
International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.6, July 2017

1

Parallel Genetic Algorithm for High School Timetabling

Sanjay R. Sutar

Asso. Professor, Dr. B. A. T. University, Lonere,
Research Scholar, SGGSIET,

Nanded, INDIA.

Rajan S. Bichkar
Professor, E&TC and Dean R&D, G. H. Raisoni

College of Engg. & Mgt.,
Pune, INDIA.

ABSTRACT

The high school timetabling problem is a combinatorial

optimization problem, proved to be NP-hard. It is a task to

assign class–teacher interactions to rooms and timeslots of a

weekly schedule. The nature of the problem varies depending

on the region and institution. It has several hard and soft

constraints. It means finding an assignment, such that no hard

constraints are violated and the number of violations of soft

constraints is minimized. Large and complex high school

timetabling problem taken from real life, often takes long time

to do manually. Hence, automated timetabling has attracted

researchers since 1980s and many techniques have been

proposed to solve it. Genetic Algorithm can be effectively

used to solve such difficult problem. We propose the Parallel

Genetic Algorithm (PGA) with customized operators and

probabilistic repair to solve “hard timetabling” test problems

hdtt4, hdtt5 and hdtt6 given by Professor Kate Smith-Miles in

OR-Library. The optimal objective function for each of these

problems is no clashes and fulfilling teacher’s workload on

each class in given room. The functions are designed for

intelligent operators and repair. The PGA consisting operators

augmented with problem specific knowledge and probabilistic

repair in crossover converges faster than Simple Genetic

Algorithm (SGA) and give solution within few seconds. The

results are compared with the recent work carried out using

different methodologies on same data set.

General Terms

Timetable scheduling, Genetic algorithm

Keywords

Simple Genetic Algorithm, Parallel Genetic Algorithm, Hard

Timetabling, Repair

1. INTRODUCTION
Timetabling problems are optimization problems, considered

to be a subset of scheduling problems. There are various

problems in this category such as education timetabling,

healthcare scheduling, transportation, sports and

entertainment scheduling. The events have to be ordered in

time slots while satisfying various constraints. Typically,

timetabling problems are classified in three main categories:

university, school, and exam timetabling problems.

It is very difficult to solve school timetabling by conventional

methods and the computation to find optimal solution

increases exponentially with problem size. Hence efficient

search methods are used to produce optimal or near optimal

timetable satisfying the constraints. Institutes have to perform

this task regularly which means a large wastage of time and

efforts. Design of techniques for the automated timetables is

still of interest. The school timetabling is to assign class,

teacher and room tuples to time slots predefined number of

times, so as to satisfy the hard constraints, and minimize the

violation of soft constraints. The hard constraints include all

class-teacher meetings must be included, no class or teacher

should appear more than once in a slot, certain classes may

need to be split and rearranged. The soft constraints represent

expected features of the timetable, however if these

constraints are not satisfied it will be still valid. We have to

minimize the soft constraint cost and hence to improve the

quality of the timetable. Typical soft constraints for the

timetabling problem include class or teacher preferences.

Research work in school timetabling started in 1960s. It

focused on greedy technique and on local search methods

such as simulated annealing, tabu search, and genetic

algorithms. The metaheuristics techniques seem to be the

most efficient and able to generate solutions in reasonable

time and they can be adapted to different forms of problems.

Hence, metaheuristics are used for large and complex

instances. A large number of diverse methods have been

proposed for solving timetabling problems, from a number of

disciplines like Operations Research, Computational

Intelligence, and Artificial Intelligence and development in

solving them is a main goal of current research in these areas.

Genetic Algorithm (GA) is a population based algorithm

amenable for parallelization. Genetic algorithms are used to

solve problems similar to the evolution. Initial population is

created with randomly built individuals. Each individual is

one of the possible solutions to the problem. The population is

then modified with evolutional process similar to nature, i.e.

evaluation, selection, crossover and mutation. The algorithm

stops if a termination criterion is met. GAs produce timetables

of comparative quality to that generated and used by the

researchers. The timetable created meets all timetabling

requirements without violating the constraints. The main

contribution of this paper is a parallel genetic algorithm with

customized operators to solve hdtt4, hdtt5, hdtt6 problems

within short times which are less than most of the known

times so far, reported by various techniques with same

experimental set up.

The following section provides previous work employing

genetic algorithms to solve the school timetabling problem.

Section III describes an overview of the hard timetabling,

hdtt. The PGA with customized operators and probabilistic

repair in crossover, used to solve hdtt problems is presented in

section IV. The performance of the PGA in solving the

problems is discussed in section V. A summary and future

work is described in section VI.

2. GENETIC ALGORITHMS AND

SCHOOL TIMETABLING
D. Abramson and J. Abela [1] showed how the execution time

can be reduced by using shared memory multiprocessor while

applying GA to the school timetabling problem. Alberto

Colorni et al. [2] presented a model, algorithms and programs

for the timetable problem, with reference to a real life

application. Various versions of simulated annealing and tabu

search were compared with a GA based approach. Tabu

search gave the best performance and the GA did better than

simulated annealing.

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.6, July 2017

2

Andrea Schaerf [3] proposed an algorithm based on local

search techniques. The algorithm used different techniques

and different types of moves alternatively. Also the hard

constraints were adaptively relaxed. The algorithm worked

successfully within some large high schools with different

side constraints. Adora E. Calaor et al. [4] presented hybrid

technique, parallel genetic algorithm with simulated annealing

to solve school timetabling. They explained how to run the

algorithms in parallelization on a local network. They

compared results on the different parallel models.

Alpay Alkan and Ender Ozcan [5] discussed new operators to

be applied in evolutionary algorithms for timetabling, such as

exam timetabling. The operators are violation directed

mutations, crossovers, and a violation directed hierarchical

hill climbing method. Tests gave good results on a small part

of a real data.

Leonardo Aparecido Ciscon et al. [6] proposed a memetic

algorithm, a hybridization that increased the robustness and

the quality of the results, giving more appropriate solutions to

real timetabling problem. Two methodologies, simultaneous

elimination of open periods and isolated classes were

compared. Rushil Raghavjee and Nelishia Pillay [7] proposed

genetic algorithms for school timetabling problem. The fitness

of the offspring was compared to that of the parent to check

the effect of mutation on the quality of the timetable. They

found that in the most of cases there was no improvement in

the fitness. Hence they tested a “nondestructive” version of

the mutation operator. The fitness after each mutation swap

compared with the fitness of the parent. If the fitness was

better further swaps were not performed and the offspring

returned. If there was no improvement then all swaps were

performed and the offspring returned. This mutation operator

improved the performance of the GA.

Nedim Srndic et al. [8] described a PGA for solving the

weekly timetable problem for elementary schools. They

proposed methods for chromosome representation and fitness

evaluation, and specific recombination and mutation

operators. The method used a coarse grained PGA, suitable

for execution on a Beowulf cluster. Eugene Ruben Ramirez

[9] employed smart operators, Violation-Directed Mutation

(VDM), Event-Freeing Mutation (EFM), Stochastic

Violation-Directed Mutation (SVDM) and Stochastic Event-

Freeing Mutation (SEFM) during the mutation process to

solve two high school timetabling problems, with and without

fixed master schedule. Violation directed mutation with a one

point crossover gave the best result. The second type of

problem was solved using GA by increasing population size.

Michael Pimmer and Gunther R. Raidl [10] used the

international, real-world instances of the benchmarking

project for high school timetabling. Timeslot filling heuristic

(TFH) was used for creating timetables. Selected timeslots

were iteratively filled with sets of events. Nelishia Pillay [11]

presented the performance comparison of a selection

constructive hyper-heuristic (SCHH), a generation

constructive hyper-heuristic (GCHH), a selection perturbative

hyper-heuristic (SPHH) and a hybrid hyper-heuristic (GPHH)

combination of a generation constructive and a selection

perturbative hyper-heuristic, in solving the school timetabling

problem. Evolutionary algorithm was used to search the

heuristic space. Five problems in the Abramson benchmark

set were solved with all hyper-heuristics. SPHH produced the

best results for the all the problems. George H. G. Fonseca

and Haroldo G. Santos [12] proposed memetic algorithm for

the high school timetabling problem. A mixed Simulated

Annealing - Iterated Local Search approach (SA-ILS) was

applied to all the individuals in the population at iteration. The

approach was suitable, especially to small instances of the

problem.

Nelishia Pillay [13] provided an overview of the research

carried out in school timetabling, details of problem sets and

areas for further research. She attempted to provide a standard

definition of the problem in terms of hard constraints, soft

constraints and problem requirements. She gave an overview

of techniques applied to solve the school timetabling problem.

R. Raghavjee and N. Pillay [14] applied a genetic algorithm

selection perturbative hyper-heuristic for solving the school

timetabling problem. A two-phased approach, with the first

phase focusing on hard constraints and the second on soft

constraints, was proposed. The genetic algorithm selection

perturbative hyper-heuristic (GASPHH) was applied to five

different school timetabling problems. The performance was

compared to that of other methods, including a GA. GASPHH

performed well over all five problems.

3. THE HARD TIMETABLING

PROBLEM
We propose GA based solution to the high school timetabling

problems hdtt4, hdtt5, and hdtt6, given as “hard timetabling”

test data sets in OR-Library. All periods are to be utilized with

very less or no options for each allocation. D. Abramson and

H. Dang [15], M. Randall, D. Abramson and C. Wild [16], K.

A. Smith, D. Abramson and D. Duke [17] originally used

these data sets. Table-1 shows the grouping of rows according

to venue for hdtt4.

Table-1 hdtt4 requirements matrix

C/T

venue1 venue2 venue3 venue4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 2 1 2 2 5 1 2 2 1 1 2 3 1 2 1

2 1 1 1 2 0 4 3 2 0 0 5 1 1 4 1 4

3 1 1 1 6 1 2 1 0 2 1 4 1 3 3 2 1

4 2 2 3 2 2 2 1 2 6 1 2 1 2 0 1 1

Requirements matrices for hdtt5 and hdtt6 are given in

Appendix. It is read as follows:

If there are C classes, T teachers, V venues, and P periods,

then the venue1 block of Table-1 indicates the number of each

class teacher interactions in venue1 across the P periods. It is

a five days week, six periods a day with a total of 30 periods.

All five problems have the following hard constraints:

•A room must be allocated only once to a timeslot.

•A class must be scheduled only once in a period.

•A teacher must be scheduled only once in a period.

•All class-teacher-venue tuples must be scheduled the

expected number of times.

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.6, July 2017

3

4. A PARALLEL GENETIC

ALGORITHM WITH CUSTOMIZED

OPERATORS FOR HARD

TIMETABLING PROBLEM
We have used GAlib, a C++ library of genetic algorithm

objects developed by Matthew Wall of Massachusetts

Institute of Technology [18]. The library includes tools for

using genetic algorithms to do optimization in any C++

program. We applied ‘simple’ genetic algorithm as described

by Goldberg [19] in his book, with varying parameters to

solve hard timetabling problems. SGA creates an entirely new

population of individuals by selecting from the previous

population then mating to produce the new offspring for the

new population. The crossover operator defines the procedure

for generating a child from two parents. Mutation operator is

based on the value of the mutation probability. Our

representation is 1D array of integers which contains <Room,

Teacher> tuples i.e. weekly timetable. Objective function

returns the fitness score of individual chromosome (timetable)

based on error value (error), which is sum of number of

workload violations (error1) and number of clashes (error2).

It is given by-

Score= [1/ (0.1+error)], hence timetable with zero error value

has score 10. Same room or teacher value at the same index in

succeeding classes leads to a clash. The values, error1 and

error2 are expressed by the following two equations:

˅ 0<=r<rooms, 0<=c<classes, 0<=t<teachers. (1)

W=workload, A=allotment

 (2)

If ((TT [l*slots+n]) == (TT [m*slots+n])), otherwise 0.

Where, TT is individual timetable (chromosome) and

slots= (2*days*hours)

GA operators have been modified which use problem specific

knowledge during the evolution process, to speed up the

search. Workload requirements are satisfied by customized

initializer which initializes the chromosome with room and

teacher values. Mutation is probabilistic and adaptive, as the

probability is based on number of errors in the individual,

more the errors higher is the probability. It checks clash in

succeeding classes probabilistically and replaces it with a

random number within valid range.

The workload requirements are preserved while doing

crossover by not cutting across classes in a chromosome. Our

crossover site is determined randomly which lies within each

class itself. Two children are generated by copying left part of

the respective parent within the respective class to left part of

the corresponding class in child. Their right parts are made up

of right part of the respective parent. Workload allotment

done so far, after copying first part to children is updated in

arrays and the difference with actual workload is stored. The

entire process is given by Algorithm-1. Probabilistic repair

function resolves overlaps in a child, if any.

(1) Copy <room, teacher> pairs upto ‘site’ from parent1

and parent2 to corresponding classes of child1 and

child2 respectively

(2) Update allotment done so far after copying left parts

of parents

(3) Calculate difference between actual requirement and

partial allotment

(4) If (difference > 0) then copy corresponding <room,

teacher> pairs to right parts of children else fill the

positions with invalid value -1

(5) Check new difference and insert <room, teacher>

pairs after ‘site’ as per actual requirement by

replacing -1s

 Algorithm-1 Intelligent Crossover

The PGA has multiple, independent populations. The

populations are created by cloning the chromosome or

population that we pass while creating it. A steady-state

genetic algorithm is used for each population evolution. The

steady-state GA uses overlapping populations with a specified

amount of overlap. An algorithm creates a temporary

population of individuals per generation, adds them to the

previous population, and then the worst individuals are

removed to bring the population to its original size. The

amount of overlap between generations is specified as the

percentage of the population to be replaced each generation.

New offspring are added to the population and then the worst

individuals are removed.

Some individuals migrate from one population to another in

each generation of PGA. A specified number of best

individuals of each population migrate to its neighbor. The

main population is updated each generation with best

individual from each population. The initializer, modified

crossover, adaptive mutation, and repair are also used in PGA.

5. RESULTS AND DISCUSSION
Our implementation is in C++ using Dev C++ compiler,

version 4.9.9.2 on Intel(R) Core™ 2 Duo CPU 2.4 GHz with

2 GB of memory and Windows Vista. SGA could give

solution to hard timetabling, hdtt4 within a few minutes in

80000 generations (Figure-1). Population size was fixed to

100 after performing trial runs.

The Figure-2 shows performance graph of SGA on hdtt4 with

modified operators. An algorithm gave solution in 400

generations and within few seconds compared to that of SGA

(80000 and around 9 minutes) [20]. The graphs in Figure-3

show errors vs. number of generations of customized PGA

applied to solve hdtt4, hdtt5 and hdtt6 respectively. We

obtained the results with 110,250 and 1200 generations,

within three, fifteen and one hundred twenty seconds

respectively which is worth noting in hard timetabling. A

significant improvement in execution times was observed.

Execution times are less than the most of known times so far,

out of different methodologies. The performance for problems

was tested against the comparison given by Nelishia Pillay

[11]. The comparison was carried out on machine equivalent

to our configuration. The following methodologies were

applied to the Abramson benchmark set [17].

GA with SPHH- Selection perturbative hyper-heuristic, NN-

TT2 and NN-TT3- Neural network approaches, SA1 and

SA2- Simulated annealing, TS- Tabu search and GS- Greedy

search. Our customized GA performed comparable to SPHH,

at par with GS and SA2 while better than NN-TT2, NN-TT3

and TS on hdtt4. The customized PGA outperformed all (on

hdtt4 and hdtt5). It performed very well except SA1 and GS

(on hdtt6). Table-2 lists the performance comparison with

other methods. We observed that customized operators and

parallel variant helped in giving faster solutions for the GA

based timetabling.

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.6, July 2017

4

Figure-1 Performance of SGA on hdtt4

(Linear Scaling, Roulette Wheel Selection, Pm=0.001,

Ps=100, Errors=216 for 0 generation)

Figure-2 Performance of SGA with customized operators

on hdtt4

(Linear Scaling, Roulette Wheel Selection, Ps=100, Pc=1.0)

Figure-3 Performance of customized PGA on hdtt4, hdtt5,

hdtt6

Table-2 Performance comparison

(Execution time in Seconds)

Method
Dataset

hdtt4 hdtt5 hdtt6

SPHH 12 120 300

NN-TT2 29 116 291

NN-TT3 109 146 227

SA1 - 72 80

SA2 15 41 123

TS 630 87 1144

GS 16 39 78

Proposed

PGA
3 15 120

6. CONCLUSION AND FUTURE WORK
We presented a customized PGA to solve high school

timetabling problems hdtt, “hard timetabling”, specifically

hdtt4, hdtt5 and hdtt6 given as test data sets in OR-Library.

The SGA produced a solution that met all the constraints for

hdtt4 problem, but was unable to solve higher problems even

after longer runs. Use of domain knowledge during the

initialization, crossover, and mutation helped to speed up the

search. The probabilistic repair was effective in boosting the

fitness of the population. An algorithm gave results in a few

seconds i.e. in much less time compared to SGA. Customized

PGA performed better than known times given in comparative

studies on similar configuration (except SA1 and GS for

hdtt6). We will apply the PGA to additional hdtt and school

timetabling problems in future.

7. REFERENCES
[1] D. Abramson and J. Abela, “A Parallel Genetic

Algorithm for Solving the School Timetabling Problem,”

Appeared in 15th Australian Computer Science

Conference, pp. 1-11, Hobart, February, 1992

[2] Alberto Colorni, Marco Dorigo and Vittorio Maniezzo,

“Metaheuristics for Highschool Timetabling,”

Computational Optimization and Applications- 9, pp.

275–298, 1998

[3] Andrea Schaerf, “Local Search Techniques for Large

High School Timetabling Problems,” IEEE Transactions

on Systems, Man, and Cybernetics—Part A: Systems and

Humans, Vol. 29, No. 4, July, 1999

[4] Adora E. Calaor, Augusto Y. Hermosilla and Bobby O.

Corpus Jr., “Parallel Hybrid Adventures with Simulated

Annealing and Genetic Algorithms,” Proceedings of the

International Symposium on Parallel Architectures,

Algorithms and Networks (ISPAN), IEEE, 2002

[5] Alpay Alkan and Ender Ozcan, “Memetic Algorithms for

Timetabling,” Congress on Evolutionary Computation

(CEC), IEEE, 2003

[6] Leonardo Aparecido Ciscon, Humberto Cesar Brandao

de Oliveira, Michelle Cristina Alves Andrade, Guilherme

Bastos Alvarenga and Ahmed Ali Abdalla Esmin, “The

School Timetabling Problem: a focus on elimination of

open periods and isolated classes,” Proceedings of the 6th

International Conference on Hybrid Intelligent Systems

(HIS), IEEE, 2006

[7] Rushil Raghavjee and Nelishia Pillay, “Evolving

Solutions to the School Timetabling Problem,” World

Congress on Nature & Biologically Inspired Computing

(NaBIC), IEEE, 2009

[8] Nedim Srndic, Emir Pandzo, Mirza Dervisevic and

Samim Konjicija, “The Application of a Parallel Genetic

Algorithm to Timetabling of Elementary School Classes-

A Coarse Grained Approach,” 22nd International

Symposium on Information, Communication and

Automation Technologies, IEEE, 2009

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.6, July 2017

5

[9] Eugene Ruben Ramirez, “Using Genetic Algorithms to

Solve High School Course Timetabling Problems,” A

Thesis Presented to the Faculty of San Diego State

University in Partial Fulfillment of the Requirements for

the Degree, Master of Science in Computer Science,

2010

[10] Michael Pimmer and Gunther R. Raidl, “A Timeslot-

Filling Heuristic Approach to Construct High-School

Timetables,” The 9th Metaheuristics International

Conference, MIC, 2011

[11] Nelisha Pillay, “A Comparative Study of Hyper-

Heuristics for Solving the School Timetabling Problem,”

Proceedings of the South African Institute for Computer

Scientists and Information Technologists Conference,

(SAICSIT’13), pp. 278-285, 2013

[12] George H.G. Fonseca and Haroldo G. Santos, “Memetic

Algorithms for the High School Timetabling Problem,”

IEEE Congress on Evolutionary Computation, México,

2013

[13] Nelishia Pillay, “A survey of school timetabling

research,” Annals of Operation Research, 218:261–293,

Springer Science Business Media, New York,2014

[14] R. Raghavjee and N Pillay, “A genetic algorithm

selection perturbative hyper-heuristic for solving the

school timetabling problem,” Orion Journal, Vol. 31 (1),

pp. 39-60, 2015

[15] D. Abramson and H. Dang, "School timetables: a case

study in simulated annealing: sequential and parallel

algorithms," Lecture Notes in Economics and

Mathematics Systems, V.Vidal(Ed.), Springer-Verlag

Berlin, Chapter 5, pp. 103-124, 1993

[16] M. Randall, D. Abramson and C. Wild, "A general meta-

heuristic based solver for combinatorial optimization

problems," Technical report TR99-01, School of

Information Technology, Bond University, Queensland,

Australia.

[17] K. A. Smith, D. Abramson and D. Duke, "Hopfield

neural networks for timetabling: formulations, methods,

and comparative results," Computers and Industrial

Engineering, Vol. 44, No. 2, pp. 283-305, 2003

[18] Matthew Wall, “GAlib: A C++ Library of Genetic

Algorithm Components,” Version 2.4, Documentation

Revision B, August, 1996, (http://lancet.mit.edu/ga/),

Massachusetts Institute of Technology (MIT) (c) 1995-

1996, Matthew Wall (c) 1996-2005

[19] D.E.Goldberg, “Genetic Algorithms in Search,

Optimization and Machine Learning,” Addison-Wesley,

1989

[20] Sanjay R. Sutar, Rajan S. Bichkar, “Genetic Algorithms

based Timetabling using Knowledge Augmented

Operators”, International Journal of Computer Science

and Information Security, (1947-5500), pp.570-579,

Vol.14, No.11, 2016

8. APPENDIX
A-1 hdtt5 requirements matrix

A-2 hdtt6 requirements matrix

C

/

T

Venue1 Venue2 Venue3 Venue4 Venue5 Venue6

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 1 0 1 1 0 3 2 1 1 0 2 0 2 1 1 1 0 0 0 2 0 0 2 1 0 1 0 0 0 3 0 1 1 0 2 0

2 0 2 0 0 0 0 0 0 1 0 2 3 1 0 3 0 1 0 0 1 1 2 0 2 0 1 0 3 1 0 0 3 2 1 0 0

3 0 1 0 1 0 0 0 0 0 0 2 1 0 0 1 1 2 1 0 2 0 0 3 0 3 0 1 4 0 2 0 1 0 2 1 1

4 1 0 2 1 0 1 1 0 0 0 0 0 1 1 1 1 1 2 1 1 2 1 0 0 2 0 1 0 0 1 1 2 2 3 0 0

5 2 1 1 2 2 1 0 2 1 2 2 1 1 1 1 0 0 0 1 0 1 0 1 2 2 1 0 0 0 0 1 0 0 0 1 0

6 0 1 1 1 1 2 3 0 1 1 1 0 1 1 2 0 1 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1

C/

T

Venue1 Venue2 Venue3 Venue4 Venue5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 1 0 0 1 2 4 0 3 1 3 2 2 0 0 2 1 2 0 0 1 1 1 1 1 1

2 2 0 1 3 1 0 1 0 1 3 3 2 1 2 1 0 2 3 1 0 0 3 0 0 0

3 0 0 1 2 1 0 1 2 1 1 1 0 3 1 1 2 0 2 0 4 1 2 3 1 0

4 1 2 3 1 0 1 0 3 0 0 3 0 0 0 3 1 3 0 2 1 1 2 1 1 1

5 0 2 1 4 1 2 1 0 2 0 1 0 0 1 1 1 1 0 2 1 1 3 2 2 1

IJCATM : www.ijcaonline.org

http://lancet.mit.edu/ga/

