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ABSTRACT 

The electroencephalogram (EEG) is a widely used traditional 

procedure for diagnosing, monitoring and managing 

neurological disorders. Many artifact types that often 

contaminate EEG remain a key challenge for precise 

diagnosis of brain dysfunctions and neurological disorders. 

Hence, artifact removal is intuitively required for accurate 

EEG analysis and treatment. This paper presents a new 

extensive method that can remove a wide variety of EEG 

artifacts based mainly on Template Matching approach 

including multiple signal-processing tools. The method was 

evaluated and validated on real EEG data, giving promising 

results that offer better capabilities to neurophysiologists in 

routine EEG examinations and diagnosis. 
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1. INTRODUCTION 
Epilepsy is a common neurological disorder characterized by 

unprovoked recurring epileptic seizures. About 1% of people 

in the world suffer from epilepsy and 30% of them are not 

helped by medication [1]. Long-term monitoring of the 

electroencephalogram (EEG) is performed to identify 

abnormalities that perform hallmarks in neuronal disorders 

[2]. Investigation of Long-term EEG recordings is still done 

through neurophysiologists manually, by his/her naked eye. 

Visual examination of such massive EEG data is challenging 

as well as tiresome, very labor-intensive and too time 

consuming. Moreover, contamination with noise makes 

routine EEG examination is very problematic. The noises in 

the EEG are called artifacts that should be removed for proper 

analysis, diagnosis and treatment. These artifacts are 

generated from the body itself (bio artifacts) or caused by 

external interferences. Bio artifacts are originating from non-

cerebral sources as EMG, EOG and ECG but may be captured 

by an EEG machine. External artifacts are occurring during 

EEG recording due to bad electrodes, patient movements, 

baseline movement, electrical power line (50/60 Hz), mobile 

interference... etc [3]. The presence of such artifacts obscures 

the effective EEG waveforms to the extent that it may lead to 

wrong diagnosis with great danger of faulty drugs or 

inappropriate therapeutic protocols. Since the signals must 

therefore present a true and clear picture about brain activities, 

the importance of artifact removal comes to be very needful 

and urgent to overcome the difficulties of traditional EEG 

examination. Up to now, the most techniques have been 

proposed for removing artifacts can be classified into; 

Regression based method (AR) [4], Adaptive Filters [5], 

Principal Component Analysis (PCA) [6], Independent 

Component Analysis (ICA) [7], and Wavelet Transform (WT) 

[8]. Although these presented methods are practiced, each of 

them not only was designed to remove one particular artifact 

with its own limitations, but ruefully also considerable 

information of the true EEG can be lost. A more detailed 

review of artifact removal techniques can be obtained from 

the literature in [9].  

2. PROPOSED APPROACH 
Indeed, from the signal processing point of view, the rejection 

of EEG artifacts can be regarded as a pattern recognition 

problem. So, despite more sophisticated approaches have been 

suggested, the main procedures (in a way or another) remain 

relatively unchanged and could be shortened in; preprocess 

the raw EEG to remove linear trends and signal drifts, 

digitize, segment and extract different characteristics 

(morphological, spectral, spatial, statistical, frequency-

temporal), then these features are fed into a classification 

stage. In classification phase, the input feature vectors are 

analyzed according to a certain algorithm to identify artifact 

patterns along EEG signal. In the presented work, these main 

procedures are followed objectively to detect and remove 15 

artifact types which are slow blink, fast blink, vertical eye 

movements, horizontal eye movements, slow eyes rolling, 

heartbeat (ECG), coughing, chair rocking, chewing, leg 

movements, neck movements (forward/backward), neck 

movements (left/right), shoulder movements (up/down), 

50/60Hz line noise and bad electrode artifacts. Our method 

presented in this paper is extensive so that; it recognizes 

various EEG artifacts, removes it by setting their components 

to zero, reconstruct the remaining pure signals and project 

them back into their original channels/electrodes. The new 

generalized method is based on analogizing (comparing) 

various features of the predefined artifact templates (derived 

and preserved in the system previously) against the same 

features extracted from a sequenced window of the raw EEG 

data under analysis. Our approach comprises two steps:- 
 

(1) Derivation of template model for each artifact type and 

extract their significant features (as explained later in 

sections 3.2), 
 

(2) Analogizing (comparing) various features of the 

predefined templates against the same features extracted 

from a sequenced window of the raw EEG data under 

analysis (as illustrated in sections 3.4). 

A hybrid of processing tools was used to get characteristics 

embedded in time, space and frequency domains. Mainly, 

spectral, spatial and frequency-temporal features were 

analyzed to detect similar windows of the raw data to any 

artifact template. Lomb–Scargle Transform (LST) was used to 

study our method effect on spectral characteristics and overall 



International Journal of Computer Applications (0975 – 8887) 

Volume 168 – No.4, June 2017 

11 

quality of the cleaned signal after removing artifacts. 

Independent Component Analysis (ICA) and Symmlet 

Wavelet family (sym 8) are provided to extract features that 

will be analogized via a simple technique called “Cosine 

Similarity”. Firstly, the Cosine Similarity measure is used as a 

pre-classifier in a manner that; if there are similarities 

(according to specified threshold for each template’ feature) 

between the tested window and any template, the tested 

window is suspected to contain artifacts. This is illustrated by 

the block diagram shown in figure 1. Secondly, to avoid 

deception (reducing the false detection rate) and true EEG 

data loss, a variable threshold determined by Mean Squared 

Error (MSE) is applied, to decide either the tested window is 

an artifact or a true EEG. Briefly, the tested EEG window will 

be considered an artifact, if and only if both outputs of Cosine 

Similarity measure and MSE are true (i.e. exceed their 

thresholds) else, it is a true EEG. These basic procedures in 

our algorithm will proceed sequentially; in very short 

windowing epochs to catch instant transients, overcome the 

rapid dynamics and nonlinear nature of EEG. 

3. MATERIALS and METHODS 

3.1 Data acquisition 
 

Three real EEG data sets collected from Clinical Neuro 

Physiology Unit, Kasr El Aini Hospital, Faculty of Medicine, 

Cairo University. The data sets were investigated and 

examined by Professors of Clinical Neurophysiology 

Department. These data were categorized as:  

3.1.1 Dataset 1 (for deriving artifact templates) 
 

EEG segments for different artifact types were obtained 

during actual online EEG acquisition from 10 males and 10 

females aged 18-57 years old.  Artifacts were generated by 

requesting the participated subjects to do familiarized tasks 

intentionally or unintentionally, as eye blinking, eye rolling, 

teeth clenching, coughing, chewing, leg movements, neck 

movements, shoulder movements (up/down), …… and 

swallowing. When the subject does a specified action for a 

time period, the corresponding recorded EEG was clearly 

marked by its belonging artifact label. Also, by the close 

examination and well investigation of many EEG recordings 

(mostly more than 400 hours) were previously stored in the 

Clinical Neuro Physiology Unit (Kasr El Aini Hospital), 

different 15 types of EEG artifacts were identified and labeled 

along its duration as (art1, art2, art3,…, art15). Several patterns 

for each artifact type were picked up and separated into 

discrete segments of 0.5-1 Sec. So, many artifact types were 

acquired, recorded and labeled using the True Scan EEG 

system (DEYMED Diagnostic, Czech Republic) which can 

import data into .mat format for further processing by 

MATLAB (Math-Works, R2012a). A template model for each 

artifact type is estimated based on these extracted segments 

(from the preserved recordings and EEG artifacts that 

acquired from the participated individuals online).  

3.1.2 Dataset 2 (for training and testing): 
 

This data set consisted of epileptic EEG patterns collected 

from 35 epileptic patients (whom had been under evaluation 

and treatment) and normal EEG data from 5 recent graduate 

physicians were trained in the Clinical Neurophysiology Unit. 

We concerned to include contaminated epileptic data in this 

tested set to quantify our algorithm performance on different 

epileptic waveform activities after artifact removal. Also, we 

interested to add normal EEG data to study our method effect 

on morphology, spectral, statistical and other characteristics 

of normal EEG signals.  

3.1.3 Dataset 3 (for power spectrum evaluation): 
 

This data set consisted of very pure (uncontaminated) 20 EEG 

signals from epileptic and normal individuals to test our 

algorithm performance, according to power spectrum analysis 

based on Lomb–Scargle Periodogram (LSP).  

All real data sets were collected according to the standard 

10/20 system from the EEG monitoring unit. The two data 

sets 2, 3 were optimally filtered to remove linear trends and 

signal drifts for improving the reliability of ICA 

decomposition. For this purpose, an analog anti-aliasing filter 

with sampling frequency 250 Hz and a band pass Butterworth 

filter with cutoff frequencies of (0.1- 100Hz) were used to 

attenuate EEG channel drift and better satisfy ICA's stationary 

assumption. 

3.2 Template derivation of artifact 

patterns 
 

Template matching is the process of detecting most prominent 

events in a signal by comparing it to a predefined template 

that characterized by certain features intimately pertaining to 

these events. In this study, to perform a certain template, 

appropriate segments corresponding to each artifact type were 

acquired online from many volunteers (whom requested to 

perform significant tasks to generate different artifact types) 

and other artifact patterns were picked up by qualified 

neurophysiologists from many EEG recordings (stored in the 

Neuro Physiology Unit, Kasr El Aini Hospital). The temporal, 

spectral and frequency characteristics of the extracted 

segments were analyzed to get precise, discrete artifact 

samples for each type. Based on these characteristics, some 

segments were discarded and the convenient remaining ones 

were indexed in separate patterns (mostly, 140-150 segments 

with duration from 0.5 to 1 Sec for each). The proper patterns 

were categorized as (art1, art2, art3,…, art15) and selected for 

template derivation. The template for each artifact type (tmp1, 

tmp2, tmp3,…, tmp15) was estimated as the median of its 

corresponding segments. The median was used instead of 

average because it is more robust to outliers and signal trends.  
 

3.3 Feature extraction 
 

3.3.1 Independent Component Analysis (ICA) and 

Wavelet Transform (WT) 
 

Independent Component Analysis (ICA) is a statistical 

technique by which mixtures of observed random data are 

linearly separated into maximally independent components 

from each other. It is the most recent and widely mathematical 

tool used of Blind Signal Separation (BSS) approaches. 

Let x(t) denote a vector of n observed signals x at time t;  
 

x(t) = [x1(t), x2(t), . . . , xn(t)]
T
 , x ∈ ℛn                     (1), 

 

where, x(t) is a mixture of m unknown sources (s); 
 

s = [s1, s2, . . . , sm]
T
  , s  ∈ ℛm                                    (2) 

 

We target to separate the sources that compose the EEG 

signal. These sources are hypothesized to be a mixture of 

neural cortex sources (true EEG) and other interferences that 

cause contamination of the EEG signal. If we able to separate 

such interfered (artifacts), we can remove them and succeed to 

purify the EEG signal. The aim of using ICA is to do so by  

estimating the separating (unmixing) matrix W, to obtain 

independent components Y, such that; 
 

Y= Wx                                                                          (3) 
 

Eq. (3) implies that; 
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X=W
-1

 Y                                                                   (4) 
 

Onton, et al., in [10] has shown that; the resulting (Xi = Wi
-1 

Yi), forms the spatial independent components (Xi), and the 

whole data (X) are the sum of these ICs (Xi); 

X=∑ Xi,              where, i=1, 2, 3, …… n                   (5) 

Thus, the inverse matrix (W-1) contains relative weights 

(spatial features) that denote components’ source locations on 

the scalp topography [11]. Several studies have also used ICA 

technique for EEG artifact removal [21-24]. Consequently, in 

our method, it was suggested that; by comparing the spatial 

features (embedded in the inverse matrix W-1) for both 

sequenced windows (segments of the signal under analysis) 

and each artifact template (according to an appropriate 

threshold), waveforms that resemble any of artifact templates 

(tmp1, tmp2, tmp3,…, tmp15) along the tested EEG signal 

would be recognized. Hyvärinen in [15] proposed a fast 

algorithm called FastICA to separate independent components 

in non Gaussian distribution signals (since the EEG signal 

contaminated by many artifact types has a nongaussian nature, 

FastICA has been very appropriate for our application). Also, 

FastICA has many significant advantages, such as faster 

convergence speed of iteration and better performance of 

noise immunity. At the same time, despite ICA has been 

vastly employed in many methods to reject artifacts from 

EEG, its capabilities to detect some artifact types are limited, 

especially when these artifacts overlap with the true EEG [16, 

17]. Also, its performance depends on the size of the data set 

and cannot filter the artifacts without discarding the true 

signals as well, resulting in some effective data loss [18]. To 

overcome these limitations, the performance can be improved 

by extracting more features in other spaces beside that 

obtained by ICA. Considering the nonstationary nature of 

EEG signals (i.e. the frequency spectrum varies through time) 

[19], WT capability to transform the signal into time and 

frequency domains according to desired resolutions gives a 

superior macroscopic vision to extract features at different 

time localizations [20]. Therefore WT can separate any 

overlapping artifacts with the true EEG signals that ICA 

cannot filter out by distinguishing their temporal- frequency 

features [18]. Thus, like ICA, Wavelet Transform (WT) has 

been widely used in EEG denoising [21, 22] as well as other 

biomedical signal processing. However, using Wavelet 

Transform (WT) alone in EEG denoising cannot completely 

reject all artifacts, particularly when including comparable 

amplitudes with the true EEG signals and it may result in 

serious problems such as the Gibbs effect which distort the 

data [18, 23]. Recently, researchers advised to combine 

Wavelet Transform (WT) and ICA to take advantages of both 

and exploit their benefits that complement each other [18, 23] 

where;  

(i) WT removes overlapped artifacts that ICA can’t filter out, 

especially in small data sets.  

(ii) ICA can separate artifacts with the same amplitudes or 

higher than true EEG signals while WT has difficultly to 

do so.  

Compressed versions of Wavelet functions match the high-

frequency components, while stretched versions match the 

low-frequency components. For a conventional mother 

wavelet ψ(t), the Discrete Wavelet Transform (DWT) at scale 

“a” and position “b”, is defined as; 
 

           
 

                                          (6) 
 

Where, a and b are discrete values based on powers of two, 

{aj = 2-j, bj,k = k 2-j },  j and k are integers, the function Ψj,k (t) 

is determined as; 

                                                     (7) 

 

By varying “b”, the wavelet function ψa,b(t) is replaced into 

the desired point of time, while capturing the high and low-

frequency components of the signal as increasing and 

decreasing “a” respectively. So, at different locations of time, 

the frequency details of the signal can be obtained at several 

scales. With convenient wavelet, by sequential scaling and 

translating (varying parameters “a” and “b”), the signal is 

decomposed into sub-bands (WT coefficients), revealing the 

time- frequency features of the signal at different locations. 

Hence, both frequency and time features of fast transients in 

the EEG signal can be extracted from its WT coefficients, 

ignoring the nonstationary nature of the signal [24]. So, by 

correlating the EEG signal with wavelet functions of different 

sizes, the details of the signal can be obtained at several 

scales. Therefore artifacts would be detected by using an 

appropriate wavelet function and specific scales 

corresponding to the frequency bands in which these artifacts 

occupied. Signal decomposition by WT is performed by many 

Wavelet functions, called “mother” wavelet (the basis 

function ψ). For DWT, many wavelet families are available as 

Haar, Daubechies, Symlets, Coiflets, …, etc. The quality of 

the features extracted by WT is mainly depends on the choice 

of a convenient “mother” wavelet and the number of 

decomposed sub-bands (WT coefficients) [24]. Selection of 

mother wavelet and number of WT coefficients is essential to 

obtain meaningful features retained in the wavelet coefficients 

at specific frequency ranges. Therefore, the chosen mother 

wavelet and number of decomposition levels (sub-bands) are 

subjective for each application, and yield to several practical 

experiments to satisfy the best results. In the presented 

method, we used Symmlet family of Wavelets due to its 

orthogonal and regularity as increasing the number of 

moments [25]. Also, this type of Wavelet family (Symmlets) 

was chosen since it gives a fast access to both WT and its 

inverse (IWT) on the basis of multi-resolution analysis, 

providing a very convenient way for further processing by 

Cosine Similarity measure. Practical experiments confirmed 

the best number of vanishing moments was 8 (Sym8) with 5-

level decomposition of the approximate and detail 

components. Hence, either of the tested EEG windows 

(segments of raw EEG data under analysis) and each artifact 

template (tmp1, tmp2, tmp3,…, tmp15) were decomposed into 6 

sub-bands: 5 details (D1–D5) and one approximation (A5) to 

obtain the desired frequency resolution as explained in Table 

1. 

Table 1: Frequency sub-bands corresponding to five-levels 

of DWT decomposition. 

Sub-bands Frequency range (Hz) Decomposition level 

D1 62.5-125 1 

D2 31.25-62.5 2 

D3 15.6-31.25 3 

D4 7.8-15.6 4 

D5 3.9-7.8 5 

A5 0-3.9 6 
 

On feature extraction, statistical analysis offer better tools to 

extract significant features, providing a compact 

representation of the signal with a low computational 
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complexity. So the maximum, minimum, mean, and standard 

deviation for each of the decomposed levels (D1–D5 and A5) 

were computed and set out as the feature vectors. 

Furthermore, the line length was used as another feature, since 

it is sensitive to amplitude-frequency variations [26] and its 

low computational time. In current work, for each artifact 

template (tmp1, tmp2, tmp3,…, tmp15), the spatial, wavelet 

(statistical and line length) features were extracted and ranked 

as N rows of an N × M matrix, then it is reshaped into an N·M 

size vector, (since the length is not the same in all feature 

types). Thus, a specific vector feature for each artifact 

template involves adequate attributes that depict its 

distribution over the features-plane space. Accordingly, 

identical procedures will be performed for each consecutive 

window of raw EEG data under test, to compose its vector of 

features. 

3.4 Cosine Similarity measure 
The cosine function is one to one, because it has only a fixed 

one output (neatly bounded between -1 to 1) specified for 

each tiny input. This significant property can be particularly 

employed to detect a resemblance (coincidence) between two 

patterns (in other words, to what extent two or more samples 

are similar or different to each other), by measuring the 

relative cosine value between their vectors of features at 

different localizations. Using the cosine function for such 

purposes is called Cosine Similarity measure. Compared to 

other tools, simplicity, accuracy and higher resolution give it 

many preferences to be utilized for pattern recognition and 

other signal processing tasks. Currently, this technique is 

widely implemented in many applications such as 

fingerprints, text and spectrum classification, signature 

investigation, speech and face recognition. By using this 

technique, similarity between patterns is determined 

according to the vectors’ directions, not on the actual 

locations (as Euclidean Distance method) of the data, 

avoiding more complex computations and making this 

technique appropriate for fast transients and chaotic nature of 

EEG. This is detailed in [27], where this approach was used to 

measure similarity between two patterns (without requiring a 

priori knowledge of the tested data or a training stage). 

Powered with good results in [27] the author recommended 

applying this technique for audio recognition and detecting 

variability of beat to beat in ECG signals. Furthermore, this 

measure is used, in [28] to purify the tested EEG signal from 

EOG artifacts. By taking waveforms from the EOG channel as 

artifact patterns and reject the similar morphologies in the 

other EEG channels. In the presented work, the cosine 

similarity was provided to detect similar waveforms to any 

artifact template (tmp1, tmp2, tmp3,…, tmp15) along the tested 

EEG data (according to a specific threshold for each artifact 

type). Suppose that;  
 

                                               (8) 
 

is the vector feature of the i-th window (of the raw EEG data 

under analysis), and 
 

                                                (9), 

 

is the vector feature of artifact templates (tmp1, tmp2, tmp3,…, 

tmp15), for j = 1, 2, .,…,15 respectively. The cosine value of 

the angle θij between the vector features of i-th window   , 
and  j-th template    is; 

        
       

 
   

     
  

       
  

   

                                (10) 

 

To avoid the periodic nature of the cosine function, the 

absolute value of     , is determined to assess the extent of 

similarity between the i-th window and j-th template. 

Equation (10) implies that; the larger value represents more 

similarity (meaning the angle θ is close to 0ο, (i.e. both vector 

features, Y and X are nearly coincided and matched to each 

other). Practically, an appropriate threshold, Tj =         , was 

adopted to each template, where θj, is the angle at which 

similarity is ascertained. So, similar waveforms to artifact 

templates (tmp1, tmp2, tmp3,…, tmp15) will be identified 

when; (            Tj ), for j = 1, 2, 3,…,15 respectively. On 

the other hand, an adaptive model of Mean Squared Error 

(MSE) was used to avoid false detections of true EEG that 

may resemble artifact templates. MSE is the expected value of 

the square error by which the i-th window Yi differs from the  

j-th template Xj, as; 

MSEij = [Yi - Xj ]
2
                                             (11) 

The i-th window Yi, will be considered an artifact when the 

following condition is satisfied;  

 MSEij = [Yi - Xj ]
2
  > γj                                        (12), 

Where γj, is a predefined threshold corresponding to each 

artifact template (tmp1, tmp2, tmp3,…, tmp15 for j = 1, 2, 

3,…,15 respectively). It should be noted that, as schematically 

shown in figure 2, the tested EEG window will be considered 

an artifact (art1, art2, art3,…, art15), if both outputs of Cosine 

Similarity measure and MSE are true (i.e. exceed their 

thresholds) else, it is a true EEG. 

3.5 Experimental procedures 
 

To get a clear and very precise template for each artifact type, 

two procedures were performed; 

- First, 10 males and 10 females aged 18-57 years old were 

participated in actual EEG acquisition under supervision of 

EEG experts, utilizing the True Scan EEG system (DEYMED 

Diagnostic, Czech Republic). Artifacts were generated by 

requesting each subject to do significant tasks as eye blinking, 

eye rolling, teeth clenching, swallowing… etc. So, along the 

recoded EEG of the 20 subjects, corresponding contaminated 

EEG segments were marked along its duration and labeled 

according to its artifact type.  

- Second, by the close examination and well investigation of 

many EEG recordings were stored in the Clinical Neuro 

Physiology Unit, different 15 types of EEG artifacts were 

identified and labeled as (art1, art2, art3,…, art15). 

By focusing on the frequency-temporal and spectral 

characteristics of different artifacts, several patterns for each 

type were picked up from the two procedures and separated 

into discrete segments (mostly, 140-150 segments with 

duration from 0.5 to 1 Sec for each). A template model for 

each artifact type is estimated based on the median of these 

extracted segments. The artifact templates were indexed as 

(tmp1, tmp2, tmp3,…, tmp15), and exported into binary format 

for further processing in MATLAB. To determine the cosine 

similarity and MSE thresholds cos θj and γj, after several 

experiments, it was found that, each artifact type has its own 

thresholds. Consequently, each artifact template is combined 

with its threshold as {(tmp1, cos θ1, γ1), (tmp2, cos θ2, γ2), 

(tmp3, cos θ3, γ3),….., (tmp15, cos θ15, γ15)}, and each of such 

combination was taken into account in designing our 

algorithm. 
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4. RESULTS 
The proposed method was implemented using Matlab R2012a 

(7.14.0.739) on a 2.10 GHz, Intel Core i3 laptop. To test our 

method, it was applied to the data set 2, which acquired from 

35 epileptic patients (20 males, 15 females) and normal EEG 

data from 5 healthy subjects aged 14-65 years. We concerned 

to include both epileptic and normal data in this tested set to 

investigate the effect of our algorithm on the morphology of 

epileptic waveforms and study the signal quality of normal 

EEG after artifact removal. Very bad 20 EEG signals 

contaminated with different artifact types and other 

uncontaminated (pure) 20 EEG ones (data set 3) were selected 

by Professors in Clinical Neurophysiology. The performance 

has been evaluated according to the conventional examination 

by experienced neurophysiologists where their decision was 

used as the "gold standard". In detail, during the visual 

investigation of the tested data, neurophysiologists were asked 

to mark each contaminated epoch, by labeling the artifact type 

and its duration. Labeling of different artifact types was done 

prior to applying our algorithm. After applying our method, 

neurophysiologists were then instructed to list any epochs of 

the tested data which they believe it was still contaminated. 

Later, the performance of the method was assessed based on 

the report made by the experts. Fig.3 shows a set of 

contaminated EEG signals before and after our method is 

applied.  

 
(A) Sample of raw contaminated EEG Signals 

 

 
(B) EEG Signals after denoised with our algorithm 

Fig 3: Contaminated EEG signals before (A) and after 

denoising (B) 

 

Fig.3. A, shows one mixed EEG data set where overlays and 

different artifact types are existed in the most 20 signals. 

Figure 3.B, shows the same signals after applying our 

denoising method, indicating the overlays have been 

minimized and most artifacts were removed. Moreover, the 

cleaned signals are highlighted as its morphology (spikes, 

sharp waves, low frequency amplitudes, complexities …etc.) 

has been more prominent than its originals (before the method 

is applied). This last observation is wonderful and very 

important since it illustrates that the characteristics of the true 

EEG signal weren’t only changed but also both its signal to 

noise ratio (SNR) and the whole signal quality have been 

improved. However, more improvements could be gained via 

iterating the method by applying it to the same contaminated 

signals and repeated many times to refine the results and 

obtain the most overall performance (without distortion of the 

true EEG signals). This significant advantage can be shown in 

Fig. 3 B, where some EOG artifacts have not been removed 

well in signals 2-8, while after repeating the method one time 

again, these artifacts were reduced and the signal quality were 

getting better as shown in Fig. 4.  

 

 
 

Fig 4: Refinement of very bad signals by iterating the 

method 
 

Also, the performance was evaluated according to metrics of 

sensitivity and specificity. The first, sensitivity, was the 

percentage of true artifacts that were detected by the method 

to the total number that marked by neurophysiologists. The 

second, specificity, is the percentage of artifact-free EEG 

segments that were wrongly classified as contaminated to the 

total number of uncontaminated segments. Table 2 

summarizes percentage of the two measures for each artifact 

type in the tested data. The measures of both Sensitivity and 

Specificity are formalized as;  

Sensitivity = (detected artifacts / total contaminated segments 

marked by the experts)       

Specificity = [1_ (detected false artifacts/uncontaminated 

segments)]       
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Table 2 Sensitivity and Specificity for each artifact type in 

the tested EEG data.  
 

  Artifact type SEN% SPEC% 

Slow blink  94.47  91.29  

Fast blink 95.59  81.83  

Vertical eye movements 89.04  90.88  

Horizontal eye movements 92.01  88.86  

Slow eyes rolling 78.34  93.58  

Heart beat 97.16  78.37  

Coughing 98.42  90.15  

Lean chair rocking 79.03  90.12  

Chewing 85.94  94.28  

Legs movements 68.17  96.07  

Neck movements (forward/backward) 90.14  83.13  

Neck movements (left/right) 96.01  86.41  

Shoulders movements (up/down) 83.95  91.80  

50/60Hz line noise 97.19  91.47  

Bad electrode noise 96.11  73.19  

Total 89.438 88.09 
 

Table 2 reports the results obtained for the most artifact types 

in the test set. From table 2, it can be seen the capability of 

our method to detect different artifact types based on its 

templates preserved previously. According to this test, the 

overall performance was 89.438% sensitivity and 88.09% 

specificity when the results of all artifact types were 

combined. On the other hand, the total number of missed 

artifacts was 157 from 1180 contaminated segments specified 

by experts (0.13%). These missed spikes were reexamined by 

neurophysiologists and classified as 47 ECG, 59 fast eye 

blinks and 51 chewing (EMG) artifacts. By carefully 

reviewing all missed artifacts, it was found that their durations 

ranged from 100 to 150 ms and amplitudes between 90 - 120 

μV. The inability to detect these short artifacts is due to the 

width chosen for the initial artifact templates. Although the 

template length can be decreased, but the method will be more 

sensitive to tiny epileptic spikes resulting true EEG data 

distortion and unreasonable percentage of false detections 

(this was concluded after many experiments implemented on 

training data to derive the best morphological parameters of 

each artifact template). In total 278 false detections were 

verified and categorized by neurophysiologists as the 

following;  
 

- 84 false-detections were Vertex spikes (quite sharply 

repetitive waves lasting in 200 m Sec with amplitude up to 

150-250 μV). 

- 118 false-detections were Wicket spikes (characterized by 

sharp arched waveform due to temporal alpha activity). 

- 76 false-detections were reported as false positives.  

According to these observations, a pleasurable percentage of 

false detections are more satisfactory rather than detecting and 

removing a true epileptic spike. However, it was very 

important to compare our method against popular methods 

from the literature. In this comparison test, three very bad 

contaminated EEG channels (from data set 2) were acquired 

from C3, C4 and Cz as a reference according to the 

International 10-20 System. Since the most denoising methods 

in the literature are mainly based only on WT [29], Principle 

Component Analysis (PCA) [30] or ICA [31], we apply these 

tools to the tested data and the performance of each was 

compared against our presented method according to Mean 

Squared Error (MSE) index and the computation time 

consumption. Before removing artifacts, the average MSE of 

raw EEG data of the three EEG channels (C3, Cz and C4) was 

93.4179. After applying the methods, average MSE was 

2.18178 for our method, while 3.8911 for WT, 4.1448 for 

ICA and 4.9848 for PCA based method. The average running 

time was 0.4076 second for our method, 0.6799 s, 0.5184 s 

and 0.3876 s for ICA, WT and PCA based methods 

respectively. As the results show, in the same computing 

environment (2.10 GHz, Intel Core i3 laptop), fast 

computational time of our algorithm shouldn’t be ignored as it 

has the best time efficiency significantly. Moreover, the 

results obviously illustrate that the denoising performance of 

our algorithm was better than the methods based only on WT, 

ICA or PCA according to the Mean Squared Error (MSE) 

index. Although the average computation time for PCA based 

method was almost the same as our algorithm, its denoising 

performance was worse because of a lot of true EEG data loss. 

Therefore, considering the denoising performance and time 

consumption together, our method is powerful and 

outperforms other algorithms. Moreover, it was found in ICA 

based algorithm, different artifact types with various 

amplitudes not only disturbed the separation and artifact 

recognition, but also resulted in increasing the number of 

iterations and time computation. While our algorithm based 

on FastICA combined with WT (Sym8 with 5 levels) takes 

advantage of both ICA and WT to exploit their benefits that 

complement each other. So, our algorithm is powerful in noise 

immunity compared to other methods in the literature since 

FastICA in Wavelet domain has a faster convergence speed of 

iteration, and better realization of artifact recognition and 

separation. On the other side, due to the nonstationary nature 

of EEG signals, (meaning that characteristics as mean, 

variance or power-spectra, change with time [19]), 

determining the spectrum in time-domain, is not preferable. 

Since the amplitude and spectrum of EEG vary from signal to 

signal, subject to subject, it even varies from time to time for 

the same subject [32]. Also, the “rhythmic” behavior of EEG 

is characterized by a peak in the power spectrum at specific 

frequencies [33], could be used to study such changes of the 

signal after applying our method. Saini et al. [34] 

showed the efficiency of applying Lomb–Scargle transform 

(LST) for estimating the power spectrum, which could be 

convenient for our test. The LST is defined as;  

For   , provides a vector of n observed signals x at time n, 

the Lomb periodogram at frequency  f  is defined by;  
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Where    ,    are the mean and variance,   is a frequency 

dependent time delay defined to make the periodogram 

insensitive to time shift. The Lomb–Scargle Periodogram 

(LSP) was provided to assess the spectral performance and 

power evaluation of our method to study its effect on the 

characteristics and signal quality of the original signal after 

removing artifacts. To perform such test, a very simple 

experiment is performed using data set 3 that composed of 

very pure (uncontaminated) 20 EEG signals from epileptic 

and normal individuals as the following:- 

(1) The neurophysiologists were requested to elect 20 

uncontaminated (very pure) EEG signals.  

(2) We contaminate these 20 pure EEG signals with white 

noise and different artifact types.  
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(3) We apply our method to the 20 contaminated EEG signal. 

(4) The LSP for average of the 20 signal was determined 

before and after applying our method to study the method 

effect on the tested signals after removing artifacts according 

to Lomb–Scargle Periodogram (LSP). 

The following figure shows the LSP average of the 20 original 

uncontaminated (Fig. 5.A), contaminated (Fig. 5.B) and 

cleaned signals after applying our method (Fig. 5.C).  

 
 

(A) 
 

 
 

(B) 
 

 
 

(C) 

Fig 5: LSP for uncontaminated A, contaminated B and 

cleaned signals after applying our method C. 
 

From Fig. 5, it can be noted that the spectrum of the denoised 

EEG (after applying our method) matches perfectly with the 

spectrum of original uncontaminated (pure) EEG signals 

particularly in the frequency range up to 30 Hz. Also, one can 

see that the spectrum of the pure original signals (Fig. 5.A) 

and the denoised ones (Fig. 5.C  ) are decreased to zero in the 

range above 30 Hz, which is reasonable since the EEG signals 

do not have any useful frequency components above 30 Hz 

[35]. So, it can be understood that energy of cleaned EEG data 

was recovered very well, with the same distribution of power 

spectral density as in the pure original signals (without any 

tiny change or disturbance of spectral characteristics after its 

artifacts were removed). On the other side, the spectrum of the 

noised signals (Fig. 5.B) is different from the spectrum of 

both the pure original signals (Fig. 5.A) and the denoised ones 

(Fig. 5.C) in the frequency range up to and above 30 Hz. 

From Fig. 5.B, the spectrum of artifact components are 

extended along the whole frequency range (from 0-100Hz) 

unlike Fig. 5.A and Fig. 5.C where there are no any spectrum 

elements above 30 Hz. This important note illustrates that the 

different artifact types in EEG signals are spread and occupy 

wide frequency ranges according to the spectrum 

characteristics of each artifact type. The last note is crucial 

since it can be employed to get rid of artifacts in the frequency 

range above 30 Hz by specifying the spectral features of 

artifacts using power spectrum analysis tools and remove their 

artifact components. 

6. CONCLUSION AND FUTURE WORK 
Different artifact types are common and usually contaminate 

the EEG signal. Such artifacts represent a burden, 

embarrassment, confusion and difficulty in diagnosis and 

treatment of brain disorders. Thus, automatic artifacts removal 

attempts have received intense attention, urgently required to 

limit such difficulties of the traditional EEG examination. 

Artifacts are not just random noises and overlays disturb the 

true EEG morphology in the time domain but also contain 

underlying features in frequency and spatial domains. In this 

paper, we have presented a methodology based on Cosine 

Similarity, Wavelet Transform (sym 8) and Independent 

Component Analysis (FASTICA) merger to detect different 

15 artifact types. In our presented method, a new application 

of Cosine Similarity in the field of EEG processing was used 

to identify any similar samples to artifact templates (preserved 

in the system) as a fingerprint. By analogizing their different 

features to that of the tested EEG windows automatically and 

remove the similar ones, remaining only the true 

uncontaminated (pure) signals. According to results, the 

overall performance was 89.438% sensitivity and 88.09% 

specificity when the results of all artifact types were 

combined. While we present these results that may be 

promising, but at the same time, it must be remembered the 

algorithm performance was evaluated on limited data sets. 

Also, the measured parameters were determined according to 

a visual investigation by EEG experts, utilizing the True Scan 

EEG system (DEYMED Diagnostic, Czech Republic), where 

human error during this manual inspection cannot be ignored. 

It is very difficult to compare our algorithm against others 

because the focus of this study is detecting 15 artifact types, 

while each technique presented in literature has its own ability 

to remove only one particular artifact not the most types in the 

same time as our method. Besides, our tested data are 

different from the data used to evaluate other suggested 

methods, with various measurements for evaluating the 

performance of each method, and opinions of experts about 

artifact patterns. From this study, we have obviously 

concluded that, analyzing EEG signal in a broad framework, 



International Journal of Computer Applications (0975 – 8887) 

Volume 168 – No.4, June 2017 

17 

including temporal, frequency, and spatial domains may be a 

good solution to capture different EEG artifacts by 

overcoming its chaotic and nonlinearity nature. On the other 

side, to take advantage of information and activities of 

adjacent channels, it is recommended that processing EEG 

data in a multichannel scheme can highly improve the 

performance rather than processing each channel individually. 

This important note will be taken into account in future work. 

Development application of our algorithm in attempts for 

designing an automatic seizure detection system by deriving 

epileptic waveform templates, identification of its similar 

morphology along EEG data and validation with larger data 

sets is our next tasks. Our presented method was tested, 

validated, and compared to three denoising EEG techniques 

on real EEG data. The comparisons between our method and 

other approaches based only on WT, ICA or PCA, were 

fulfilled to determine the performance evaluation and which 

artifact removal technique is the best. In fact, the results 

indicate that the presented method is powerful in artifact 

removal with fast convergence rate. For its fast computation, 

it provides a novel wide window for on-line preprocessing of 

EEG signals. Also, it can play a positive role for further 

research and applications in brain dysfunction treatments as 

deep brain and vagus nerve stimulation for seizure prevention 

on-line using a closed feedback loop system. So far, the 

performance and computational speed supported our method 

to be clinically applied in removing artifacts and assisting 

clinical neurologists in routine EEG examinations for 

neurological disorders diagnosis and treatment. 

 

Fig 1: Features analogy of different artifact template and tested windows of raw EEG data. 

 

 

Fig 2: Schematic diagram of EEG artifacts removal 
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