
International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.7, June 2017

21

Improved Dynamic Time Slice Round Robin

Scheduling Algorithm with Unknown Burst Time

Bakare K. Ayeni

Department of Computer
Science

 Faculty of Sciences
Ahmadu Bello University,

Zaria, Nigeria

Obiniyi A. Afolayan
Department of Computer

Science
 Faculty of Sciences

Ahmadu Bello University,
Zaria, Nigeria

Nurat Yusuf
Department of Computer

Science
 Faculty of Sciences

Ahmadu Bello University,
Zaria, Nigeria

ABSTRACT

Round-Robin (RR) is one of the algorithms mostly used in

time sharing system and in network scheduling. Time slices

are assigned to each process in equal portions and in circular

order handling all processes without priority. Round Robin

algorithm requires some parameter such as arrival time, burst

time and quantum time which enables the scheduler to predict

the behavior of possible processes. Prior to the execution of a

process, the burst time is not known. This paper proposed a

more improvement in the Round Robin CPU scheduling

algorithm by improving the algorithm of Anju et. al. where

burst time is determined using an initial time quantum.

However, the improved algorithm determines burst time using

instruction count in each of the process and by experimental

analysis. This proposed algorithm performs better than

Dynamic Time Slice Round Robin Scheduling Algorithm

with Unknown Burst Time in terms of minimizing average

waiting time, average turnaround time and number of context

switches.

Keywords

CPU scheduling algorithm, Average Waiting time, Average

Turnaround Time, Number of Context Switches.

1. INTRODUCTION
Operating System (OS) is the brain of a computer system

which constantly and continuously manages the resources

available around the system in optimum way. OS controls the

execution of many other application programs and acts as an

interface between computer hardware and applications. It has

some attractive features like multiprogramming, multitasking

and multi-users, which place it way ahead in the race with

human mind. One of the basic and most important tasks an

OS needs to perform is job scheduling where many processing

requests arrive from multiple channels to a ready queue and

system manages all in a way to achieve high efficiency level.

1.1 CPU Scheduling
CPU scheduling is the basis of multiprogramming operating

systems, by switching the CPU among processes. The

operating system can make the computer more productive,

whenever the CPU becomes idle; the operating system must

select one of the processes in the ready queue to be executed

[1].

1.2 CPU Scheduling Criteria and

Algorithms
There are various CPU scheduling algorithms which have

different properties, and the choice of a particular algorithm

may favour one class of processes over another. For selection

of an algorithm for a particular situation, properties of various

algorithms must be considered. A good scheduling algorithm

should possess the following characteristics in maximum:

context switch, throughput, CPU utilization, turnaround time,

waiting time and response time.

CPU scheduling algorithm:- First Come First Serve (FCFS),

Shortest Job First (SJF), Priority Scheduling (PS) and Round

Robin (RR) [1].

FCFS is the simplest form of CPU scheduling algorithm

which allocates CPU to the processes on the basis of their

arrival to the ready queue. Arriving processes are inserted in

the tail (rear) of the ready queue and the process to be

executed next is removed from the head (front) of the ready

queue.

SJF, the scheduler arranged processes according to the

shortest burst time in the ready queue, so that the process with

least burst time is scheduled first. If two processes have equal

burst time, the FCFS is applied. Long running processes may

wait for prolonged periods, because the CPU has a steady

supply of short processes.

PS associates each process with a priority number. The CPU

is allocated to the process with the highest priority. If there

are multiple processes with same priority, then FCFS will be

used to allocate the CPU. Lower priority processes may

starve, because the CPU may have a steady supply of higher

priority process.

Round Robin (RR) scheduling algorithm is designed

specifically for time-sharing systems. It is a preemptive

version of first-come, first-served scheduling. Processes are

dispatched in a first-in-first-out sequence but each process is

allowed to run for only a limited amount of time. This time

interval is known as a time-slice or quantum. It is similar to

FIFO scheduling but preemption added to switches between

processes [2].

2. LITERATURE REVIEW
Different approaches have been used to improve the

performance of CPU scheduling algorithm especially in the

area of Round Robin. Integer programming was used in [3] to

determine time quantum that is neither too small nor too large.

In [4], an algorithm that selects shortest job and assigned to

CPU for a period of 1 time quantum was proposed. The

proposed algorithms in [5] introduced a queue that arranges

processes in ascending order of their remaining burst time in

order to improve the performance of scheduling in term of

Waiting Time, Turnaround Time, Response Time and

Number of Context Switch. Abdulrasaq et al in [6] improved

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.7, June 2017

22

on [5], Manish and Faizur algorithm by introducing another

queue; arrived queue where processes are arranged in

ascending order in arrive queue and time quantum is

calculated by average of burst time, taking the ceiling of the

result as the quantum time.

Anju et al in [7] proposed an algorithm to address the

problem of assumption of burst time since burst time of

process is not known prior to the execution of process. Their

algorithm assigns initial figure as time quantum while

processes execute in one cycle and burst time are determined

from processes that finished with the initial time quantum.

3. PROPOSED ALGORITHM
Our algorithm is the modification of [7)], Dynamic Time Slice

Round Robin with Unknown Burst Time (DTSRRUBT) CPU

scheduling algorithm. The algorithm introduced a technique

that calculates burst time using instruction count, process

arrived randomly and quantum time is dynamically

determined. A model that calculates burst time of processes is

designed, number of processes to be executed is required to be

entered with their frequency while burst time are generated

for those processes and their details.

3.1 Illustrative Example
For example a 900MHz processor was used to execute a

benchmark program with the following instruction mix and

clock cycle count in table 1:

Table 1: Instruction mix

S/N Instruction Type Instruction

Count

Clock

Cycle

Count

1. Data Transfer 1000 3

2. Instructions Fetch 1500 2

3. Brach Instructions 4000 2

4. Floating Point 4500 2

5. Input/output Fetch 8000 1

6. Store Instructions 2500 2

Burst time is calculated as thus:

Therefore:

 =

 0.0018556 * 1000

Burst Time: = 1.86

However, after generating the burst time for the processes and

arrival time, the algorithm takes the first process and assigns

to CPU for initial time quantum of three (3), while executing

the first process, it checks if other processes have arrived the

ready queue, if processes arrived, it calculates average burst

time of the processes as time quantum, each process then runs

for the time quantum calculated, process that did not finish

execution moved to the tail of the ready queue. However, it

continues in the same fashion until all processes finished

execution and if no process again in the ready queue, it

calculates average waiting time, average turnaround time,

average response time and number of context switch.

3.2 The pseudo code of the proposed

Improved Dynamic Time Slice Round

Robin CPU scheduling algorithm with

Unknown Burst Time
Step 1: Start

Step 2: Enter the number of processes to be processed

Step 3: Enter the frequency of the processor

Step 4: System generates the burst time for processes with

 random arrival time

Step 5: WHILE (READY QUEUE!= NULL)

Step 6: If ()

Assign the first process

 () to CPU

 Else

Step 7: END If

Step 8: Allocate the CPU to the first process in ARRIVE

queue for a period of 1 time quantum.

Step 9: If the burst time of the currently running process is

remaining it moves the process to the tail of the

arrive queue and if it finishes it removes the process

from queue and go to step 5.

Step10: If a new process arrives the system, it is placed in

the ARRIVE queue.

Step 11: END WHILE.

Step 12: Calculate AWT, ATAT, ART and NCS.

Step 13: END

3.3 Flow Chart
Figure 1 shows the flow chart of the proposed Dynamic Time

Slice Round Robin CPU scheduling algorithm, the shaded

figures are the improvement made.

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.7, June 2017

23

Figure 1: The Flow Chart of the Proposed Dynamic Time Slice Round Robin CPU Scheduling Algorithm

3.4 Simulation
To demonstrate the proposed algorithm and benchmark

against other algorithms, table 2 below contains each process

with its burst time and arrival time used for the simulation of

First Come First Serve, Shortest Job First, Round Robin,

Improved Round Robin, Dynamic Time Slice Round Robin

and Improved Dynamic Time Slice Round Robin. The results

are shown in table 3, table 4, table 5, table 6, table 7 and table

8 respectively.

Table 2: Illustrative Table

Process ID Arrival time (ms) Burst time (ms)

P1 0.0 3.2

P2 2.0 2.87

P3 2.0 2.86

P4 3.0 3.61

P5 5.0 3.45

Table 3 shows simulation results for FCFS algorithm and

Figure 2 shows the graph of the result from the table, from the

graph the response time and the waiting time is high but the

context switch is low since the process switched once. Table 4

shows simulation results for SJF algorithm and Figure 3

shows the graph of the result from the table, the performance

is better compared to FSCS in term of AWT and ART since

priority is given to the processes with short burst time. Table

5 shows simulation results for conventional RR along with the

graph in Figure 4. Table 6 shows the simulation results for

IRR along with the graph in Figure 5. Table 7 is the results of

simulation for DTSRR and Figure 6 shows the graph of

DTSRR and Table 7 is the results of proposed algorithm

simulated along with the graph shows in Figure 7. However,

the performance of the three round robin algorithms when

compared, IDTSRR is better. All the graphs are graph of X

and Y axis, where the X-axis represents the time and Y-axis

represents the process ID.

N

N

N

 Y

Y

Y

N

Y

Y N

Start

INPUT: Number of processes (n), Frequency of processor

OUTPUT: Pr(n), burst time and arrival time

 𝑄 ! = 𝑁

 𝑄 ! = 𝑁

If n= 1

Update the ready queue

Assign CPU to Pr⁡[] for time tq

 = − Pr⁡_

If = 0

Process Pr is completed

 //remove from queue

Assign CPU to Pr⁡[] for time Pr⁡_

 = 𝐴𝑣 𝑔

Pr_ = 3

If n= + 1

 𝑧 : 𝑆 = 0, 𝐴𝑊 = 0, ATAT= 0, ART = 0, Pr⁡_ = 3

Fill the ready queue according to arrival time

Generate Burst Time

End

Calculate AWT,

ATAT, ART and

NCS

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.7, June 2017

24

Table 3: First Come First Serve

Figure 2: FCFS Graph

Table 4: Shortest Job First

Figure 3: SJF Graph

0

2

4

6

8

10

12

P1 P2 P3 P4 P5

Waiting Time

Turnaround Time

Response Time

Context Switch

0

2

4

6

8

10

12

14

P1 P3 P2 P5 P4

Waiting Time

Turnaround Time

Response Time

Context Switch

Process

ID

Arrival

Time

Burst

time

Start

time

Finish

Time

Waiting

Time

Turnaround

Time

Response

Time

Context

Switch P1 0.0 3.2 0.0 3.2 0.0 3.2 0.0 1

P2 2.0 2.87 3.2 6.07 1.2 4.07 1.2 1

P3 2.0 2.86 6.07 8.93 4.07 6.93 4.07 1

P4 3.0 6.61 8.93 12.54 5.93 9.54 5.93 1

P5 5.0 3.45 12.54 15.99 7.54 10.99 7.54 1

Average 3.75 6.95 3.75 5

Process

ID

Arrival

Time

Burst

time

Start

time

Finish

Time

Waiting

Time

Turnaround

Time

Response

Time

Context

Switch P1 0.0 3.2 0.0 3.2 0.0 3.2 0.0 1

P3 2.0 2.86 3.2 6.06 1.2 4.06 1.2 1

P2 2.2 2.87 6.06 8.93 4.06 6.93 4.06 1

P4 3.0 3.61 12.38 15.99 9.38 12.99 9.38 1

P5 5.0 3.45 8.93 12.38 3.93 7.38 3.93 1

Average 3.71 6.27 3.71 5

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.7, June 2017

25

Table 5: Round Robin

Figure 4: Round Robin Graph

Table 6: Improved Round Robin

Process

ID

Arrival

Time

Burst

time

Start

time

Finish

Time

Waiting

Time

Turnaround

Time

Response

Time

Context

Switch P1 0.0 3.2 0.0 3.2 0.0 3.2 0.0 1

P2 2.0 2.87 3.2 6.07 1.2 4.07 1.2 1

P3 2.0 2.86 6.07 8.93 4.07 6.93 4.07 1

P4 3.0 3.61 8.93 15.54 8.93 12.54 5.93 2

P5 5.0 3.45 11.93 15.99 7.54 10.99 6.93 2

Average 4.35 7.55 3.63 7

Figure 5: Improved Round Robin Graph

0

2

4

6

8

10

12

14

P1 P2 P3 P4 P5

Waiting Time

Turnaround Time

Response Time

Context Switch

0

2

4

6

8

10

12

14

P1 P2 P3 P4 P5

Waiting Time

Turnaround Time

Response Time

Context Switch

Process

ID

Arrival

Time

Burst

time

Start

time

Finish

Time

Waiting

Time

Turnaround

Time

Response

Time

Context

Switch P1 0.0 3.2 0.0 7.2 4.0 7.2 0.0 2

P2 2.0 2.87 2.0 10.07 5.2 8.07 0.0 2

P3 2.0 2.86 4.0 12.93 8.07 10.93 2.0 2

P4 3.0 3.61 7.2 14.54 7.93 11.54 4.2 2

P5 5.0 3.45 10.07 15.99 7.54 10.99 5.07 2

Average 6.55 9.75 2.25 10

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.7, June 2017

26

Table 7: Dynamic Time Slice Round Robin

Figure 6: DTSRR Graph

Table 8: Improved Dynamic Time Slice Round Robin

Process

ID

Arrival

Time

Burst

time

Start

time

Finish

Time

Waiting

Time

Turnaround

Time

Response

Time

Context

Switch P1 0.0 3.2 0.0 12.54 9.34 12.54 0.0 2

P2 2.0 2.87 3.0 5.87 1.0 3.87 1.0 1

P3 2.0 2.86 5.87 8.73 3.87 6.73 3.87 1

P4 3.0 3.61 8.73 12.34 5.73 9.34 5.73 1

P5 5.0 3.45 12.54 15.99 7.54 10.99 7.54 1

Average 5.5 8.69 3.63 6

Figure 7: Improved Dynamic Time Slice Round Robin Graph

0

2

4

6

8

10

12

14

P1 P2 P3 P4 P5

Waiting Time

Turnaround Time

Response Time

Context Switch

0

2

4

6

8

10

12

14

P1 P2 P3 P4 P5

Waiting Time

Turnaround Time

Response Time

Context Switch

Process

ID

Arrival

Time

Burst

time

Start

time

Finish

Time

Waiting

Time

Turnaround

Time

Response

Time

Context

Switch P1 0.0 3.2 0.0 7.7 4.5 7.7 0.0 2

P2 2.0 2.87 2.0 10.57 5.7 8.57 0.0 2

P3 2.0 2.86 4.5 13.43 8.57 11.43 2.5 2

P4 3.0 3.61 7.7 14.54 7.93 11.54 4.7 2

P5 5.0 3.45 10.57 15.49 7.04 10.49 5.57 2

Average 6.75 9.95 2.55 10

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.7, June 2017

27

3.5 Comparative Analysis
To compare the performance of the six algorithms, the results

in Table 9 is the evaluation of performance using five

processes for all the six algorithms, one hundred processes

were used in Table 10 and One thousand processes was used

in Table 11 respectively. The graphs of evaluation are shown
in Figure 8, Figure 9 and Figure 10 respectively.

Table 9: Comparative table using 5 processes

Algorithms AWT ATAT ART NCS

FCFS 3.75 6.95 3.75 5

SJF 3.71 6.27 3.71 5

RR 6.55 9.75 2.25 10

IRR 4.35 7.55 6.63 7

DTSRRUBT 6.75 9.95 2.55 10

IDTSRRUBT 5.5 8.69 3.63 6

Table 10: Comparative Table using 100 Processes

Algorithms AWT ATAT ART NCS

FCFS 132.87 136.56 132.87 100

SJF 111.17 114.83 111.17 100

RR 211 214.68 80.83 322

IRR 205.88 209.57 108.24 182

DTSRRUBT 206.43 210.12 95.28 200

IDTSRRUBT 177.69 181.37 122.78 144

Table 11: Comparative Table using 1000 Processes

Algorithms AWT ATAT ART NCS

FCFS 1332.29 1335.96 1332.29 1000

SJF 1097.3 1100.97 1097.3 1000

RR 2091.51 2095.18 791.95 2322

IRR 2029.7 2033.37 1066.82 1781

DTSRRUBT 2082.51 2086.19 933.78 2006

IDTSRRUBT 1748.56 1752.24 1221.44 1411

Figure 8: Graph of Evaluation Criteria using 5 Processes

0

2

4

6

8

10

12

FCFS SJF RR IRR DTSRRUBT IDTSRRUBT

AWT

ATAT

ART

NCS

International Journal of Computer Applications (0975 – 8887)

Volume 167 – No.7, June 2017

28

Figure 9: Graph of Evaluation Criteria using 100 Processes

Figure 10: Graph of Evaluation Criteria using 1000 Processes

From the study of comparative tables and graphs, it was

discovered that the Improved Dynamic Time Slice Round

Robin with unknown burst time (IDDTSRR) is better in term

of average waiting time, average turnaround time and context

switch. Apparently, if there are millions of processes the

algorithm will still performed better. It is desirable to

minimize all the four performance criteria. The proposed

algorithm when compared with the existing algorithms

minimized the three out of the four criteria which makes it

better than the existing one.

4. CONCLUSION
The proposed algorithm was presented to enhance dynamic

time slice round robin with unknown burst time scheduling

algorithm. The algorithm determines burst time using

instruction count in each of the process by experimental

analysis. The simulation results showed that this approach

minimized average waiting time, average turnaround time and

number of context switches.

Future research should focus on investigating other method of

determining burst time of processes to improve efficiency of

scheduling techniques.

5. REFERENCES
[1] Silberschatz, A., Galvin, P. B. and Gagne, G. 2013.

Operating System Concepts. (9th, Ed.) John Wiley and

Sons Inc, USA.

[2] Ajit, S, Priyanka, G and Sahil, B. 2010. An Optimized

Round Robin Scheduling Algorithm for CPU

Scheduling. International Journal on Computer Science

and Engineering , 2 (7), 2382-2385

[3] Hamad, S. H., Mostafa, S., and Rida, S. Z. 2010

Finding Time Quantum of Round Robin CPU

Scheduling Algorithm in General Computing Systems

using Integer Programming. IJRRAS, 5(1) pp 65-70.

[4] Nirvikar And Kumar, N. 2013 Performance

Improvement Using CPU Scheduling Algorithm-SRT.

International Journal of Emerging Trends & Technology

in Computer Science (IJETTCS), (2) 2. Pp 110-113.

[5] Manish, K. M. and Faizur R. 2014 An Improved Round

Robin CPU Scheduling Algorithm with Varying Time

Quantum. International Journal of Computer Science,

Engineering and Applications (IJCSEA) (4)4.

[6] Abdulrazak, A., Abdullahi, S. E. and Sahalu, J. B. 2014.

New Improved Round Robin (NIRR) CPU Scheduling

Algorithm. International Journal of Computer

Applications (0975 – 8887) Volume 90 – No 4, March

2014.

[7] Anju, M., Neenu, A., and Nandakumar, R 2016.

Dynamic Time Slice Round Robin Scheduling Algorithm

with Unknown Burst Time. Indian Journal of Science

and Technology, Vol 9(8), pp. 1-6.

0

50

100

150

200

250

300

350

FCFS SJF RR IRR DTSRRUBT IDTSRRUBT

AWT

ATAT

ART

NCS

0

500

1000

1500

2000

2500

FCFS SJF RR IRR DTSRRUBT IDTSRRUBT

AWT

ATAT

ART

NCS

IJCATM : www.ijcaonline.org

