
International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.9, June 2017

49

Scheduling Tasks in Heterogeneous System using

Load Balancing Algorithm

Pratiksha Patil

Dr. D.Y.Patil School of Engineering and
Technology, Lohagoan, Pune

Roshani Ade, PhD
Dr. D.Y.Patil School of Engineering and

Technology, Lohagoan, Pune

ABSTRACT

Innovative idea of distributing the tasks to their best processor

to reduce the execution time of task by using various

scheduling techniques is given in this paper. This paper

presents hybrid scheduling techniques which provide better

solution of scheduling task that means combination of

different scheduling provides better performance without

degrading the result quality. Scheduling algorithms such as

MinMin+, MaxMin+ and Sufferage+ are suitable for

overcomes the drawback of previously used scheduling

methods such as MinMin, MaxMin and Sufferage as well as

scheduling in this paper provides better complexity as

compare to previous scheduling methods. This scheduling are

also suitable for heterogeneous environment more effectively

to execute different set of task on different processors with

different configurations. To get better the show of the

existing system we have to improve existing algorithm with

the load balancing.So same load should overloaded to all

processors.The future algorithm have implement with

detailed pseudocodes.

Keywords

Task Scheduling, MinMin, MaxMin, Sufferage, Standard

Deviation, Load Balancing.

1. INTRODUCTION
Distribution of large application into task for faster processing

is one of the important process in the area of distributed

systems. Although many types of resources can be shared and

used in a distributed system, usually they are accessed through

an application running in the network. Normally, an

application is used to define the piece of work of higher level

in the system. An application can generate several tasks,

which in turn can be composed of subtasks; this system is

responsible for sending each subtask to a resource to be

solved. It performs an important step of mappings task to

different machines based on the expected execution time.

Normally an application is used to define the piece of work of

higher level in heterogeneous environment.

Since this application can generate several number of jobs that

can be divided into subtasks and provided to different

processors that should get completed within minimum time so

that the processor use can be made to assign different task.

Makespan is one of the most important term in case of

mapping task to their processors using different scheduling.

Makespan is nothing but turnaround time that is maximum of

completion time. An optimal schedule will be the one that

minimizes the makespan [1, 2].

Large numbers of task scheduling algorithms are available to

minimize the makespan. All these algorithms try to find

resources to be allocated to the tasks which will minimize the

overall completion time of the jobs. The simple well-known

existing algorithms used for scheduling are MinMin and

Maxmin and sufferage. These algorithms work by considering

the execution and completion time of each task on the each

available grid resource. Scheduling is considered to be an

important issue in the current distributed system existing

algorithms used for scheduling are Min-Min and Maxmin and

sufferage. These algorithms work by considering the

execution and completion time of each task on the each

available grid resource. Scheduling is considered to be an

important issue in the current distributed system scenario. The

demand for effective scheduling increases to achieve high

performance computing. Typically, it is difficult to find an

optimal resource allocation which minimizes the schedule

length of jobs and effectively utilize the resources. The three

main phases of scheduling are resource discovery, gathering

resource information and job execution. The choice of the best

pair of jobs and resources in the second phase has been proved

to be NPcomplete problem.

The existing scheduling algorithms provide the various

techniques for assigning different task to different resources

with minimum completion time. These existing scheduling

algorithms can be divided into two classes that are Online

mode and Batch mode scheduling. In online mode, a task is

assigned to processor on its arrival to scheduler [1]. Wherein

Batch mode scheduling tasks are not assigned to processor

immediately instead they are collected in to set of tasks also

called as Metatask that are examined for assigning at

prescheduled times to different processors also called as

mapping events. Since in this system, batch mode is used in

very efficient way for mapping different independent tasks to

processors. Also these existing algorithms can be applied for

heterogeneous environment effectively.

The proposed system in this work contains various scheduling

methods along with hybrid technology such as Minmin+,

Maxmin+, and Sufferage+. Hybrid technology involves

combination of different scheduling methods to overcome

disadvantages of minmin and maxmin. Overall, the

scheduling algorithms aim to minimize the idle time and

makespan of tasks. This paper also involves the concept of

Load Balancing [2, 6], wherein, once scheduling of task is

done using some scheduling the load balancing algorithm will

take place to reschedule the task to utilize all the resources in

the heterogeneousenvironment [5]. Each of this scheduling

provides better performance and also decreases time

complexity without degrading the solution quality.

To avoid the drawbacks of the existing scheduling algorithm,

the proposed system algorithms are being used to enhance the

system performance. Every one of the issues talked about in

those techniques are taken and dissected to give a more

powerful schedule. The calculation proposed in this paper

beats every one of those calculations both in wording of

makespan and load balancing. In this way a superior load

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.9, June 2017

50

balancing is achieved accomplished and the aggregate

reaction time of the framework is made better. The proposed

calculation applies the Min-Min system in the first stage and

afterward reschedules by considering the greatest execution

time that is not exactly the makespan got from the first stage.

2. LITERATURE SURVEY
A distributed scheduling algorithm aims to increase the

utilization of resources with light load or idle resources

thereby freeing the resources with heavy load. The algorithm

tries to distribute the load among all the available resources.

At the same time, it aims to minimize the makespan with the

effective utilization of resources.

In classical distributed systems comprised of homogeneous

and dedicated resources, scheduling algorithms have been

intensively studied. But these algorithms will not work well in

Grid architecture because of its heterogeneity, scalability and

autonomy. This makes load balanced scheduling algorithm for

grid computing more difficult and an interesting topic for

many researchers. The Non-traditional algorithms differ from

the conventional traditional algorithms in that it produces

optimal results in a short period of time. An option is to

choose a proper planning calculation to use in a given

heterogeneous environment on account of the attributes of the

undertakings, machines and system heterogeneity resources.

These scheduling algorithms will work well even for

heterogeneous resources also. Heterogeneous systems

provides with the facility of utilization of all available

resources as load balancing concept that aims at keeping

resources busy [5].

Opportunistic Load Balancing (OLB) is specially used to keep

all the processors busy that is to make utilization of all the

available resources by making task assignment in subjective

order, to the next available processor, without considering

task expected execution time on that particular processor but

this result in poor makespan [6].

Minimum Execution Time (MET) assigns tasks to processor

in arbitrary order with best expected execution time for that

task, without taking into consideration processors availability.

Since assigning the task to its best processor provides better

performance but causes severe load imbalancing and does not

provide support for heterogeneous environment [4, 5].

Minimum Completion Time (MCT) assigns tasks to different

processors in arbitrary order, with minimum expected

completion time for that task. Since this causes some of the

task to be assigned to the processor that do not have minimum

execution time. For this purpose this minimum completion

time is defined in a way that combines the benefit of both

opportunistic load balancing (OLB) and minimum execution

time (MET) to provide better performance of task mapping

[3].

Min-Min algorithm starts with a set of all unmapped tasks.

The machine with best execution time is selected. Then the

job with the overall minimum completion time is selected and

mapped to that resource. The ready time of the resource is

changed. This process is occurs repeated until all the

unmapped tasks are assigned. Compared to MCT this

algorithm considers all jobs at a time. So it produces a better

makespan. When selected task is assigned to the resource it is

removed from the metatask that is set of task. Since this

method provides easiest way to assign task to processor but

has one drawback due to selection of task having minimum

expected completion time, the task with largest expected

completion time remains unassigned for longer time and also

load is not balanced across the systems, due to which some

resources remains idle and this also results in increase in

makespan.

Max-Min is similar to Min-Min algorithm. The machine that

has the MCT for all tasks is selected. Then the job with the

overall maximum completion time is selected and mapped to

that resource. The ready time of the resource is changed. This

process occurs repeatedly until all unmapped tasks are

assigned. The idea of this algorithm is to reduce the wait time

of the large jobs. Since this scheduling algorithm provides the

way of mapping task to its best machine with longer execution

time prioritize current task to complete concurrently with the

task that having shorter execution time. Since this mapping of

task to resources is better than minmin scheduling wherein the

task with smaller execution time is selected and assigned to

the available resource for execution and then task with longer

execution time are executed while several machines sit idle.

Since maxmin scheduling provides better load balancing

across machines as well as better makespan [6, 7].

Sufferage scheduling differs with previous scheduling

algorithms in the sense of task selection process. Like minmin

and maxmin it also begins with set of unassigned task that has

minimum completion time i.e. sufferage scheduling is also

based on the concept of minimum completion time, since it

differ from the previous scheduling in the sense it selects and

assigns the task to the processor on the basis of sufferage

value and not minimum or maximum completion time. Since

it computes second MCT value instead of computing MCT

value for each task and calculates sufferage value which is

defined as difference between MCT and second MCT of a

task is considered. This scheduling selects the task with

largest sufferage value and assigns it to available resource.

Thus sufferage scheduling differs from minmin and maxmin

scheduling in the task selection policy [4, 5].

3. ENHANCED SCHEDULIN METHODS

3.1 Minmin Scheduling

Minmin+ scheduling uses different methods such as

MinMin+Select function invokes a MIN(Qk) operation on

each priority queue Qk to find candidate task for

corresponding processor Pk. The hopeful undertaking Ti

chose for processor Pk is viably the errand that will expand

the present culmination time of Pk by the littlest sum if Ti is

alloted to Pk. For every processor Pk, the execution time of

the hopeful errand Ti on Pk is added to ek to register the

upgraded ek esteem for Pk if Ti is allocated to Pk. A running

min calculation performed over these K updated ek values

gives the minimum MCT for current loop as well as the

taskto-processor assignment (i’, k’) that has this minimum

MCT value. At the end of each iteration of the main loop, the

assigned task Ti’ is deleted from all priority queues. For the

implementing this priority queue two alternatives are being

considered that are binary heap and sorted linear array, and

also some operations are being used like sorting operation,

deletion operation, and necessary check is made on the queue

to know which task has not being yet assigned to available

resource that is with minimum completion time. Hence the

overall running time complexity is reduced.

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.9, June 2017

51

Fig2. Assigning task to processor using MinMin+

Algorithm

As shown inthe figure tasks T1,to T6 is assigned to the

6processor P1 to P6 with minimum load and makespan by

using different datasets.The datasets used for assigning task to

processor with MinMin+ is Link Extraction,Code Extract

ion,DisplayStreemerAlgorithm,Word Extraction.

3.2 Maxmin+ Scheduling
The solution quality obtained in the earlier loops is not proper

due to the late assignment of very huge tasks. In MaxMin

scheduling, the larger tasks are assigned in previous loops, but

not always to their desired processors. Since, in the first initial

loops of MaxMin, the first loop assigns the task that is major

to its desired processor. It is understood that the second major

task has same desired processor as the major task. In the

second loop, the task selection policy of MaxMin prevents the

allocation of the second major task to its desired processor.

For the next loop, the third major task loses the elasticity to

get assigned to the desired processors of the largest two tasks

and so on. To improve the drawbacks of the MinMin and

MaxMin scheduling, these algorithms are united under a

hybrid scheduling, which referred to as MaxMin. Like

MinMin and MaxMin, the MaxMin+ booking includes a

fundamental circle that doles out a chose undertaking to a

processor at every emphasis. Within each loop, the scheduling

first computes a task to processor allocation according to the

MinMin scheduling. The computed assignment is realized

only if makespan is unaffected in the previous iteration. If,

however, the calculated allocation results in increase of

makespan, the task-to-processor allocation is recalculated

with respect to the MaxMin scheduling. This scheduling

overcome drawback of maxmin scheduling of task assignment

problem to same processor by doing the combination of

maxmin with minmin+ under a hybrid scheduling that is

maxmin+.

Fig2. Assigning task to processor using MaxMin+

Algorithm

As shown inthe figure tasks T1,to T6 is assigned to the

6processor P1 to P6 with minimum load and makespan by

using different datasets.The datasets used for assigning task to

processor with MaxMin+ is Link Extraction,Code Extract

ion,DisplayStreemerAlgorithm,Word Extraction.

3.3 Suffferage+ Scheduling
The main idea behind the Sufferage+ scheduling is to perform

critical assignment decisions by Sufferage so that the solution

quality is not degraded. With this approach, execution time of

Sufferage is decreased with a small potential degradation in

the solution quality. Since Sufferage+ working is similar to

sufferage scheduling since to make applicable sufferage

scheduling to large datasets it is combine with minmin+

scheduling under a new scheduling that is sufferage+. As in

MaxMin+, in this scheduling also the MinMin+Init function

performs the necessary initializations. It computes the

assignment according to MinMin+. The comparison operation

checks if the computed assignment use affects makespan.

Then this algorithm calculates the task-to-processor allocation

according to Sufferage. This scheduling differs from previous

scheduling in the sense that when assignment is computed,

lead to increase in makespan of previous iteration otherwise

assignment is recomputed using sufferage scheduling.

Fig3. Assigning task to processor using Suff+ Algorithm

As shown inthe figure tasks T1,to T6 is assigned to the

processor P1 to P6 with minimum load and makespan by

using different datasets.The datasets used for assigning task to

processor with Suff+ is Link Extraction,Code Extract

ion,DisplayStreemerAlgorithm,Word Extraction.

3.4 Switchers cheduling
As the name indicates it is the combination of different

scheduling also known as hybrid scheduling. Switcher

scheduling is based on concept of standard deviation value

comparison with threshold value. Based on this it switches

between scheduling that is if standard deviation [6] value is

less than threshold value than asks are considered to be with

minimum execution time and minmin scheduling is applied to

assign the tasks to available resources, otherwise maxmin

scheduling is used to assign the tasks to available resources.

This process is repeated until all the tasks are assigned to their

respective available resources [3, 13]. Standard deviation

concept is specially used for hybrid scheduling that is

combination of different scheduling. Wherein, the standard

deviation value is compared with threshold value to check

which scheduling to be applied for mapping of task to

different resources [6]. Since the standard deviation value is

calculated on the basis of average of completion time of all

tasks, as mention below:

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.9, June 2017

52

Where avgCT denotes average of completion time that is sum

of all completion time of given tasks and s is nothing but

index of task. Using this average value standard deviation is

calculated as:

Based on above mentioned formulae standard deviation is

calculated. Since, this is compared with the threshold value in

case of hybrid scheduling wherein the multiple scheduling are

called by algorithm alternatively for mapping task to

processors. This hybrid scheduling will use standard deviation

concept wherein if the calculated standard deviation is less

than threshold value then that particular task is assigned using

the minmin scheduling to available resource otherwise the

task is assigned to available resource using maxmin

scheduling. Since after the assignment of task to resource it

will be deleted from set of task that is metatask and the hybrid

scheduling will repeat all the process until all the task are

assigned to processors.

There are many different types of hybrid algorithms that call

alternatively different scheduling for mapping tasks to their

best processors. This type of scheduling also maintains the

proper load balance across the processors due to which all the

available resources get fully utilized and no resource remains

an idle.

4. LOAD BALANCING IN

DISTRIBUTED SYSTEM
To better utilize the machines and to minimize the machine

idle time, the load should be balanced. Task size must be

considered in order to balance the load. In a heterogeneous

system, execution time of a task varies on different machines.

The average execution time of a particular task over the entire

machines can give task size. Task assignment depends on

priority based on sizes. Priority can be set depending on task

size. According to experiment, mapping of smaller tasks leads

to load imbalance. Also, larger task allocation gives complete

load balance. Scheduling mentioned above like minmin and

maxmin maps different tasks to different available resources

efficiently but it does not maintain proper load balancing

among the resources due to which some resources are utilized

and some remain idle. This load balancing concept can be

applied to this scheduling to get done execution faster [8].

Minmin scheduling selects tasks with minimum completion

time and allocates it to available resource, due to which task

with longer execution time remains unassigned although the

resource is available that causes resources to remain idle.

Similarly in maxmin scheduling tasks with maximum

completion time is selected and assigned to processor, due to

which smaller tasks are assigned after long time to available

processors [9]. Solution for above is to apply load balancing

concept with this types of scheduling.

This can be done when tasks are assigned to their resources

that is once minmin scheduling is applied to assign tasks to

available resources using minimum completion time, the load

balancing method is applied again on this assigned task for

rescheduling it i.e. it may happen that minmin scheduling will

use some resources to assign task and some remain idle then

load balancing method will select the task with maximum

completion time that will be less than makespan produced by

Minmin scheduling and reschedule it to the resource that is

available and not utilized yet so that execution of tasks will be

more faster[11].Other tasks maximum completion time is not

less than makespan. So whichever task has maximum

completion time less tan makespan is selected and rescheduled

to available resource.

The time required to execute a task is always dependant on

the load of that system.The more the load of the system, the

more would be the time taken to execute the task and vice

versa. Hence,time required for every task to perform on

every processor is dependent on load on that processor.

Load on each processor α Time required for task to perform

on that processor

From above equation it is clear that for execution of any task

is completely dependent on the load on the processor. More

tasks is allocated to a processor which has fewer loads on

it.Hence from existing systems derived that task allocation is

dependent on both implementation time and load on

processor. But considering our equation system will consider

only one parameter that is load.

System calculates load on processors when no tasks is

running.Also system want to determine load on processors

when tasks will be running.From the later system will

calculate average load.

4.1 Architectural Design Of system
A block diagram is a specialized, high-level type of flowchart.

Its highly structured form presents a quick overview of major

process steps and key process participants, as well as the

relationships and interfaces involved. A block diagram is a

useful tool both in designing new processes and in improving

existing processes. In both cases the block diagram provides a

quick, high-level view of the work and may rapidly lead to

process points of interest. Because of its high-level

perspective, it may not offer the level of detail required for

more comprehensive planning or analysis. To construct a

block diagram we must have a clear understanding of how the

process operates.

Fig: Architectural view of System

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.9, June 2017

53

Above figure shows the block diagram of system. It mainly

contains a individual server serving a client user. A client has

a set of task which he needs to divide and assign to other

clients. Client sends request to server to assign the tasks.

Server stores it in XML files and processes the tasks division

by the algorithm. In this system there is three

algorithmMinmin+, Maxmin+, and Sufferage+. After dividing

the tasks server assigns the tasks to each clients.

Table1:Notations Used For Algorithm

Taskk Task for kth processor

Ploadi Load on ith processor.by

default it is the load when no

task is running

BackUp1i Backup of load on ith

processor.by default it is load

when no tasks is running

N Total tasks

L Total Processors

AP Assigned Processors.

4.2 Algorithmic Steps
The proposed system consists of following algorithmic

steps:

1. Fori←0 to N

2. Min=∞;

3. Forj←0 to L
4. If(Ploadj+taski) < minthen

5. Ploadj = Ploadj+taski

6. Min = Ploadj

7. APi = j;

8. b = j;

9. fork ← 0to j

10. Ploadk = BackUp1i

11. End for

12. End if

13. End for
14. BackUp 1i = Ploadk

15. End For

Initially there are no tasks running on any processor.hence

Pload will contain loads of processor with no tasks running on

it. Minimum value is set to infinity. While assigning task it

will be assumes if task is allocated t ith processor (step3) then

current load will be summation of current load and average

load of that particular task and processor will be assigned. But

on further processing step 3 may get satisfied for other

processor for same task. In that condition task is assigned to

that new processor. But the previous changes in the load are

restored(step9).

5. EXAMPLES OF LOAD BALANCING

IN DISTRIBUTED SYSTEM

Consider a heterogeneous environment with two resources R1

and R2 and metatask that contain four different tasks T1, T2, T3

and T4 as shown below in table1 that contains tasks, resources

along with expected execution time for mapping tasks to their

respective resources.

Table 1: Resources and Tasks with Expected

Execution Time

As shown in above table task assignment is done to different

processors using minmin scheduling is done in following way.

Figure 1: Mapping of Tasks to Resources with Minmin

Algorithm

As shown in figure1 minmin scheduling will select tasks

according to given execution time so task T3 will be assigned

first to Resource R2, then task T1 will be assigned again on

resource R2, then task T4 will be assigned again on resource

R2 and finally the remaining task that is task T2 will also be

assigned to resource R2 only according to given expected

execution time in Table1. Since on resource R2 task

completion is faster than on resource R1, so all the task will

be assigned on resource R2 only. Once minmin scheduling is

applied for mapping tasks to available resources, load

balancing technique is applied for again rescheduling tasks to

make utilization of idle resources that minimizes overall task

completion time thatis makespan.

Figure 2: Rescheduling of tasks to Resources with Load

Balancing method

As shown in figure2 task T1 is rescheduled to balance the load

as it provides maximum completion time on resource R1 as

shown in Table1 as well as it is less than makespan produced

by minmin scheduling. While remaining tasks although have

maximum completion time but are not less than makespan. So

task T1 is rescheduled on resource R1 that results in better

makespan as compared to minmin scheduling.

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.9, June 2017

54

6. CONCLUSION
The aim of this paper was to present various scheduling

methods like minmin, maxmin, sufferage, hybrid, load

balancing techniques in the field of distributed systems. The

scheduling like minmin and maxmin are suitable for small

scale distributed systems but when number of tasks increases

than these scheduling cannot schedule task appropriately that

affects on makespan which relatively become large. To

overcome limitations of these scheduling and make them

applicable for large scale distributed systems, a new task

scheduling algorithm like minmin+, maxmin+ and sufferage+

along with hybrid scheduling are used that also maintains

proper load balancing across the systems. This scheduling

uses advantages of minmin and maxmin and covers there

disadvantages. This study can be further extended by

considering task heterogeneity and machine heterogeneity.

7. REFERENCES
[1] E. Kartal Tabak, B. Barla Cambazoglu, and Cevdet

Aykanat, “Improving the Performance of Independent

Task Assignment Heuristics MinMin, MaxMin and

Sufferage”,IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5,

MAY 2014.

[2] T. D. Braun,H. J. Siegel,N. Beck, L. L. Boloni, “A

comparison of eleven static scheduling for mapping a

class of independent tasks onto heterogeneous distributed

computing systems”, J. Parallel Distrib. Comput., vol.

61, no. 6, pp. 810837, 2001.

[3] Kamali Gupta, Manpreet Singh, “Scheduling Based Task

Scheduling In Grid”, International Journal of

Engineering and Technology (IJET), vol. 4, pp.

254260,Aug-Sep 2012.

[4] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and

R.F. Freund, “Dynamic mapping of a class of

independent tasks onto heterogeneous computing

systems”, J. Parallel Distrib.Comput., vol. 59,

pp.107131, 1999.

[5] H. J. Siegel and S. Ali, “Techniques for mapping tasks to

machines in heterogeneous computing systems”, J. Syst.

Archit., vol. 46, no. 8, pp. 627639, 2000.

[6] T. Kokilavani, Dr. D.I. George Amalarethinam, “Load

Balanced Min-Min Algorithm for Static Meta-Task

Scheduling in Grid Computing”, International Journal of

Computer Applications, vol. 20, April 2011.

[7] George Amalarethinam. D.I, VaaheedhaKfatheen .S,

“Max-min Average Algorithm for Scheduling Tasks in

Grid Computing Systems”, International Journal of

Computer Science and Information Technologies, Vol. 3,

pp.3659-3663, 2012.

[8] Balasangameshwara J. ,Raju N, “Performance-Driven

Load Balancing with a Primary-Backup Approach for

Computational Grids with Low Communication Cost and

Replication Cost”, IEEE Transactions on

Computers,Volume:62, Issue: 5.

[9] Shah R, Veeravalli B. ,Misra, M, “On the Design of

Adaptive and Decentralized Load Balancing Algorithms

with Load Estimation for Computational Grid

Environments”, IEEE Transactions on Parallel and

Distributed Systems,Volume:18,Issue: 12.

[10] He. X, X-He Sun, and Laszewski. G.V, “QoS Guided

Minmin Scheduling for Grid Task Scheduling”, Journal

of Computer Science and Technology, Vol. 18, pp. 442-

451,2003.

[11] T. D. Braun,H. J. Siegel,N. Beck, L. L. Boloni, “A

comparison of eleven static scheduling for mapping a

class of independent tasks 810837, 2001.

[12] Sameer Singh Chauhan,R. Joshi. C, “QoS Guided

Scheduling Algorithms for Grid Task Scheduling”,

International Journal of Computer Applications

(09758887), pp 24-31, Volume 2, No.9, June 2010.

[13] Singh. M and Suri. P.K, “QPS A QoS Based Predictive

Max-Min, Min-Min, Switcher Algorithm for Job

Scheduling in a Grid”, Information Technology Journal,

Vol. 7, pp. 1176-1181, 2008.

[14] Yagoubi. B, and Slimani. Y, “Task Load Balancing

Strategy for Grid Computing”, Journal of Computer

Science, Vol. 3, No. 3, pp. 186-194, 2007.

IJCATM : www.ijcaonline.org

