classification 

performance for the cases in which fault signature may get 

distorted by secondary vibration sources from other 

components in the transmission path. 

Considering the advantages of CNN and SDAE architectures, 

we will investigate a hybrid deep-model for efficient fault 

diagnosis by extracting robust features on underlying raw 

vibration signal. 

4. FEATURE LEARNING WITH 

CONVOLUTION NETWORKS 
A Convolution-Neural-Network (CNN) is the variant of a 

standard neural-network. Contrary to the traditional neural 

architectures where the receptive field for input-layer neurons 

spans the complete input, the CNNs define a local receptive 

field on the input. The layers of a CNN are referred as 

convolution layers. The input field is logically divided into 

small windows which forms the localized receptive fields for 

subsequent convolution-layer. Units /operators/kernels in the 

convolution layers operate on windowed input and computes 

features of the local region. These convolution-units generate 

global representations by computing and learning local 

features. A CNN-layer extracts features from the input signal 

by convolving the input signal with the filter (or kernel) learnt 

by the convolution-layer. The activation of a unit in the CNN-

layer represents the result of the convolution operation. The 

convolutional operation detects patterns captured by the 

kernels, regardless of where the pattern occurs, by computing 

the activation of a unit on different regions of the same input. 

In CNNs, the activation levels of kernels corresponding to 

subsets of classes are optimised as part of the supervised 

training process. A feature map is an array of units that shares 

the same kernel-parameterization (weight vector and bias). 

Their activation yields the result of the convolution of the 

kernel across the entire input data. The application of the 

convolution operator to a one-dimensional temporal sequence 

can be viewed as a filter, capable of removing outliers, 

filtering the data or acting as a feature detector that respond 

maximally to specific temporal sequences within the time-

span of the kernel.  

5. HYBRID DEEP-MODEL 

ARCHITECTURE 
The proposed hybrid-model consists of a multichannel CNN 

followed by Stacked DAE architecture at the top. A  CNN 

model is trained on individual channel to extract abstract-level 

Vibration-features which characterize the normal and faulty 

conditions in individual channels. First unsupervised pre-

training is commenced through convolution auto-encoder 

(CAE). CNN-model parameters are initialized with 

convolution filters pre-trained by the CAE-model. Finally, 

supervised training of the CNN-model is done with labeled 

data. After CNN-model training, in the next step the feature-

representations at top-layer of CNN-model of each channel 

(generated via forward pass in the CNN) are fused by learning 

a SDAE-model on CNN-based feature representation. The 

SDAE helps model the collective vibration behavior of rotary 

system by fusing vibrations-features extracted from multiple 

channels, monitoring different components or proximity in the 

system. A greedy layer-wise training strategy is employed to 

stack multiple DAE’s. Each layer extracts more abstract-level 

representation to model non-linearity in the underlying 

vibration system. Finally, a fully-connected neuron-layer is 

trained for fault classification on the top-encoder-layer of the 

SDAE-model. Figure 1 depicts the proposed model 

architecture and corresponding processing pipeline. The 

proposed method is able to mine vibration-features that are 

robust to noise, consequently could achieve high classification 

performance compared to shallow architectures.  

http://www.sciencedirect.com/science/article/pii/S0263224116304249#b0120
http://www.sciencedirect.com/science/article/pii/S0263224116304249#b0125
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6. MODEL SET-UP AND TRAINING 
Input to the CNN-model is organized as input-maps. For the 

case of vibration signal , an input-map for first CNN-layer 

consists 10 consecutive time-frames of vibration signal to 

provide sufficient context in time. First the raw vibration 

signal is clipped into small frames with a 2 sec. time window. 

In the next step the log-energy is computed directly from the 

Short Time Fourier Spectral Coefficients that are calculated 

on each frame of raw vibration signal, which we will denote 

as STFS-features (Short Time Fourier Spectrogram features). 

In this way, an input-map corresponding to a vibration frame 

is represented as a spectrogram along with delta (first 

temporal derivative) and delta-delta (second temporal 

derivative) features. These three 2-D feature-maps are stacked 

to generated a single 3D input-mapthat represents input 

vibration signal’s energy distribution along with delta and 

delta-delta change in energy along both frequency and time. 

In this case, a 2D convolution operation is defined in both 

frequency and time dimensions of the input map. The 

convolution and pooling layers apply their respective 

operations to generate feature representation corresponding to 

the input-maps of the vibration signal. Such pair of 

convolution and pooling layer is formally referred to as a 

single CNN-layer.  

A multilayered CNN thus consists of two or more pairs of 

convolution and pooling layers. The pooling units from first 

CNN-layer are further organized as input-maps for next CNN-

layer by following the same afore-mention input organization  

procedure. The equation 1 formulates the time and frequency 

convolution operation on input feature-map F.  .   

 

     

 
 
 
 
 
 
                    

                     

 
 
 

                      
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Represent a 2D input feature-map in which each column 

represent  a single input-frame corresponding to a particular 

time window. While   represents a receptive field constituting 

a time-frequency block of size     . Assuming that the 

convolution layer has   filters then   activations 

corresponding to each filter generate an activation map with 

shared filter-parameters as follow. 

                    
   
                     (1) 

                   
   
   

 
                  (2) 

Equation (1) represents a convolution operation        by a 

single filter    over receptive-blocks    of the input-

map    . Similarly, activation maps corresponding to all 

filters in the filter bank can be generated via convolution in 

equation 2 followed by non-linear activation operator  .  

Now, the pooling operation is independently applied on each 

of these convolution-based activation-maps. It is usually a 

simple function such as maximization or averaging and serves 

as generalizations over the features of the convolution map. 

The pooling size parameter determines the invariance of the 

convolution layer filters to small frequency shifts in the 

spectal representation of vibration signals. Hence, serve as 

small shift invariance over the local region that is determined 

by pooling size parameter. The max-pooling function is used 

as: 

                          
                    (3) 

Where   and   are the pooling and shift sizes, respectively. 

The shift size determines the overlap of the adjacent pooling 

block windows. 

The output of a CNN-layer consists of a stack of feature-maps 

that are supplied to the next CNN- layer for learning higher 

level features on previous feature-maps. In the proposed 

Figure 1: Hybrid MCNN-SDAE model architecture and corresponding processing pipeline. 
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hybrid-model an independent CNN is setup against each 

vibration-channel. 

Further, DAE architecture is employed to model abstract level 

representations of a collective vibration-system by fusing 

CNN-layer representations corresponding to each vibration 

channel. It is trained to capture robust features under learning 

objective of clean input   reconstruction from partially 

corrupted or missing input   . Where input   are the top CNN-

layer representations against each vibration channel. A three-

layered DAE architecture in Figure 2 comprises an input, 

output and a hidden layer. It operates on partially corrupted 

input version         , generated through a stochastic 

mapping             on clean input        .  During the 

learning process, the corrupted version     is initially encoded 

to a hidden representation h
  

 through encoder function        

in Eq. (4) and then reconstructing the clean input     from 

hidden mapping h
  

 through the decoder function     h  in 

Eq. (5).                      Parameterizes both 

encoder and decoder functions, where        and        are 

the corresponding weight and bias matrices.   is an 

approximate reconstruction of clean input  ,and        
correspond to the input and hidden-layer dimensions, 

respectively. 

h                                       (4) 

            h      h                      (5) 

 

 

 

 

 

 

 

Multiple DAE-layers are greedly trained on previous layer 

outputs/representations in an unsupervised way as depicted in 

Figure 2. Finally, the whole model is fine-tuned via supervised 

training through back propagation of the error on the final-

layer classification labels at the top of SDAE (Stacked 

denoising Auto-encoder) structure. The Flow of hybrid-

model’s processing pipeline is charted as follow. 
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𝐻𝑖𝑑𝑑𝑒𝑛 𝐿𝑎𝑦𝑒𝑟 

𝑂𝑢𝑡𝑝𝑢𝑡 𝐿𝑎𝑦𝑒𝑟 𝐼𝑛𝑝𝑢𝑡 𝐿𝑎𝑦𝑒𝑟 

Figure 2 A typical Denoising-Auto-Encoder (DAE) setup. 

Data Pre-Processing: 

1. Acquire Vibration Signal from each channel 

C1, C2,  C3……CN. 

2. Take Short Time Fourier Transform (STFT) 

of each channel in input set    
 . 

3. Generate Spectrogram     
 on     

 . 

 

Start 

Pre-training: 

1- Setup a Convolution Auto-Encoder for each 

vibration-channel in     
 . 

2- Perform unsupervised training of each CAE on the 

spectrogram    
  of corresponding channel in     

 . 

Convolution Neural Network Training: 

1- Set-up a CNN corresponding to each channel in 

input set    
 . 

2- Initialize the CNN with CAE –model parameters 

pre-trained on vibration data from same channel . 

3- Perform supervised training of CNN with fault 

labels. 

Stacked Denoising AutoEncoder training: 

1- Perform unsupervised training of a Denoising 

autoencoder  on features representations from the 

top-layers of all CNNs. 

2- Perform unsupervised training of next layer DAE 

on previous layer representation. 

3- Stack multi-DAEs learned via greedy layer-wise 

training strategy.  

Supervised Fine-Tuning: 

1- Setup a fully-connected neuron-layer on the 

top-level encoder of the DAE-Stack. 

2- Perform joint fine-tuning of CNN-SDAE hybrid 

model via supervised learning on fault labels at 

top layer. 

Evaluate the trained model on test data. 

Output the diagnostic Results. 



International Journal of Computer Applications (0975 – 8887) 

Volume 167 – No.4, June 2017 

42 

7. MODEL VALIDATION 
A bearing-fault data-set provided by Case Western Reserve 

University [28] is used to validate the proposed model. The 

data-set consists of vibration signals that were collected from 

an experimental test-rig, as shown in Figure 3. The test-rig 

apparatus consist of a 2-hp motor, a torque transducer and a 

dynamometer. The motor shaft was supported by 6205-2RS 

JEM SKF bearings. The three bearing components under 

study are (1) the inner race (IR), (2) the outer race (OR) and 

(3) the rolling element, the ball (B). Single-point faults 

ranging in diameter from 0.007 to 0.028 inches were 

artificially seeded into each of the above-mentioned bearing 

element at both drive and fan end of the motor drive. For the 

faults localized to the IR, the B rolling element and the OR, 

the accelerometers are arranged in the dead-end position at 12 

o’clock, 6 o’clock and 3 o’clock, respectively. Vibration 

signals from three channels were sampled at 12 kHz and in 

some cases at 48kHz. Figure 4 shows the vibration samples of 

different bearing health conditions. A dataset comprising 

vibration signals from healthy and three faulty bearing 

conditions is used for analysis. For each fault type, the 

vibration-data is collected against three different fault-sizes. A 

MCNN-SDAE model is trained on healthy and faulty training 

samples with parameters listed in Table 1. Different fault-

types, fault-sizes and corresponding data-samples for training 

and testing are detailed in Table 2.  

 

Figure 3 Experimental test-rig to collect benchmark 

vibration data corresponding to various bearing faults. 

various bearing faults. 

 

 

Figure 4 Vibration signals depicting different bearing 

fault-types. 

 

Table 1 Hybrid-model parameters. 

 

8. CONCLUSION 
We compared the bearing fault classification accuracy of the 

trained MCNN-SDAE with WPT-DBN[50] and TDSF-DBN[52] 

based deep-models as well as WPT-ANN[47], WPT-SVM[41] 

and TDSF-SVM based shallow models. Five-fold cross-

validation procedure is used to evaluate the test accuracies of 

all models as reported in table 3. The classification accuracies 

in table 3 shows that the proposed hybrid outperformed the 

competitive methods by achieving an average accuracy of 

99.81% and  individual accuracy of 100% for inner race and 

ball-element faults and 99.4% in case of out-race faults, 

respectively. 

We further validated hybrid model robustness by evaluating 

classification accuracies at varying noise-levels and 

frequency-shifts in both healthy and faulty vibration signals. 

We introduced an artificial noise by increasing signal to noise 

ratio (SNR) from 15dB-10dB and evaluated each model’s 

average test accuracies corresponding to those noise-level. In 

order to validate frequency shift-invariance, the following 

procedure is followed. 

1- Calculate ball pass frequency for inner and outer 

race faults (BPFO, BPFI) and ball spin frequency 

(BSF) for rolling-element assuming no-slip 

condition. 

2- Take FFT of the samples from all three fault-types. 

3- Identify the corresponding fault-frequency (i.e. 

BPFO, BPFI,BSF) in the frequency spectrum of 

related fault-type (e.g. inner-race, outer-race or 

rolling element faults). 

MCNN Parameters 

No. of CNN-layers 

(convolution and pooling 

pairs) 

2 

Input-map size       ( No. of 

vibration-signal frames ) 

s=10 

 

Block size ( 𝑖    ) of input 

receiptive field 𝑓 

𝑓   =[100x5] 

Receptive Window 

overlapping 

[50x2] 

No. of Feature-Kernels/filters 

( ) 

K=20 for layer 1 

K=30 for layer 2 

SDAE Parameters 

No. of layers in the Stack 3 

Configuration of layers (No. 

of neurons) 

700-500-300 

Corruption-type for 

denoising. 

Gaussian Noise (% of 

nominal value)= [20%] 

Noise level (Corrupted Input 

fraction) 

[15-30]% 

http://www.sciencedirect.com/science/article/pii/S0263224116304249#b0200
http://www.sciencedirect.com/science/article/pii/S0263224116304249#f0015
http://www.sciencedirect.com/science/article/pii/S0263224116304249#f0020
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4- Take a frequency band of 100Hz centered at 

corresponding fault-frequency (i.e. BPFO, BPFI, 

and BSF) in the frequency spectrum and shift it by 

offsetting it by gap of 5, 10 or 15Hz. 

5- Take the inverse FFT and used the new vibration 

signal to calculate features corresponding to each 

model.  

6- Calculate average classification-accuracy. 

The classification-accuracies of different feature-classifier 

models against varying noise-levels are reported in table 4. A 

general trend of decrease in classification-accuracies with 

increasing noise-level is observed for all models. A minimum 

classification accuracy of 94.6% is achieved by hybrid-model 

against 10db SNR which is the highest accuracy among all 

compared models. Similarly in table 5, a maximum 1% 

decrease in classification accuracy of hybrid MCNN-SDAE 

model is observed against a shift in fault-frequency with an 

offset of 15Hz. However, the classification accuracy of other 

models decreased by 2-3% against frequency shift with 15Hz 

offset. The results in table 4 and table 5 show that the hybrid 

MCNN-SDAE model is robust to noise in vibration signals 

and small frequency-shifts caused by slipping of roll-bearing. 

 
Figure 5 Each block depicts a spectral representation of 

first-layer CNN-filters learnt by the model. A single block 

represents spectogram corresponding to 20 base-filters 

learnt by the CNN. Each filter represents a salient 

vibration-pattern learnt from training-data.  A particular 

bearing-fault is modeled as a combination of these base 

vibration-features via higher-order layers in MCNN-

SDAE model. 
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11. APPENDIX 

Table 2 Description of different bearing fault-types included in the benchmark data-set 

Items Health Fault 1  Fault 2  Fault 3  

Fault Location None 
Outer 

Race 

Outer 

Race 

Outer 

Race 

Inner 

Race 

Inner 

Race 

Inner 

Race 
Bearing Bearing Bearing 

Motor Speed 

(RPM) 

1730,1750 

1772, 1797 

1730,1750, 

1772, 1797 

1730,1750, 

1772, 1797 

1730,1750, 

1772, 1797 

Fault Size 0 0.007” 
0.014

” 
0.024” 0.007” 0.014” 0.021” 0.007” 0.014” 0.021” 

Testing Samples 50 50 50 50 50 50 50 50 50 100 

Training Samples 50 50 50 50 50 50 50 50 1000 1000 
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Table 3 Bearing-fault classification accuracies of different models. 

  

Table 4 Accuracies of Classifier-models tested against increasing noise-levels in vibration signal. 

(5-fold Cross Validated) 

SNR (Signal to 

Noise Ratio) 
MCNN-SDAE TDSF-DBN WPT-DBN WPT-ANN WPT-SVM TDSF-SVM 

15dB 99.1% 96.4% 97.1% 95% 96.2% 93.6% 

14dB 98.6% 95.7% 96.6% 93.7% 94.9% 91.3% 

13dB 97.7% 95% 95.8% 92.8% 93.5% 89.5% 

12dB 96.2% 93.8% 94.1% 92% 92.2% 87.6% 

11dB 95.3% 92.7% 93.4% 90.2% 91.1% 85.2% 

10dB 94.6% 91.6% 92.2% 88.3% 89.4% 82.6% 

 

 

Table 5 Accuracies of classifier models tested against small shifts in corresponding bearing-fault related frequencies. 

(Five-fold Cross Validated) 

Spectrum Shift 

Offset 

(BPFO,BPFI, 

BSF) +Offset  

MCNN-SDAE TDSF-DBN WPT-DBN WPT-ANN WPT-SVM TDSF-SVM 

5Hz 99.53% 96.83% 97.6% 96% 96.5% 95% 

10Hz 99.23% 96.33% 96.8% 95.1% 95.3% 94.3% 

15Hz 98.7% 95.7% 96.35% 94.3% 94.6% 92.7% 

 

Health Condition  (5-fold Cross Validated) 

 MCNN- 

SDAE 

TDSF- 

DBN 

WPT-DBN WPT-ANN WPT-SVM TDSF-SVM 

Inner-Race fault 100% 96.2% 98.1% 95.3% 95.7% 95.6% 

Outer-Race fault 99.4% 98.7% 97.4% 96.5% 97.6% 92.5% 

Ball-fault 100% 99% 99.1% 98.9% 98.3% 97.4% 

Average Accuracy  99.81% 97.96% 98.2% 96.9% 97.2% 95.1% 
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