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ABSTRACT 

In this paper a new algorithm is proposed for segmentation of 

the retinal blood vessels in the ophthalmoscopic images using 

Mathematical Morphology based technique named as 

Adaptive Line Structuring Element (ALSE). The ALSE is 

rotated to adjust with the curvature of the blood vessels which 

ensure that each part of the vessel components remains 

connected and followed by changing the size of the line 

structuring element that adaptively discards non-vessel like 

objects in a fundus image. This forms a Scale-Space that 

extracts the blood vessels structure in retina successfully from 

finer scales to coarser scale without much loss of data. For the 

purpose of evaluating performance of proposed algorithm two 

well-known criterion function namely Structural Similarity 

(SSIM) index and Figure of Merit (FOM) index are used for 

comparing the results. The average value of SSIM and FOM 

indicates better performance of the proposed algorithm than 

other recent methods.   

General Terms 

Medical Image Processing, Diabetic Retinopathy, 

Ophthalmoscopic Image. 

Keywords 
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1. INTRODUCTION 
The Diabetic Retinopathy (DR) is very common complication 

of the chronic diabetic patients, but diagnosis and treatment of 

DR requires intervention of specialized experts with large 

amount of cost and time. Prognosis of diabetic retinopathy is 

related to accurate detection of pathological changes in blood 

vessels structure of retina. Hence, today one of the 

challenging task is to automatic extraction of blood vessels 

from retinal images (digital Fundoscopic images). Likewise, 

automatic extraction of blood vessels may help to detect 

different other type of ophthalmic diseases, such as retinal 

hemorrhage of different causes including trauma, geriatric 

retinal atrophy, etc. Quick and early detection of different 

type of pathology on the retina may save many people in the 

world from blindness. 

Earlier techniques for extraction blood vessels from retinal 

image can be classified into two types [1]. First one is 

window-based [2], [3] and other is Tracking-based [4], [5], 

[6]. Window based approaches explore the features of a 

pixel’s in the neighborhood and highlights those pixels which 

matches with a given model. Most of the models are usually 

based on classical line detection methods found in the 

literature. In [2], the cross section of a blood vessel is detected 

by a Gaussian shaped curve. After that the matched filters of 

twelve directions are applied to highlight the vessels structure. 

On other hand, tracking-based approach uses a blood vessel 

profile model. Here the tracing are started from some initial 

points and it gradually follows a track which is best matched 

with the profile model. In [4], the tracing begun from the 

papilla. After that it is traced with respect to the continuities 

of location, twist, density and diameter of the vessels 

structure. The tracing is upgraded by applying the fuzzy 

model of vessel structure profile [6]. Another enhancement is 

achieved by applying the local region-based threshold 

searching [7]. In fact, this method is a composition of the 

window-based and as well as tracing-based methods. 

The thickness of retinal blood vessels can fluctuate from large 

size to small size and also the local contrast of the blood 

vessels may be near to its background, particularly in corrupt 

ocular fundus. So, the automated extraction of blood vessels is 

actually challenging task and there is a scope to improve the 

existing algorithms. 

In this paper a novel technique is proposed which 

automatically extracts the blood vessels structure from retinal 

image by rotating a line structuring element of different size 

over the image.  This line structuring element detects the 

curvatures with minimal loss of shape and structures of the 

vessels and a curvature scale space is obtained in this process. 

A suitable automated threshold is determined to eliminate 

noise like structures from the resultant image. Non-destructive 

extraction of blood vessels of retina is a prior condition for 

correct diagnosis of many ophthalmic diseases. Thus proposed 

method will facilitate to detect quickly and efficiently the 

different ophthalmic diseases which deforms the structure and 

shape of vessels of retina without much intervention of an 

expert.  

Proposed technique focus on an unsupervised scheme i.e. no 

previous knowledge of the characteristics of the image is 

required. The algorithm has three stages major steps. Firstly, 

the unwanted structures are removed by using morphological 

opening and closing. Next, an Adaptive Line Structuring 

Element (ALSE) is generated and using this ALSE the blood 

vessels are extracted from the retinal image. The ALSE 

appropriately adapts the local vessel structure of different size 

and curvature. Lastly, a statistical threshold is devised to 

differentiate the blood vessels from background noise. The 

ultimate result produces a clear binary image of retinal blood 

vessels structure without loss of details. 

Rest of the paper is organize as follows: Section 2 gives a 

very brief account of some basic mathematical morphology 

operations for reference purpose; Section 3 elaborates the 

proposed algorithm in detail; Section 4 presents the results of 
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the algorithm applied on the test images with comments on 

the values of Structural Similarity (SSIM) index and Figure of 

Merit (FOM) and also a comparative study with other recent 

methods. Lastly in Section 5, we conclude by summarizing 

the main proposal of this paper.  

2. BASIC MORPHOLOGICAL 

OPERATIONS 
This section gives an overview of some basic operations in 

gray-level mathematical morphology [8] that are used in the 

proposed algorithm. 

A two dimensional image f(x,y), where (x,y)∊ℤ2, and operated 

by a structuring element b(x,y) where (x,y)∊Db ⊆ℤ2 is 

assumed in the following discussion. The definition of basic 

gray-level mathematical morphology operations are described 

below for reference purpose.  

Dilation:  
The Grayscale Dilation is defined as 

    '''' ,,max yxbyyxxfb                   (1)                              

            bDyxwhere '' ,  

Erosion: 

 The Grayscale Erosion is defined as 

    '''' ,,min yxbyyxxfb                    (2)   

             bDyxwhere '' ,  

 Where, Db domain of b, and f(x, y) is assumed to equal +∞ 

outside domain of  f.   

Opening: 

       ff bbb                                                        (3) 

Closing: 

    ff bbb                                                   (4) 

Top-Hat Transformation:  

    fffThat                                                   (5) 

The above operations are applied in different combinations 

with respect to the different structuring element size and 

shape in order to remove or restore local structures of blood 

vessels of retina. The notations explained above are used in 

our proposed algorithm. Disc shaped and line structuring 

elements (ALAS) mainly used in the proposed algorithm. 

3. PROPOSED VESSEL 

SEGMENTATION TECHNIQUE 

3.1 Preprocessing of Fundus Image  
In the first step where the colored fundus image (IRGB) is 

converted into a gray-scale fundus image (Igray) to help the 

blood vessels separation and to decrease the computational 

time. This has been observed that, the green channel of the 

RGB retinal image contains the maximum information about 

the blood vessels and the red channel contains the 

pathological data [9]. So, the RGB fundus image (IRGB) is 

converted into grey-scale image using Craig’s formula (6) 

given below 

BGRI gray  11.059.03.0                 (6) 

where, Igray= Gray scale image, R= Red Channel, G= Green 

Channel, B= Blue Channel of the given fundus image (IRGB) 

and 59% importance is given to the green channel, because it 

has the maximum contrast in between blood vessels. The 

background of retinal images is rather saturated by the red 

channel and the blue channel is rather dark [10]. The red 

channel in the image has spread intensity level in the location 

where the green channel has very low contrast difference. It 

gives extra variation between the blood vessels and optic disc 

of retinal image. The most unsupervised methods [11], [2], 

[12] use the green channel to extract the vessel structure. 

3.2 Initial Elimination of Background 
The same technique that is found in [13], [14] is followed in 

this step to extract the vessel like shape. It is already known 

from literature that thickness of the retinal blood vessels 

ranges between 3 pixels to 7 pixels [18]. A disc shaped 

structuring elements Sr3 and Sr8 having radius 3 and 8 pixels 

are used successively to eliminate the non-vessel like 

structures. At first the morphological opening (3) is executed 

on the gray-scale retinal image Igray with the structuring 

element Sr3 to remove the non-vessel like objects having size 

smaller than 3 pixels and the output image we denote by Iop. 

This operation is defined as 

  
graySop II

r 3
                                               (7) 

Now, the morphological closing (4) with the structuring 

element Sr8 is applied on the image Iop to connect the objects 

which are less than 8 pixels and output image is Iop_cl. This 

operation is defined as 

  opSclop II
r8_                                  (8) 

The structuring element Sr8 is applied for the above mentioned 

morphological closing operation, having the knowledge that 

the blood vessels have maximum radius of 7 pixels. 

This Opening and Closing operation results an image Iop_cl 

with no vasculature. So, finding the differences between the 

original gray-level image (Igray) and Iop_cl extracts the vessel 

like structure by eliminating background. This operation is 

well known morphological top-hat transformation (5) as 

described below 

 graycloprst III  _                                 (9) 

By this process the retinal blood vessels can be extracted from 

the fundus image, but it retains the objects having size in 

between 3 to 7 pixels which may not be the part of retinal 

blood vessels.  

3.3 Generate an Adaptive Structuring El-

ement 
The unwanted non-vessel like objects are retained in the 

fundus image when the morphological closing is used with the 

structuring element Sr8 according to (8). The fundus image 

contains vessels which are elongated structures. So, the disc 

shaped structuring element is incapable in finding the vessel 

like structure in the retinal image. Hence, the image Irst has 

many non-vessel structures and those structures do not 

contribute to the vasculature. The local structure of blood 

vessels can be approximated as consisting of small straight 

lines, whose width is one pixel only and our proposed 

technique is based on this perception. A one pixel thick line 

that changes its size followed by rotation which collects the 

maximum response in the neighborhood is so-called Adaptive 



International Journal of Computer Applications (0975 – 8887) 

Volume 168 – No.11, June 2017 

30 

Line Structuring Element (ALSE). The Adaptive Line 

Structuring Element (Sθ°(i), where, i ϵ Z and θ° is given angle 

of rotation) contains two parameters Size (i) and Angle(θ°). 

The size i defines the length (number of pixels) of the line 

structuring element, whereas the angle (θ°) defines the 

orientation of the ALSE. The line structuring element with 

size i is a one dimensional array with the size of i pixels 

having all 1s as shown in Figure 1(a). The origin of the 

adaptive line structuring element (Sθ°(i))  is at (i/2+1)th pixel 

position of the array. The ALSE overlaps on each pixel of the 

fundus image with respect to the position of its origin. 

3.4 Extraction of Retinal Blood Vessels 

using Line Adaptive Structuring Element 
The Morphological opening is an anti-extensive property and 

this operation does not generate any new structures in the 

image. Hence, the morphological opening on the resultant 

fundus image Irst, using the adaptive line structuring element 

(Sθ°(i)) is applied by increasing its size in each step. The size 

of Sθ°(i) varies from 1 pixel to n pixels and for each value of 

“i”, the angle (θ°) of Sθ°(i) varies from 0°  to 180° with the 

increment of 10° in the experiments conducted below. The 

image pixel has been taken at that direction where the 

maximum intensity value is found after applying this 

operation. The summary of these operations are shown by in 

the following equations (10), (11), (12), and (13). 

       rstjiSj IiI   ,1                (10) 

      101  jj                                   (11) 

Here, Iθ(j+1)(i) represents the resultant image after Opening the 

image Irst by the line structuring element S(i, θ(j)), where i 

changes from 1 pixel to n pixels and θ(j) changes from 0° to 

180° with the increment of 10°. "j" varies from 1 to   180°/10° 

(=18). 

      iIiI jmaxmax                                (12) 

                                    where, j=1 to 18 

Now, we generate adaptability by changing the size (i) of the 

line structuring element from 1 pixel to n pixels. This 

approach is shown by using (13). 

        iIiI iSj max11                 (13) 

                 where,  Iθ(j)(1)=Imax (1) and i=1…n. 

Length of structuring element (S(i+1,θ(j))) incrementally 

increased to be applied on the previous image (Iθ(j)(i)). The 

operation progresses from small to large size adaptive line 

structuring element (ALSE) by using the image found in the 

previous step. The consecutive morphological opening holds 

the curvature of the retinal blood vessels for the definite size. 

 For a specific size of adaptive line structuring element r  

(where, r ϵ Z) we have the appropriate gray-scale retinal blood 

vessels structure (Igray(r)) that removes all the undesirable 

objects and keeps the retinal blood vessels intact. So, Igray(r) is 

the image which retains the retinal blood vessels structure of 

size upto r. This operation is described by 

      rstjrSgray IrI  ,               (14) 

3.5 Separating the Vessel Structure from 

Background 
The resultant retinal image Igray(r) contains only vessel like 

structures. Now, to segment the blood vessel from its 

background a suitable threshold is required to be applied on 

Igray(r).  

At first, to increase the contrast of an image, we raise each 

pixel of Igray(r) to the kth power (where k is a real number). 

The procedure is described as 

      k
rgrayenh yxIyxI ,,                         (15) 

 

 

                 Origin of s
7


  

 

(a) (b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 1: (a) Adaptive Line Structuring Element (S0°(7)) 

with size 7 pixels, (b) Rotation of ALSE Sθ°(7), (c) The 

rotation of LSE with respect to its origin in image do-

main gives the maximum response and the resultant 

image is formed (Green lines are line structuring ele-

ment and  Orange Lines are patterns in image), (d) 
Curvature detection, (e) Vessels detection, (f) Noise like 

element elimination 
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After that to extract the retinal blood vessel structure from the 

enhanced resultant retinal image (Ienh), we formulate a 

statistical threshold to convert the Ienh into a binary image 

given by 

 
    

    

{
,;1

,;0

enhenhenh

enhenhenh

IIIwhere

IIIwhere
vesselI








         (16) 

where, Ivessel is the binary image with desired resultant retinal 

blood vessels structure. The mean and standard deviation of 

the enhanced retinal image (Ienh) is represented by μ(Ienh) and 

σ(Ienh) respectively, and “η” is an adjustable parameter. 

The resultant retinal blood vessels structure (Ivessel) is a binary 

image, having value one for retinal vascular structure and zero 

for the background pixels. 

4. EXPERIMENTAL RESULTS & 

DISCUSSIONS 
The proposed Adaptive Mathematical Morphology based 

filter is tested on the freely available images found in Drive 

database [16]. In the Drive database, for each retinal image 

there is a corresponding mask image to segment the region of 

interest and also a manually segmented (ground truth) image 

of size 584×565 pixels. At first, the mask is applied on each 

image to extract the fundus region. Then, method described in 

equation (6) is used to convert the image into a grayscale 

image and result is shown in Figure 2(b). On this grayscale 

image morphological opening using a disc shaped structuring 

element (Sr3) is applied as given by the equation (7). The 

output image (Iop) shown in Figure 2(c) where all the objects 

in Igray which are more than 3 pixels have been removed. Then 

Iop morphologically closed using the structuring element Sr8 as 

mentioned in equation (8). The resultant image Iop_cl is shown 

in the Figure 3(a) and it contains all the connected objects 

which are less than 8 pixels. 

Next, the difference between Iop_cl and Igray is shown in the 

Figure 3(b) and the output image is Irst which is constructed 

using (9). Irst contains only the objects of size between 3 to 7 

pixels as mentioned in [13], [14]. 

  

(a) (b) 

Fig. 3: (a) Output Image (Iop-cl)) after Closing of Iop by 

structuring element Sr8 (b) Difference between Iop-cl  and 

Igray. 

 

Now an Adaptive Line Structuring Element (ALSE) with 

variable size is applied and followed by rotating the 

structuring element in increment of 10° from 0° to 180°. By 

this method curvature scale-space of gradually increased size 

is created. The maximum response along the direction has 

been taken as the resultant pixel. The experiments done in this 

paper, the initial step started with a line structuring element of 

size 3 pixels. Then the second step length of line structuring 

element increased to 4 pixels and applied on previous scaled 

image. Successively we continue to additional scaling as 

described by equation (13). After continuation of above 

mentioned process the output image is Igray(r) formed as given 

by equation (14). The curvatures of the blood vessels are 

preserved, because when the scale-space is constructed then 

the adaptive line structuring elements are changing the angles 

  

(a) (b) 

 

(c) 

Fig. 2: (a) 584×565pixels Fundus Image (b) Preprocessed 

grayscale Image (Igray) and (c) Output Image(Iop) after 

Opening of Igray by Sr3 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 3: Different output images after applying the Line 

Adaptive Structuring Element on grayscale vessels 

structure with different size: (a) 5 pixels (b) 7 pixels, (c) 

11pixels, (d) 13pixels, (e) 15 pixels, (f) 20 pixels 
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with taking into account of the orientation of the blood 

vessels.  

The big advantage of this technique is that the small blood 

vessels are preserved, because initial starting scale is small 

enough (3 pixels) and gradually the length of the line 

structuring element is increased. 

We have changed the length of the line structuring element 

ranging from 3 pixels to 30 pixels. The experimental results 

with the changing the size of structuring element are shown in 

Figure 4. 

The Figure 4, shows the different images after applying the 

Adaptive Line Structuring Element on grayscale image Irst 

resulted in last step, with size such as (a) 5 pixels (b) 7 pixels, 

(c) 11pixels, (d) 13pixels, (e) 15 pixels, (f) 20 pixels. 

To remove the background we apply the statistical threshold 

given by equation (16), which is the resulted binary image of 

the retinal blood vessels (Ivessel) from the image Ienh. The 

results are shown in Figure 5. 

In Figure 5(a) we have a binary retinal blood vessels structure 

with respect to its gray-scale image which is shown in Figure 

4(a) and it contains some background noise. But when the 

length of the ALSE is increased then the noises are eliminated 

gradually, which are shown in Figure 5(b-f). Visually the best 

results for binary retinal blood vessels structure are obtained 

when the length of the ALSE ranges from 15 pixels to 20 

pixels. 

To measure the accuracy of our proposed method we apply 

the technique on all fundus images of DRIVE database. Then 

we compute the Structural SIMilarity (SSIM) indexes among 

our resultant images and its corresponding manually 

segmented images, which contains vessels structure which are 

sketched by experts as provided in the DRIVE database. 

The formula of SSIM index [15] between two images x and y 

of common size M×N is as follows 

 

))((

)2)(2(
),(

2

22

1

22

21

cc

cc
yxSSIM

yxyx

xyyx








               (17) 

Where, μx and μy denotes the average of x and y respectively, 

2

x
= the variance of x, 

2

y
 = the variance of y, xy

 = the 

covariance of x and y, c1 and c2 are two variables to stabilize 

the division. 

 

After calculating SSIM index of the output images of our 

proposed algorithm with respect to its corresponding 

manually segmented images, we plot the graphs with respect 

to different scales, which are shown in Figure 7(a to d). The 

graphs show the change of SSIM index versus length of 

adaptive line structuring element. The best results of SSIM 

index of the resultant images of our proposed method can be 

found for the length of ALSE between 17 to 22 pixels, which 

validates the visually found results. 

Also to reaffirm our observation, we use the Figure of Merit 

(FOM) criterion function as proposed by Pratt [17] to analyze 

the errors related in edge detection procedure. Formula of 

FOM is given as 

 
 


AI

iN adI
FOM

1
21

11                        (18) 

Where IN = max{II, IA} and also II  is the number of ideal and 

IA is the number of actual edge map points. The distance of 

separation of the actual edge point normal to the line of ideal  

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 4: Different binary retinal blood vessels structure 

with respect to the different size of adaptive line structur-

ing element such as: (a) 5 pixels; (b) 7 pixels; (c) 11 pixels; 

(d) 13 pixels; (e) 15 pixels; (f) 20 pixels. 

 

 

 

 

(a) (b) 

Fig. 6: (a) 584×565 pixels Fundus Image (b) The output 

image formed after applying Salem et al. [10] method on 

the  image of DRIVE database given in 6(a) 
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edge points is given by d. Here, ‘a’ is a scaling constant taken 

as 1/9(according to the Pratt’s original work). 

We have compared our proposed Adaptive Mathematical 

Morphology based filter with the recently proposed methods 

by Salem et al. [10] and Samanta et al. [14] and the result is 

compared in Table 1. For visual comparison, Figure 6(b) 

shows the output images after applying Salem et al. [10] 

algorithm on the same image of DRIVE database. 

 Table 1. shows the average values of both SSIM and FOM 

indexes of the outcome images and its corresponding 

manually segmented images for above mentioned three 

methods for all 40 images found in the DRIVE database. 

 

Table 1. clearly shows that, SSIM index and FOM index 

respectively of the Adaptive Mathematical Morphology based 

filter method evaluated is higher than two other recently 

proposed methods of retinal blood vessel segmentation on 

publicly available standard DRIVE database images. 

5. CONCLUSIONS  
This paper proposes a novel technique to extract the blood 

vessels structure from retinal fundoscopic image using 

adaptive mathematical morphology. Anti-extensive property 

of the morphological operators used ensures that no new 

objects (artefacts) are introduced in the images. It does not 

depend on any intrinsic property of the given image such as, 

thickness or density of the vessels. The Structural Similarity 

(SSIM) indexes and the Figure of Merit (FOM) indexes of the 

resultant images with respect to the binary images which are 

given in the manual-1 and manual-2 in the DRIVE database 

are in average of 0.7418 and 0.5569 respectively. These 

results are significantly better compared to other recently 

proposed methods. The experimental results demonstrate that 

the proposed adaptive morphological technique is good 

enough to detect the small and large blood vessels structure 

simultaneously. This method is also useful to remove the 

noise and enhance the vessel structure. So, the blood vessels 

with low contrast may be deleted accurately.  The only 

drawback remaining with this technique is to decide the 

number of iteration required for correct preservation of the 

blood vessels. This problem will be addressed in our future 

work.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 7: Computation of Structural Similarity (SSIM) Index 

on the fundus images (a) 01_test.tif, (b) 05_test.tif, (c) 

15_test.tif , and (d) 20_test.tif of DRIVE Database with 

respect to the change of the length of  ALSE 

Table 1. Comparison of three methods of SSIM and 

FOM 

Methods Average SSIM 

index value 

Average FOM 

index value 

Salem et al. [10] 0.4482 0.2722 

Samanta et al 

[14] 

0.4606 0.2128 

Our Proposed 

Algorithm 

0.7418 0.5569 
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