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ABSTRACT  
Cognitive radio (CR) has been suggested as the solution to 

spectrum scarcity due to the fixed allocation employed 

worldwide by regulatory bodies. In order to avoid 

interference to a primary user signal, the CR has to be aware 

about the spectrum usage in the geographic area in which it 

wants to operate. The process of spectrum sensing is a 

fundamental task for obtaining this awareness and the result 

of this process determines the successful operation of 

cognitive radio. Energy detection is one of the methods of 

spectrum sensing with the lowest computational complexity 

but with low performance at low signal to noise ratio. 

Exploring energy detection has led to the application of 

many techniques one of which is the use of time-frequency 

analysis. This method employs distribution techniques for 

analyzing the energy spectral density of an observed signal 

with a view to setting a sensing threshold. However, the 

distribution techniques that were used in literature suffered 

from the problem of cross-terms which affect the analysis of 

the resulting distribution thereby leading to poor sensing 

performance at low signal-to-noise ratio. Smoothed pseudo 

Wigner-Ville distribution of the time-frequency analysis has 

been employed in this work to reduce the effect of cross-

terms for better sensing threshold. Simulation results 

evaluate the performance of the employed technique 

compared to pseudo Wigner-Ville for AWGN, Rician and 

Rayleigh channel conditions. 
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1. INTRODUCTION 
This static spectrum allocation strategy has led to many 

successful applications like broadcasting and mobile 

communication and it has also led to almost the entire prime 

available spectrum being assigned for various applications 

[1]. It may thus seem that there is little or no spectrum 

available for emerging wireless products and services.  

There had been several studies and reports over the years 

that showed that the static allocated spectrum was in fact 

vastly underutilized. A report presenting statistics regarding 

spectrum utilization showed that even during the high 

demand period of a political convention such as the one held 

in 2004 in New York City, only about 13% of the spectrum 

opportunities were utilized [2]. Further, measurement on 

radio frequency bands from 30 MHz to 910 MHz was done 

in Mexico City of San Luis Potosi and showed 11.83% [3], 

Kwara State of Nigeria at 48.5 MHz to 880 MHz showed 

12.02% usage in the urban areas [4], and also at 2.4GHz to 

2.7GHz showed 22.56% usage in the urban areas [5], thus, 

all showing that spectrum was in fact underutilized. These 

findings also suggest that devices using advanced radio and 

signal processing technology should be able to exploit 

underutilized spectrum. Much of the early motivation for 

cognitive radio technology was indeed to accomplish such 

opportunistic spectrum use and to also alleviate the artificial 

scarcity of prime spectrum. This technology will 

revolutionize the way spectrum is allocated worldwide, the 

challenging task is carrying out reliable spectrum sensing at 

low signal-to-noise ratio (SNR) as the successful operation 

of CR depends on the result of spectrum sensing. This means 

that a secondary user needs to reliably detect a primary user 

that is transmitting at very low power or that is located far 

from the detection point. The selection of appropriate 

spectrum sensing technique should take into account the 

trade-off between the performance and the computational 

burden [6]. 

2. SIMILAR WORKS 
There has been several works on spectrum sensing and the 

most common methods employed are energy detection, 

cyclostationary feature detection and matched filtering [7]. 

Energy detection has received most attention from 

researchers owing to its less computational complexity and 

non-requirement of the primary user’s information before 

detecting its presence. The work of [8] used time-frequency 

analysis and employed Wigner-Ville distribution to detect 

the energy of the primary user but suffers the problem of 

cross-terms. Compressed sensing was used with pseudo 

Wigner-Ville distribution in [9] but the issue of cross-terms 

persisted. Wavelet transform was treated as a filter bank in 

[10] where multiple filters divided in high pass and low pass 

were used, this has and increased computational complexity. 

Also the work of [11] used pseudo Wigner-Ville distribution 

as a radio mode identification of the primary user signal, this 

technique comes with increased computational complexity. 

In [12] a hardware testbed that employ Wigner-Ville 

transform was implemented and in [13], a joint time-

frequency transform with S-method was employed for 

spectrum sensing sake and achieved a good sensing 

threshold but with additional computation. This work aimed 

at improving the achievable sensing threshold while 

maintaining low computational complexity by employing 

smoothed pseudo Wigner-Ville distribution (SPWVD) to 

suppress the effects of cross-terms in the use of time-

frequency techniques. 



International Journal of Computer Applications (0975 – 8887) 

Volume 168 – No.12, June 2017 

31 

3. USE OF TIME-FREQUENCY 

ANALYSIS FOR SPECTRUM 

SENSING 
Using time-frequency analysis allows for analyzing the 

energy components of non-stationary signals in time and 

frequency domains simultaneously. Localizing signals in 

time and frequency domains simultaneously requires that the 

distribution techniques be a bilinear function. This bilinear 

function follows a quadratic superposition principles [14] 

defined as:   

                                             (1) 

But, 
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              is the cross-term present in the resulting 

multicomponent signal          .  

where: 

       denote the Wigner-Ville distribution of 

signal ‘ ’ 

‘ ’ is the time   

‘ ' is a delay in time or time shift 

‘ ’ is a delay in frequency or Doppler shift 

In order to suppress the effects of cross-terms on the signal 

of analysis for better judgement of the energy spectral 

component, this work employed SPWVD which gives us the 

ability to smoothen out the cross-terms present without much 

compromise on the resolution. The SPWVD is given by: 
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     and        are the separate smoothing functions 

along the time and frequency domains respectively. 

4. METHODOLOGY 
A non-cooperative single secondary user was considered for 

this work. The scenario depicted a single secondary user 

scanning for spectrum holes opportunity at a target primary 

user band. 

Secondary Transmitter

Primary Receiver

Primary Transmitter

Secondary Receiver
 

Figure 1 Spectrum sensing scenario for a primary user 

and secondary user 

A bitmap grayscale image was used in this work, it was 

converted to a baseband signal, modulated and transmitted 

through the communication channel modeled under three 

different channel conditions of AWGN, Rayleigh, and 

Rician. The expression for one OFDM symbol starting at 

      is given as [15]: 
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where    are complex modulation symbols,   is the OFDM 

symbol number,    is the number of subcarriers,   the 

symbol duration, and    the carrier frequency. The OFDM 

signal was simulated using Matlab. 

The table 1 below summarizes the parameters used for the 

simulation of the OFDM signal transmission. 

Table 1 OFDM Simulation Parameters 

Parameters  Values  

Source data Gray scale image with different sizes 

(800 by 600, 600 by 800, 400 by 300) 

IFFT size 2048 

Number of 

carriers 
Defined by                    

 
         

 
   ). 

Modulation 
method 

Varied between BPSK, QPSK, 16PSK, 
256PSK 

Amplitude power 
clipping (dB) 

3 – 9 

Signal to Noise 

Ratio (dB) 

Varied between -45 to 0 

 

The simulation was done in two stages: (i) a scenario where 

there is an image been transmitted through the noisy channel 

and (ii) a scenario where nothing is been transmitted.  The 

signal of transmission was then captured and analyzed by 

first performing Hilbert transform on it and then using 

SPWVD on it where the cross-terms are been suppressed 

without compromising poor resolution. This distribution is 

as given: 

                          
 

 
      

 

  

 

  
 

 
                 (5) 

The Kaiser-Bessel window was used for the smoothing 

window      and its beta parameter used was 7 to reduce the 

effects of side lobes and the window length M of 79 was 

used to achieve a clear distinction between closely packed 

frequencies of the signal in the frequency plane. The 

Blackman window was used for the smoothing window 

       with window length M of 33 gave a satisfactory 

cross-terms suppression in the time plane. 

The energy spectral density of the smoothed distribution was 

extracted using the marginal time-frequency function of the 

time-frequency tool box. The energy spectral densities were 

extracted as [16]: 

                   
  

  

  

  
    (6) 

where   represents the energy spectral density of the 

distribution     represents the Smoothed Pseudo Wigner-

Ville distribution function   represents the vector containing 
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time sample in seconds   represents the vector containing 

frequency samples in hertz. 

Target SNR of -25dB was used to determine the threshold 

because the standardization body specified that, the detection 

threshold for energy detection that can detect reliably at a 

received power of -116dBm at the receiver is required below 

which reliable detection is not guaranteed. The energy 

spectral densities at -25dB after one hundred simulations 

were averaged in order to estimate and determine the 

threshold. 

5. PERFORMANCE METRICS 
The following are some of the performance metrics of 

interest: 

1. Probability of False Alarm (PFA): The 

probability of false alarm is a measure of how 

many times the CR has identified the presence of a 

primary user in a channel whereas it does not exist. 

This is important from a secondary user 

perspective as it leads to losing transmission 

opportunity. 

2. Probability of Missed Detection (PMD): The 

probability of missed detection is a measure of 

how many times the secondary user failed to detect 

the primary user. This is important from a 

secondary user perspective as it indicates how 

many times the CR fails to identify the presence of 

a primary user, while actually it does exist which 

will cause interference on the primary user’s 

transmission.  

3. Signal to Noise Ratio: SNR is important from a 

comparison point of view and explains the 

behavior of the spectrum sensing tool under 

varying noise conditions at specific receiver 

sensitivity. Most often this is measured at the 

output of the receiver. 

6. RESULTS AND DISCUSSION 
The plots in figures 2 to 7 show the performance of the 

thresholds obtained from both the smoothed pseudo Wigner-

Ville distribution (SPWVD) against the pseudo Wigner-Ville 

distribution (PWVD). The probabilities of missing detection 

were plotted against Signal to Noise Ratios (SNRs) and the 

probabilities of false alarm against SNRs for each channel 

condition modeled that is, AWGN, Rician and Rayleigh 

channels respectively. 

 

Figure 2 Plot of PMD against SNR for AWGN Channel 

 
Figure 3 Plot of PFA against SNR for AWGN Channel 

 
Figure 4 Plot of PMD against SNR for Ricain channel 

condition 

 
Figure 5 Plot of PFA against SNR for Rician channel 

condition 

 
Figure 6 Plot of PMD against SNR for Rayleigh channel 

condition 
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Figure 7 Plot of PFA against SNR for Rayleigh Channel 

Condition 

7. CONCLUSION 
The smoothed pseudo Wigner-Ville distribution (SPWVD) 

technique has been utilized in this work to reduce the effect 

of cross-term components by way of employing two 

smoothening filters for filtering the cross-terms generated 

while seeking to analyze OFDMA user signal in both time 

and frequency domain simultaneously. SPWVD yields a 

better sensing threshold when compared with Pseudo 

Wigner-Ville Distribution (PWVD) distribution. OFDMA 

user signal transmissions were simulated and analyzed in 

MATLAB R2013b environment and the time frequency 

toolbox that contains the time-frequency analysis techniques 

developed at CNRS were used to achieve the aim of this 

work.  The determined threshold in the SPWVD technique 

was compared with that of PWVD for performance analysis 

and the SPWVD showed a superior performance in the 

respective channel conditions (AWGN, Rician and 

Rayleigh). 
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