
International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.6, June 2017

6

U2Z Framework for Improving the Readability of

Requirements of Safety Critical Systems

Monika Singh
College of Engineering and Technology,

Mody University of Science and Technology,
Lakshmangarh, Rajasthan, India

V. K. Jain
College of Engineering and Technology

Mody University of Science and Technology,
Lakshmangarh, Rajasthan, India

ABSTRACT
The aim of this paper is to present a framework which helps in

accessing and improving the specification especially for

Safety Critical System. This proposed framework takes use

case diagram as input and produces a formal model of

functional requirements as output. This formalization allows

the developer to document a correct and complete

specification which is the ultimate need for the reliable

software. The more accurately the functional requirements are

mentioned, the more reliable system will be implemented. In

case of the Safety Critical System, correct and complete

specifications are indeed. This paper discusses such an

integrated framework. We rely on Z Notation for

formalization. The further verification and validation of

specification is done with Z/EVES.

Keywords

Critical systems, Formal specification, functional

requirements, UML, Z Notation, Use case Diagram.

1. INTRODUCTION
Safety critical systems [1] are the one where a minor error

may cause potential damage to either human life or to

environment or may be to both. For example, control unit of

brakes in railway system, air traffic control units, medical

equipments, nuclear plants and many others [2-3]. Therefore,

development of such systems required more attention. The

root of reliable systems depends on how accurately the

requirement specifications are documented as once the

requirements are freeze, the next phase of software

development process takes the input of previous phase. The

main functionalities of systems are known as functional

requirements [4] of the systems. The functional requirements

are explicitly mentioned by the stakeholders. There are

various methods and technologies for specifying the

functional requirements. One of the ways is to use graphical

modeling language. As a pictorial representation tends to get a

better and clear understanding of what actually the customer

wants. Unified Modeling Language (UML) [5] is a de-facto

standard and used widely for visualizing and designing the

software artifacts. It enhances the analysis and design of

software system by allowing more cohesive relationships b/w

objects. It has been observed that graphical representation of

model is easily accessible and understandable to the user. The

primary gap between the developer and the user has been

easily fulfilled by the graphical description.UML composed of

nine diagrams: Use case diagram, class diagram, sequence

diagram, state diagram, activity diagram, interaction diagram,

component diagram, deployment diagram and package

diagram. Graphical representation always gives a better

understanding of the proposed system. The UML- use case

diagram defines the behaviour of a system i.e. the

functionality of the system. Therefore one can get better

understanding of system behaviour by making use case

diagram of the system which further forms the root of

Software Requirement Specification (SRS). Although UML

has numerous good attributes yet not accepted for designing

the safety critical system alone. One of the reasons is the lack

of preciousness in semantic used in graphical model.

Consequently, ambiguities are introduced. In case of safety

critical system, even a minor ambiguity may cause serious

hazards or even loss of life. Moreover, UML lacks features

that would allow attaching non-semantic information to

model.

There are famous examples of failure of safety critical system

merely due to either incomplete or poor requirements such as:

-Mars Climate Orbiter ($125 million)

_Therac–25

_Bhopal (3–10K deaths, 500K injured)

One way of resolving these issues is to use a formal model in

integration with UML [6]. Formal methods [7] use the

discrete mathematics which includes set theory, first order

predicates, logics and graphs. The lack of preciousness in

UML semantics can be covered by the rigorous mathematics

used by the formal methods by integrating UML with formal

model, the expressiveness of graphical notation increases

which ultimate enhance the modeling power of UML

diagrams especially at analysis and designing part. The

approach used for formalization is given in figure 1. Rest of

the paper is organized as follow. Section 2 presents the

ingredient of proposed framework. Section 3 validates the

U2Z framework with a real –time safety critical system.

Results and simulation are discussed in section 4. Section 5

unfolds the conclusion and discusses future directions.

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.6, June 2017

7

 UML MODEL

Initial specification Formal Transformation

 Formal

 Model

 Update/Revise UML Model

 YES

 NO

Figure 1: U2F Framework for Safety Critical System

2. COMPONENTS OF U2Z

FRAMEWORK
This section describes briefly the ingredients of proposed

framework. The main ingredients are: Unified modeling

Language and Formal Methods.

2.1 Unified Modeling Language (UML)
Unified Modeling Language [3] is widely used for modeling

the software system. Being rich in graphical notation UML

regarded as a de-facto standard in visualizing and constructing

the software system. UML diagram captures both the view of

system i.e. static as well as dynamic by including its

constituent diagrams, for instance Use case diagram are

primarily used to maps the functional requirements of

proposed system. The UML diagrams are: use case diagram,

class diagrams, sequence diagrams, interaction diagrams,

activity diagrams, state diagrams, component diagrams, object

diagrams and deployment diagrams. However UML is a

semi-formal language due to which it is prone to cause errors.

Moreover, UML allow ambiguities at the design level due to

its hidden semantics in computer software systems. There are

nine diagrams in UML to model graphically any given

system. Use case diagrams [5] are used to capture the

interaction between the user and the system. In other words,

Use case diagrams are used for capturing and improve the

functional requirements of the system. The basic constituents

of Use case diagram are: (a) Actors, (b) Use Cases, and (c)

Relationships among the use cases and actors.

2.2 Formal Method
Formal methods [7] are the mathematical methodologies used

to validate the software system by mathematical means. In

context of Formal method, the verification and validation of

specification is done by two means: Model checking [8] and

Theorem proving [9].

Theorem proving This technique is used when the system is

specified through mathematical definitions. Such system is

verified using automatic/semi-automatic Theorem Prover,

which are based on a library of axioms and a set of predefined

inference rules. Automated theorem proving allows proving

the properties of the system automatically, without human

intervention. This technique is very expensive in terms of time

and resources and is not practical for many complex

specifications. Therefore, there exists interactive Theorem

Prover which allows the designer to guide the proof. For

example, Z/EVES [11] are a semi-automatic Theorem Prover,

which allows proving theorems for verifying specifications

written in Z notation [10]. Apart from these techniques,

Formal methods can also be classified based on application

area of method in two categories:

Model-oriented methods: The specification of system

consists in defining a model of the system in terms of

mathematical structures such as relations, functions, set and

sequences. VDM [12], B [13], and Z notation [9],

Communicating Sequential processes (CSP) [15], Calculus of

Communicating Systems (CCS) [14], and I/O automata.

Property-oriented methods: The specification of the system

consists in defining some properties, usually in terms of

axioms that should be satisfied by the system. OBJ, LOTOS

[16] is formal languages that belong to this category.

In the context of this paper, formalization is done by Z –

Notation.

Use Case Diagram

Z Schema

Formation

Error

Occurred

Design Specifications

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.6, June 2017

8

3. VALIDATION OF U2ZS

FRAMEWORK
Functional requirements are defined as the statements of

services the system should provide how the system should

react to particular inputs, or how the system should behave in

particular situations. In other words, behaviour or function

will be specified by the functional requirements. They

describe what actually system will do. Use case diagrams

are used to capture the functional requirements of a system.

Logically, uses cases are nothing but the system

functionalities written in a systematized way. The components

of use case diagrams are: (i) use case, (ii) Actors, and (iii)

Relationships among the use cases and actors. To validate the

Use case diagram and its components, Z notation [8] is used

in proposed approach. In Z notation, Schema is the notion

used to structure the specification written in Z notation. The

generic structure of schema consists of three parts and

presented in figure 2 as below:

 Schema Name

 Variables declaration

 Constraints

 SchemaName

Variables declaration

constraints (preconditions or postconditions)

Figure 2: Basic Schema structure

Therefore the resultant of formal model of use case diagrams

is the Z schema of all the three above listed components

which includes following schemas:

 Figure 3 presents the formal model of Use case

diagram.

 Figure 4 depicts the formal aspect of Actor schema

 Figure 5 represents the formal model of Use case

Relationship

 Use Case Diagram

Actors

UseCases

Relationship_of_Actors

Relationship_of_UseCase

Figure 3: Schema of Use case Diagram

The actor schema consists of basic data type as [Actor_name,

Role] and three variables:

 Human, external or internal application which is the

set of all possible Actor

 Act-Role is the set of actor role; the intended actor

playing.

 aRole is the function which maps the actor name to

its role.

Therefore the schema of Actor will be:

 Actor-name

human, external application, internal application:

� 1 Actor-name

Act-Role: � 1 Role

aRole: Actor-name →� 1Role

⟨ human, external application, internal application⟩

 ∈� 1Actor-name

dom aRole = human ∪ external application ∪

internal application

ran a Role = Act-Role

Figure 4: Schema of Actor

Now the constraints are:

 The actor name should be from a finite set and the

finite set can be of human or non-human external,

internal application.

 The domain of actor role should be the union of all

finite sets of human, external and internal

applications as possible actor’s name.

 The range of aRole function is the finite set Act-

Role; set of all defined roles by the actors in a given

scenario.

The next schema in this series is UseCase schema. Figure 5

presents the UseCase schema with its variables and

constraints as follow:

 UseCase

Ucase:� 1Usecase-name

Scenario: seq1 Events

Usecase: ℙ1∘ Scenario

Expoints: � 1 Extension-points

Relation: Usecase-name⇸ � 1 Extension-points

dom Relation = Ucase

ran Relation = Expoints

∀uc ∈ ucase; ∀ eX∈ extension(uc) s.t.

 # (extension(uc))>1 ⦁

 (extension(uc)∖{eX}) ∩ {eX}= ∅

Figure 5: Schema for Use case

The invariants are:

 The domain of Relation is the set of all use cases for

a particular scenario

 The range of Relation is the set of extension points

and

For all use cases, there exist extension points for each use case

such that the number of extension points for use case is

greater than one. It implies that the extension points

corresponding to a use case are distinct.

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.6, June 2017

9

4. SIMULATIONS OF RESULTS
The functional requirements captured by Use case diagrams

and written in Z notations are now verified by using semi-

automated Theorem Prover tool .i.e. Z/EVES [9]. The

schemas written in Z specifications are given as input file and

test for syntax and type checking errors using Z/EVES tool.

The figure 6 shows the simulated results of Use case diagrams

and the Actor schema respectively.

To enrich the significance of propose framework, a case study

of road traffic management system has been considered in this

paper. The Use case diagram of actor: vehicle owner for

instance, is shown in figure 7.

Figure 6: Simulation of Schemas

Figure 7: Use case diagram of Vehicle owner Actor

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.6, June 2017

10

The simulation results of vehicle owner using Z/EVES are shown in figure 8 as follow:

Figure 8: snapshot of Formal model of Use case diagrams of Vowner

Moreover, Table 1 depicts the model analysis results of

formalization of use case diagrams for syntax, domain and

type checking.

5. CONCLUSION
Being known as mature graphical modeling language, UML

can’t be used alone to specify the functional requirements of

Safety Critical System as UML is semi-formal in nature and

lack preciousness. This can’t be tolerated in case of Safety

critical system as a minor misinterpretation result into a

tremendous consequence or even loss of human life too. The

proposed framework presents a formal model for

completeness, correctness and consistent functional

requirements. The use of rigorous mathematics, the

specification constructed by using Z notation are tends to

more accurate and complete which is desired for constructing

Safety critical application. To enrich the U2Z framework, a

case of traffic system is discussed and result are analyzed with

Z/EVES for syntax, domain, type checking and for

modularity.

 Table 1: Model Analysis Result

Schema Name Syntax & Type checking Domain Checking Proof Reduction

Use Case Y Y Y Y

Use Case Diagram Y Y Y Y*

Relation Y Y Y Y

Use Case Relationship Y Y Y Y*

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.6, June 2017

11

6. REFERENCES

[1] W. R Dunn, 2002. Practical Design of Safety-Critical

Computer Systems, USA: Reliability Press.

[2] J. Burcsuk, 2007, "Development of safety related

systems," in Strategic Technology, 2007. IFOST 2007.

International Forum on 3-6 Oct. 2007, pp.564,569.

[3] S. Yang, N. Sang, G. Xiong, 2004. Safety Testing of

Safety Critical Software Based on Critical Mission

Duration. In 10th IEEE Pacific Rim International

Symposium on Dependable Computing (PRDC'04), pp.

97-102.

[4] K. E. Wiegers, 2003. Software Requirements Microsoft

Press.

[5] Object Management Group (OMG), 2003. OMG Unified

Modeling Language Specification, version 1.5.

[6] G. Booch, J. Rumbaugh, and I. Jacobson, 1999. The

Unified Modeling Language User Guide. Addison-

Wesley.

[7] Groote, J.F., Osaiweran, A.A.H. and Wesselius, J.H.

(2011) Benefits of Applying Formal Methods to

Industrial Control Software. 1-10.

[8] Fulara, J. and Jakubczyk, K. (2010) Practically

Applicable Formal Methods. Lecture Notes in Computer

Science, 5901, 407-418.

[9] N. Amálio, S. Stepney, and F. Polack, 2004. "Formal

Proof from UML Models", ICFEM, USA, pp 418-433,

Springer.

[10] J. Michael Spivey, 2001. The Z Notation: A Reference

Manual, Prentice Hall, Englewood Cliffs, NJ, 2nd

Edition.

[11] Saaltink, M., 1999. The Z/EVES 2.0 User’s Guide,

Technical Report TR-99-5493-06a, ORA Canada, One

Nicholas Street, Suite 1208 - Ottawa, Ontario K1N 7B7

– CANADA.

[12] C. B. Jones, 1990. Systematic Software Development

using VDM, In Prentice Hall.

[13] S. Schneider, 2001. B Method- an Introduction Palgrave,

Cornerstones of Computing series.

[14] J. Guttag and J. J. Horning, 1978. The algebraic

specification of abstract abstract data types, Acta

Inform., vol. 10, pp. 27-52.

[15] C. A. R. Hoare, 1985. Communicating Sequential

Processes, In Prentice Hall.

[16] Howard Bowman, 1998. A LOTOS based tutorial on

formal methods for object-oriented distributed systems,

New Generation Computing, Volume 16, Issue 4, pp

343-372.

IJCATM : www.ijcaonline.org

http://link.springer.com/journal/354
http://link.springer.com/journal/354/16/4/page/1
http://link.springer.com/journal/354/16/4/page/1

