
International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.9, July 2017

35

Web Browser Security: Different Attacks Detection

and Prevention Techniques

Patil Shital Satish

M.Tech 2
nd

 year
CSE, Department

SGGSIE & T
Nanded-431606

Chavan R. K.
Associate Professor
CSE, Department

SGGSIE & T
Nanded-431606

ABSTRACT

In this paper, we present a systematic study of how to make a

browser secure. Web browser is vulnerable to different

attacks; these attacks are performed due to vulnerabilities in

the UI of the web page, Browser cache memory, extensions,

plug-in. The Attacker can run malicious JavaScript to exploit

user system by using these vulnerabilities. Buffer overflow

attack, Cross-site-scripting, Man-in-the-middle, Extension

vulnerability, Extreme Phishing, Browser Cache poisoning,

Session hijacking, Drive-by-download, Click-jacking attacks

are discussed. Browser with electrolysis system and

sandboxed processes are discussed to prevent the browser

from attack.

General Terms

Chrome process, Sandboxed process, Web Extension,

Electrolysis

Keywords

Web application security, Heap overflow, Electrolysis,

Sandboxing

1. INTRODUCTION
In today's Internet world, security is a widespread term. Web,

Internet-based social networking turn into an essential part for

all persons. Security becomes an important issue because the

number of attacks against systems is increasing rapidly.

Attacks are performed to steal private as well as financial

information of a web user. Malicious content loaded into the

system without knowledge of a user is a frequent problem for

host systems. [40]Nature of problems is same for Smartphone,

Desktops. The malevolent substance, for example, infections,

Trojans, malware, and vulnerabilities in the frameworks are

significant threats.

Vulnerable system or vulnerabilities in the system is a

significant factor for the attack. Different Vulnerabilities are

used to perform different attack. The Most influential factors

in the accomplishment of a threat are the success of delivery

of a malware and its execution. By using SMTP execution of

threats become easy. Mailborne threats are commonly used to

entice the recipient into executing the malicious attachment.

The delivery mechanism does not depend upon user action

rather most common path is to exploit some application.

System framework defenselessness with a specific end goal to

pick up execution. Abusing vulnerabilities in the client

browser stipulates a component for malware to pick up

execution when the victim peruses a malicious page. [3] [23]

2. ROLE OF THE WEB
The Web is used as the file repository for downloading other

malicious files via HTTP. By using Trojan downloader

vulnerable client browser visits an attack site. Attacker loads

malicious script keeping in mind to infect the victim.

Spammed Email messages and attack websites are acclimated

lure victims to malicious code. Generally modest number of

exploits is utilized as a part of attacks in similar ways in order

to attack the system and install the malware. As shown in

figure.

Figure 1. Role of the Web

Malicious sites: Attacker compromises a legitimate site and

creates a new site used as a launch area for an attack.

According to Malicious scripts inquiry the client browser will

load the appropriate exploits for that browser. By Trading off

a website malicious substance is stacked into the pages for

conveyance and execution of threat. Users trust level is adapt

with browser configuration to render the page appropriately.

HTML provides the IFRAME tag which is most commonly

used in methods to compromise a site, which can be utilized

to load content into the page. Height and width attributes are

most relevant to malicious use. They can be used to control

the size of the frame in the host web page in which malicious

content is loaded.

3. THE WEB BROWSER
Web browsers are the underlying execution platform shared

between web applications. Major web browsers, including

Firefox, Chrome, Internet Explorer, Safari, and Opera,

provide extension features that allow user to modify behavior

of the browser as well as enhance its functionality and GUI

interface Network Module gets a site page and plans content

to be parsed by the HTML parser. The HTML parser creates a

DOM which can then invoke other execution engines like

JavaScript engine, CSS. The legitimate flow of processed

content between components. [31] [39] Following table shows

XPCOM Interface and Possible impact in web browser.

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.9, July 2017

36

Table 1.XPCOM Interface and Possible Impact

XPCOM Interface Possible Impact

nsIHistoryListener Notifies when a new

document is open to third

party

nsIHttpChannel Allows access to HTTP GET

query parameter

nsIPasswordManager Might reveal user stored

password

nsIRDFDataSource Write access critical data

objects(extension manager)

nsICookieManager Expose user cookies

nsIDownloader Download malicious file into

user system

3.1 Web Browser Architecture
A Browsing page or frame encloses presentable content and a

JavaScript execution environment such as heap or code that

interact with content [47]. Document Object Module (DOM)

has control over interaction with content. Nesting of browsing

context performed by using IFRAMES. They also read and

write persistent storage like cookies .A network requests can

issue implicitly in page content that references URL retrieved

over the network. Network request also can issue in

JavaScript using the XMLHttpRequest (XHR).They

communicate by sharing DOM objects. JavaScript language

used to display a client-side web page. Attacker attacks on the

website by using malicious JavaScript. JavaScript is

downloaded into the browser and executed by an embedded

interpreter. The centralized repository for extension is known

as "Add-On" in Mozilla and Web store in Chrome.

.Extensions can directly access private browsing information

such as cookies, history and password stores. DOM is

responsible for rendering a web page.

DOM Manipulation: The DOM is a Programming interface

used to interface with the document .This Programming

interface is accessible in various languages as a library. The

browser changes all HTML in a page to a tree in light of the

nesting. In the event that client need to change any HTML,

client can communicate with the DOM Programming

interface keeping in mind the end goal to do as such,

<html>

<head >

<script src="first.js">

</script >

</head >

<body> blah </body >

</html >

 In first.js reference the body using:

onload=function()

{document.getElementsByTagName('body')[0].style.display=

’none';}

 The getElementsByTagName is a method of the document

object. Here manipulating the body element, this is a DOM

element. If someone wanted to traverse and find say,

onload = function()

{var els = document.getElementsByTagName('*');

for (var i = els.length; i–;)

 {if (els[i].nodeType == 1&&

els[i].nodeName.toLowerCase() == 'span'){ alert(els[i])}}}

Traversing the nodeList given back by

getElementsByTagName , and looking for a span based on the

nodeName property. [41].

Mozilla Platform Browser code is written in different

languages like C, C++, and JavaScript. The Large code is

partitioned into the different small component and the

mechanism of integration of this code is called as Cross-

Platform Component Object Model. Each component has

unique classID and contractID and they implement one or

more interfaces. The functionality of a component specified

by using methods and variables which are included in

interfaces. Interfaces are reference counted. XPConnect

permits JavaScript program access and controls XPCOM

objects. It is utilized amongst DOM and JavaScript. All

interfaces of an XPCOM objects must be declared in XPIDL.

XPIDL compiler is utilized to create both C++ header files

and type lib files. The type-lib files are the binary

representation of at least one interface.

Figure 2.Mozilla Platform

JavaScript is utilized to access and manipulate objects in the

DOM to make a dynamic situation for documents.

XPConnect is utilized to find DOM object using

DOMClassInfo.[43] [44]

4. WEBEXTENSIONS
WebExtensions is a new browser extension API.

WebExtensions must be compatible with multiprocess

Firefox (Electrolysis) as well as changes to Firefox's internal

code should be less likely to break add-ons.

Table 2.Comparison between XUL extensions and Web

Extensions

XUL/XPCOM extensions WebExtensions

Uses two manifest

files:1.install.rtf
2.chrome.manifest

Uses Only One manifest file:

manifest.json

Extensions can directly

manipulate XUL. API:
Customazible UI.jsm

WebExtensions does not get

direct access UI.

API: browser Action API, page

Action, commands, context
Menus

Get access to the full

privileged set of XPCOM

APIs and JavaScript code

modules through the

Components object. Access

to browser internal through
Browser.

Get access to a limited set of

JavaScript API through

background scripts. Also get a

window global with all the

DOM objects available on
normal web page.

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.9, July 2017

37

Gets direct access to web

content using Browser

.Refactoring the code using
frame script for multiprocess.

Compatible by default, code that

interacts with web content using
the content script.

Localization: using local

statements inside the chrome.

Manifest then include

localized strings in UI

elements or in code.

Don’t have direct access. Supply

localized strings as a collection
of JSON files.

 WebExtensions should be easier to use than the existing

Firefox XPCOM/XUL APIs. [4].Following figure shows

structure of WebExtensions.

Figure 3.WebExtensions Structure

4.1 Servo: Servo is a trial web browser and the objective is

to make another layout engine utilizing an advanced

programming language. It is created by Mozilla Research. The

model tries to make an exceedingly parallel condition, in

which numerous parts like rendering, design, HTML parsing,

image decoding are fine-grained, multiple isolated task. The

project is composed in the Rust programming language. Two

significant components are utilized by Servo depend on prior

C++ code from Mozilla. JavaScript support is given by

SpiderMonkey, and the 2D designs library .Sky blue is

utilized to interface with OpenGL and Direct3D utilizing

parallelism and code safety, to accomplish more prominent

security and execution versus contemporary programs. Servo

is likely to be combining Gecko for making available the

Servo API in Firefox.

4.2 Electrolysis and Sandboxing
Elecrolysis: In multiprocess Firefox there are two processes:

Chrome process and content process. The Chrome or parent

process runs browser chrome or UI as trusted process which

controls interaction with the underlying operating system. The

parent process is not sandboxed and has regular access to the

operating system. It can also access files, devices and network

resources. Chrome process should only run trusted code. [56]

A child process should run all untrusted web content. The

parent process also acts as a broker for privileged resource

requests from the child process.

Chrome privileged JavaScript code in one process can

communicate with chrome-privileged JavaScript code in a

different process by using Message manager. [55] 1) Frame

message manager: FMM enables chrome process code to

load a script into a browser frame in a single browser tab in

the content process. It is called as frame script and scope is

limited within the browser frame. 2) Content frame message

manager: A Content frame message manager is provided for

every open tab. It is the content-side end of frame message

manager conversations. Messages from Chrome message

managers end up when Frame scripts are loaded into the

content frame message manager scope. 3) Process message

manager: PMM corresponds to process boundaries. Process

boundaries enable code running in the parent (chrome)

process to communicate with code running in the child

(content) process. Chrome process uses the different message

manager such as global frame message manager, window

message managers, and browser message managers. This

operates on all frames, in all content tabs. If you load a frame

script using the global frame message manager, the script gets

loaded separately into every open tab. [57]

Figure 4 . Electrolysis and Sandboxing

 Sandboxing: Sandboxing will be an effective security

control; Firefox must be split into two different processes

called as parent and child processes. The child processes is

responsible for running untrusted web content. Due to this

child process can be restricted to limit damage in the event of

the compromise. In the Electrolysis project parsing and

execution of web content is moved to a content process and

sandboxing is based on this process model. A child process is

untrusted and intended to run remote web content. [58] A

sandbox provides restricted privileges to the child process.

Child processes parses and executes html and JavaScript code

corresponding to a web page.

The Content process is nothing but a process which runs the

html code corresponding to a tab. This web content process is

responsible for parsing and executing all the web content

currently loaded in the browser tabs that are open. Content

processes contain privileged code responsible for the

implementation of DOM APIs and code which connects back

to the parent to load the resources. The content process is

sandboxed and prevented from direct resource access. The

Content process only has the ability to execute web content.

[33] [59]. Mozilla has several major changes lined up for

Firefox, including the Servo rendering engine and the

Electrolysis multi-process model. WebExtensions are

supported by Mozilla's Add-On repository service and it will

replace XUL based extensions.

5. ATTACKS ON BROWSER
5.1. Buffer Overflow: Buffer Overflow attacks are

specified by overwriting of memory segments of process.

Exceptions, segmentation faults, and other errors are occurred

because of overwriting values of the IP, BP, and other

registers. These errors bring execution of the application in an

unexpected way. [51] Heap Overflow: JEMalloc Memory

allocator is used in Firefox, vulnerable to a heap overflow. We

plan heap overflow by placing a victim object in the same run

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.9, July 2017

38

to the vulnerable object. The victim that can help us achieve

arbitrary code execution.[61] Heap underflows: when heap

objects are very small to store input. Dangling pointers or

“use-after-free” error occurs when a program frees an object

that is still in use before the due time. Uninitialized reads:

when programs read from newly allocated objects such object

carry data of old freed object .[62]Stack-based attack: When

the submitted data of an input string is evaluated as a

command by the application the Format String exploit occurs.

It is Very easy to write program for BOF. [7] [15] [18]

/* Program for Buffer overflow Attack.*/

 # include <stdio.h>

void f((char∗)) { char buffer [10]; strcpy ((buffer,s))}

 void main ((void)) { f (("98765432109876543210")) }

This program will result in segmentation fault. A simple

mistake can lead to buffer overflow attack.It is very difficult

to prevent. [50]

5.2. Cross-Site Scripting: This vulnerability makes it

happen for attackers to inject malicious code like JavaScript

programs into victim’s web browser. Cross-Site Scripting

vulnerability allows assailants to infuse malicious code like

JavaScript projects into victim’s web program. Using this

malicious code, the attackers can steal the victim's credentials,

like cookies, and passwords. [52] The content of the HTML

page can be rewrite by using malicious scripts. Stored XSS

Attacks: It is also known as Persistent or Type-I XSS. Stored

attacks are the ones where the injected script is permanently

stored on the target servers. They can store in the database, in

a message forum, visitor log, comment field. Reflected XSS

Attacks: It is also known as Non-Persistent, Type- II XSS. In

this attack the infused script is reflected off the web server.

For example, in the hunt result every reaction that

incorporates the info sent to the server as a part of the request.

[6] [8] [16]

5.3. Man-in-the-Middle: This attack can be

accomplished by using arp poisoning, DNS spoofing methods.

A Man-in-the-middle attack also called as bucket brigade

attack. MITM is an attack where the assailant access and

perhaps modifies the correspondence between two gatherings

without their knowledge. [23]Victim believes they are directly

communicating with each other. Active eavesdropping is one

of the examples of a man-in-the-middle attack. In which the

attacker makes autonomous associations with the casualties

and retransmit messages between them to make them trust

that they are talking specifically to each other over a private

connection. Actually the whole discussion is controlled by the

attacker. The attacker must have the capacity to remove every

single relevant message going between the two casualties and

infuse new ones. [1] [11] [24]

5.4. Extension vulnerability: In Firefox extension

architecture same JavaScript namespace is shared between all

JavaScript extensions installed on a system .Any extension

can modify, read, write to other global namespace and

introduces namespace pollution problem. In extension reuse,

vulnerability attacker uses an existing extension to make API

calls and Resource access to hide malicious extension.

Extensions interact with web page without any explicit

request for MIME type. A browser extension has the same

privilege as the Browser itself. The extension additionally has

full access to browser and clients working system. Extensions

can change the usefulness of the program, behavior of site,

access to file framework. An active attacker regulates content

loaded via HTTP and reuse it .By replacing this script attacker

hijacks extensions privileges and install malware. A

JavaScript capacity break is another reason for misuse of

extension. [46] [47]

5.5. Extreme Phishing: This attack support dynamic

user interaction. Web Single Sign-On (SSO) systems are

significant trend in inline user authentication. OpenID and

OAuth are open Web SSO standards rapidly gaining adoption

on the Web. In this system one single IDP account is used to

sign on multiple RP websites. Web SSO phishing has three

distinctive characteristics: 1.Highly concentrated value of IdP

account.2.Highly enlarged attack surface area.3.difficulty in

detection of attack either by algorithms or by users. A

compromised IdP account enable attackers to impersonate the

victim on a wide range of RP websites. Second-level context

is used Rather than sending emails or phishing URLs.

Attacker can host their own legitimate RP website or web

page and lure users posting URLs Everywhere. An HTML

<div> element contains real popup browser window. Spoofing

the EV-SSL symbol and HTTPs URL address in the <div>

component should be possible by duplicating a total preview

of the symbol and the URL address. [45] [48]

5.6. Browser Cache Poisoning: Clicking through of

SSL warnings: While Accessing a website having invalid

certificate browser shows SSL warning. At that point the

client is accepted to close that website page to ensure against

MITM attack. If client disregards notices can be prompt

disastrous to the security and protection of the sessions.

Attacks against HTTPS: [26] 1. Man-In-The-Script-In-The-

Browser attack to avoid enhanced channel -ID based defenses.

Attacks via browser cache: 1. Timing attack performed on the

browser to sniff browsing history and steal user credentials as

well as private information. 2. Attacks by poisoning browser

web cache, HTML5 AppCache, HTTP cache .A tool called

airpoison is used in the wireless network to move up on to

browser cache poisoning via HTTP. 3. Cross-site scripting

attack is used to inject malicious content into web page and

web storage. 4. Proxy cache poisoning attack uses existing

techniques to place poisoning attacks on the forward proxy

and reverse proxy. [5] [22]

5.7. Session Hijacking: Session hacking attack is

performed at two level, application level and network level

here. When establishing a connection with the server using

HTTP protocol a unique session ID or current live session is

used by client and server. The attacker takes control over a

session. Actually attacker hijacks the session from the user

and continues the connection to the server pretending to be the

user. The Session Hijacking attack is performed to gain

unauthorized access to the Web Server. The Attacker

compromises a session ID by sniffing or predicting a valid and

predictable session token. The attacker utilizes a sniffer to

catch a substantial token session. Sometimes the server

utilizes a protected encoded association like HTTPS but

specific session of the client yet remaining association is sent

in plain content. [13] [34] [36]

5.8. Drive-by-Download: In this attack, a victim is lure

to a malicious web page of malicious site and that page

contains code written in JavaScript programming language.

Then attacker waits for their target to browse to the web page.

The compromised page will look normal while at the same

time the exploits execute and install malware on the victim's

computer silently in the background. In drive-by download

attack attacker loads the shell code as payload using client-

side scripting code into memory and executes the exploit

against a vulnerable component. JavaScript is utilized to

designate the binary representation of shell code to a variable

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.9, July 2017

39

that is stored in the address space of the browser. It utilizes

heap spraying to make heap area. Once heap memory has

been executed then the real exploit launched. [12] [14]

5.9. Clickjacking: Clickjacking attack is called as UI

redressing attack. Because this technique is tricking users to

click the button or image that will run hidden malicious script

from attacker site. The attacker uses to trick a user into

clicking on a button or link another page when user was

expecting to click on the safe page. So an attacker hijacks the

click to attacker website. Since this strategy is deceiving

clients to tap the catch or picture that will run hidden

malicious script from attacker site. The attacker uses to trap a

client into tapping on a catch or connection another page

when client was hoping to tap on the safe page. So an attacker

hijacks the snap to attacker site. To position an element from

the target website clickjacking attack uses two nested

IFrames. The Inner IFrame contains the target page and it

must be large enough to display entirely. The user will click

simply without scrolling the web page where the outer frame

is smaller and acts as a window onto the web page. User will

think he is clicking on the website he wants to open but

actually he is clicking on an invisible website and he cannot

see that is underneath his mouse. [9][21]

6. PREVENTION TECHNIQUES

6.1. Buffer Overflow Attack: Stack Buffer Overflow

protection techniques involve modification in the arrangement

of stack-allocated data. It contains Canary values when this

value exploded by stack buffer overflow. It presents that

program using more than its allocated size of the buffer. By

confirming canary value program can be closed to intercepting

it from misbehaving. Also, stops an attacker from allowing

taking control over it. [53] Bound Checking is another

prevention technique which checks permission to each

allocated block of memory. They cannot go apart from the

actually allocated space, and tagging assures that memory

allocated for storing data cannot contain executable code. The

user should use such programming languages that do not give

direct memory access like Java, Python, Perl, Lisp over

C/C++.If the user is using language that gives direct memory

access then use classes that handle memory access like std::

string. Security-related compiler options like DEP, ASLR

must be used. It will be helpful for mitigating the impact of

overflow. To discover overflow Static code analysis tools like

Veracode's service, Fortify, Qualys can be used. [7] [18]

6.2. Cross-Site Scripting: Input Validation is effective

XSS attack prevention technique. Input Validation technique

should not allow the user to enter incorrect data it should

return an error message .Input validation also includes valid

use of angular brackets, other characters, quotes. Escaping

strategies mention to injecting data in sensitive areas of

HTML which offer an attacker the opportunity to affect

markup parsing. The Content-Security-Policy (CSP) is an

HTTP header. The browser can trust white list of trusted

resource provided by CSP. The browser should ignore any

source which is not mentioned in whitelist since it is

untrusted. Generally, the htmlspecialchars() function is

sufficient for filtering output. The user can use htmlentities()

if he is using character encoding other than UTF-8. [8] [16]

6.3. Man-in-the-Middle Attack: To prevent DNS

spoofing ensure that latest version of DNS software with

recent security patches is installed. Also Ensure that auditing

is enabled on all DNS server. Most popular email services and

online banking applications rely on HTTPS to ensure that

communications between our web browser and their servers is

in encrypted form. By using DH for key generation and

Blowfish for encryption will enhance data security over SSL

and HTTPS. ARP poisoning can be avoided by running shell

script at the backend. This will keep track of entries in the

ARP cache table. Different security measures can be used

such as operating systems onto the network should be

upgraded, network designing from security point of view,

network devices and the computers onto the network should

be updated periodically and the patches should be installed

regularly. [11]

6.4. Extension Vulnerability: A new browser

extension system can be used to protect browser from this

attack. Extensions run with least privileges can be exploited

by a malicious website to avoid divide extension into three

components: content scripts, extension core, and native

library. An attacker would need to convince the extension to

forward malicious input from the content script to the

extension core and from the extension core to the native

binary to gain users full privileges. Different components of

an extension are isolated from each other by strong protection

boundaries: each component runs in a separate operating

system process. The content script and the extension core run

in sandboxed processes, they cannot use operating system

services. The content script is isolated from its associated web

page by running in a separate JavaScript heap but both uses

the same DOM, prevents JavaScript capability leaks. [17] [20]

[28]

6.5. Extreme Phishing: Extreme phishing attack is

avoided by utilizing heuristics based phishing detection

solution and Web SSO phishing identification procedures. For

instance, the goal of a tick activity on the base site page could

be catch attention. So it will be utilized to identify contrast if a

comparing genuine login window or a fake login window is

shown. Web clients ought to be prepared to know about

extraordinary phishing. The client ought to give careful

consideration to the domain name of a URL shown in the

address bar. Web users ought to know about the look and feel

of web pages. User ought to separate the parodied Web SSO

login windows from genuine ones. One method for

identifying distinction between a spoofed Web SSO login

window is to expand, drag, or resize. Because a spoofed

window can never connect with the website page content area.

Browser extensions could be useful for clients to get

instinctive data about the domain name continuously.

 6.6. Browser Cache Poisoning: HTTP Strict

Transport Security (HSTS) provides a HTTP response header

for a website to force the browser to make SSL connections

compulsory for all sub resources on the site. HSTS compliant

browsers give users the option to ignore SSL certificate

warnings. Public Key Pining (HPKP): allows website to

specify their public keys with an HTTP header and instructs

browser that does not accept a certificate with the unknown

public key. Defenses implemented by browser vendor: Do not

cache resources in Web cache or AppCache over broken

HTTP connection. Preventing HTTPS sites from loading

resources over HTTP. To avoid browser cache poisoning

attack the target site checks the integrity of all cached

JavaScript sub-resources before loading them into the page,

only fresh uncontaminated resources can be loaded into the

target sites page. [11] [19] [29]

6.7. Session Hijacking: To prevent the user from session

hijacking use Strong Session ID to avoid hijacked or

deciphered. SSL and SSH provide strong encryption using

SSL certificate. There must be a log out function for every

session termination, login for regeneration of Session ID.

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.9, July 2017

40

HTTPS connection should be used for passing authentication

cookies and also reduce the life span of session or cookie.

Session hijacking can be prevented at the user level by clear

the history, offline contents, and cookies from the browser

after every sensitive transaction. To protect from session

hijacking there are different tools and techniques are

available. By using a sniffer on network attacker can be

detected. ANTI-SNIFF-It can detect any sniffer on the

network used to capture packets. [27] [35]

6.8. Drive-By-Download: Anomaly discovery depends

on the theory that malicious action shows itself through

anomalous framework events. Anomaly discovery

frameworks screen occasions happening in the framework

under investigation. For every occasion, various elements are

extracted. During a learning stage, typical component feature

values are found out, utilizing at least one show. After this

underlying stage, the framework is changed to location mode.

In this mode, the component benefits of happening occasions

are evaluated concerning the prepared models. Occasions that

are too distant from the built up models of typicality are

flagged as malicious. [54] [60]

 6.9. Clickjacking : To avoid Clickjacking attack provide

confirmation window for the click. If it is a different

component the user can decline his interaction and report it.

Frame busting is another defense against clickjacking attack,

which will hinder elements in an IFrame from being displayed

on web page. It can be achieved through JavaScript. At page

load time it will check if the active page is the top-level in the

browser window or not. A new HTTP header called X-

FRAME-OPTIONS is added to every authenticated. Server

should run in an HTML5 sandbox implementation and it

prevents any JavaScript from running on a server. [9]

7. CONCLUSION
Web browser like Mozilla uses JEMalloc memory allocator

which is vulnerable to heap overflow .Without security

patches, web browsers are vulnerable to different types of

attack. A web browser is not totally secure because plug-ins

are also vulnerable. Browser based attacks originate from

malicious websites. The Attacker can easily deliver malicious

code to user’s system. The user should block pop-up windows

to avoid malicious code to be downloaded on user system.

The browser is inherently insecure without multiprocess and

exposes the user to different exploits. Multiprocess and OS

level sandboxing must become standard and mandatory

features and eventually each tab must be contained within a

separate process. Multiprocess implementation will have an

insignificant effect on RAM usage. The effect on CPU is

none, because a multiprocess browser will be able to run on

multiple cores. In multiprocess based tabs, layout rendering

and JavaScript code should be put into a sandboxed process to

reduce kernel attack surface. Web browsers with electrolysis

and sandboxing feature restrict access to file system. This

protects the user from exploits. Hence, multiprocess and

sandbox should become mandatory to protect users from

malicious web pages.

8. REFERENCES
[1] Adi, Saltzman, Roi and Sharabani,Active Man in the

Middle Attacks: A Security Advisory, A whitepaper

from IBM Rational Application Security Group, 2009

[2] Bhargavaand Chen, Daniel,Shastry,DeFreez,Jean-Pierre

Haoand Seifert, A first look at Firefox OS

security,Nashville, TN USA, 2011

[3] Xiaowei and Xue,Yuan,Li,A survey on web application

security ,Nashville, TN USA, 2011

[4] Nicolas, Golubovic, Attacking Browser Extensions.

[5] Yue and Dong, Xinshu and Saxena,Jia,Prateek and Mao,

Jian and Liang,Yaoqi and Chen,Zhenkai, Man-in-the-

browser-cache: Persisting HTTPS attacks via browser

cache poisoning, computers security, 55, (2015)62–80

[6] V and PandianS,Nithya, Lakshmana and Malarvizhi, C,A

Survey on Detection and Prevention of Cross-Site

Scripting Attack,International Journal of Security and Its

Applications,3,9,(2015),139–152

[7] Calton and Beattie,,Cowan, F and Pu, Steve and

Walpole,Crispin and Wagle, Jonathan, Buffer Overflow :

Attacks and defenses for the vulnerability of the

decade,2,(2000)119–129

[8] Gurvinder,Kaur ,Study of Cross-Site Scripting Attacks

and Their Countermeasures,International Journal of

Computer Applications Technology and

Research,10,3,(2014)604–609

[9] A Sankara,Narayanan, Clickjacking vulnerability and

countermeasures, New York International Journal of

Applied Information Systems, 2012

[10] David, Stefan, Deian and Yang, Petr and Russo, Edward

Z and Marchenko, David and Karp, Alejandro and

Herman,Brad and Mazieres, Protecting Users by

Confining JavaScript with COWL, (2014)131–146

[11] Tarek S and Zaki,Ashraf and Sobh,Elgohary,

Mohammed, Design of an enhancement for SSL/TLS

protocols, 25, (2006)297–306

[12] Giovanni,Cova, Christopher and Vigna,Marco and

Kruegel, Detection and analysis of drive-by-download

attacks and malicious JavaScript code, (2010)281–290

[13] Jerry, Louis, Detection of session hijacking, 2011

[14] Manuel and Wurzinger, Egele, Peter and Kruegel, Engin,

Christopher and Kirda, Defending browsers against

drive-by downloads: Mitigating heap-spraying code

injection attacks, (2009)88–106

[15] P Vadivel and Alagarsamy,Murugan,K,BufferOverflow

Attack– Vulnerability in Stack,International Journal of

Computer Applications,5,13,(2011)1–2

[16] Rohilla, Rakesh,Monika and Kumar,XSS Attack:

Detection and Prevention Techniques

[17] Adam and Felt, Barth,Adrienne Porter and

SaxenaPrateek and Boodman, Aaron, Protecting

Browsers from Extension Vulnerabilities, 2010

[18] Benjamin A and Brodley, Hilmi and Vijaykumar,

Kuperman, TN and Jalote, Carla E and Ozdoganoglu,

Ankit,Detection and prevention of stack buffer overflow

attacks, Communications of the ACM11,48,(2005)50–56

[19] Hodges, Collin and Barth, Jeff and Jackson,Adam, Http

strict transport security (hsts), 2012

[20] Gu, Boxuan and Zhang, Xiaole and Champion, Wenbin

and Bai, Adam C and Qin, Dong,Feng and Xuan,

Jsguard: shellcode detection in JavaScript, (2012)112–

130

[21] Marchesini, Sean W and Zhao, John and Smith,

Meiyuan, Keyjacking: the surprising insecurity of client-

side SSL, Computers Security, 24, (2005)109–123

[22] Jia, Yue and Dong, Yaoqi and Chen,Xinshu and Saxena,

Prateek and Mao, Jian and Liang, Zhenkai, Poster: Man-

International Journal of Computer Applications (0975 – 8887)

Volume 170 – No.9, July 2017

41

in-the-Browser-Cache: Persisting HTTPS Attacks via

Browser Cache Poisoning

[23] Callegati, Walter and Ramilli, Franco and Cerroni,

Marco, Man-inthe-Middle Attack to the HTTPS

Protocol, IEEE Security Privacy, 7, (2009)78–81

[24] Eriksson, Mattias and Johansson, TT, An example of a

man-in-themiddle attack against server authenticated ssl-

sessions, 2003

[25] Fraser,Howard, Modern web attacks, Network Security,

2008, (2008)13– 15

[26] Matthias and Ben-David,Vallentin, Yahel, Persistent

browser cache poisoning,2010

[27] Karapanos, Srdjan,Nikolaos and Capkun, On the

Effective Prevention of TLS Man-In-The-Middle Attacks

in Web Applications, 14, 2014

[28] Barth, Adrienne Porter,Adam and Felt,SaxenaPrateek

and Boodman, Aaron, Protecting Browsers from

Extension Vulnerabilities, 2010

[29] Jackson, Adam, Collin and Barth, Forcehttps: protecting

high-security web sites from network attacks,

(2008)525–534

[30] Vallentin, Yahel, Matthias and Ben-David, Quantifying

persistent browser cache poisoning, 2014

[31] Jackson,Andrew and Boneh,Collin and Bortz,JohnC,D

an and Mitchell, Protecting browser state from web

privacy attacks, (2006)737–744

[32] Liang, Wei and Liu, Bin and You,Liangkun and Shi,

Mario, Wenchang and Heiderich, Scriptless timing

attacks on web browser privacy, (2014)112–123

[33] Jemel, Ahmed,Mayssa and Serhrouchni, Security

assurance of local data stored by HTML5 web

application, (2014)47–52

[34] Vishnoi, Monika and Tech,Laxman and Agarwal, MIT,

Session Hijacking And Its Countermeasures,

International Journal of Scientific Research Engineering

and Technology (IJSRET), (2013)250–252

[35] Deepak Singh,Jain, Divya Rishi and Tomar, Vineeta and

Sahu, Session Hijacking: Threat Analysis and

Countermeasures

[36] Kapoor, Shray, Session hijacking exploiting TCP, UDP

and HTTP sessions, infosecwriters. com/text

resources/.../SKapoorSessionHijacking. pdf, 2006

[37] Ralf and Basin,Rolf and Hauser, David,Oppliger,

SSL/TLS sessionaware user authentication revisited,

Computers Security, 27,(2008)64–70

[38] Piekarska, Bhargava and Borgaonkar,Marta and Shastry,

Ravishankar, Piekarska, Bhargava and Borgaonkar,Marta

and Shastry, Ravishankar,What Does the Fox Say? On

the Security Architecture of Firefox OS,(2014)172– 177

[39] Securing web browser, http://www.us-

cert.gov/publications/ securing-your-web-browser

[40] Attacks on browser, http://www.owasp.org/index.php

[41] See fixed patches in mozilla on bugzilla,

http://www.bugzilla.mozilla.org/quickserack=attachment

[42] Mozilla foundation security advisory,

https://www.mozilla.org/en-US/

security/advisoris/mfsa2017-01

[43] How Appliction Cache works,

https://developer.mozilla.org/en-US/

docs/web/HTML/Using the application cache

[44] All errors in Mozilla browser can see one time

at,https://www.mozilla.org/en-US/security/known-

vulnerabilities/firefox

[45] Zhao, Rui and John, Stacy and Bussell,Samantha and

Karas, Cara and Roberts, Daniel and Gavett,Jennifer and

Six, Brandon and Yue, Chuan,The Highly Insidious

Extreme Phishing Attacks,(2016)1–10

[46] Privilege escalation vulnerabilities in WebExtensions

APIs,

https://bugzilla.mozilla.org/showbug.cgi?id=1226423

[47] Pandikumar, T and Girma, Teklish,Analyzing

Information Flow in Java based Browser

Extensions,(2016)

[48] Chuan,Yue,The Devil Is Phishing: Rethinking Web

Single Sign-On Systems Security.,(2013)

[49] Zhao,Chuan and Yi,Rui and Yue,Qing,Automatic

detection of information leakage vulnerabilities in

browser extensions,(2015)1384–1394

[50] Interger overflow in Websockets during data buffering,

https://bugzilla.mozilla.org/showbug.cgi?id=1287266

[51] Buffer overflow rendering SVG with bidirectional

content,

https://bugzilla.mozilla.org/showbug.cgi?id=1270381

[52] Cross-site reading attack through data and view-source

URIs,

https://bugzilla.mozilla.org/showbug.cgi?id=1228950

[53] Integer overflow in MP4 playback in 64-bit versions,

https://bugzilla.mozilla.org/showbug.cgi?id=1206211

[54] Same origin violation and local file stealing via PDF

reader,

https://bugzilla.mozilla.org/showbug.cgi?id=1178058

[55] Electrolysis and Accessbility,

https://wiki.mozilla.org/Electrolysis/Accessibility

[56] Introduction to Electrolysis,

https://wiki.mozilla.org/Electrolysis

[57] Electrolys and multiple content process,

https://wiki.mozilla.org/Electrolysis/Multiplecontentproc

esses

[58] Sandbox security process model

https://wiki.mozilla.org/Security/Sandbox/Processmodel

[59] Hardening the Firefox Security Sandbox

https://wiki.mozilla.org/Security/Sandbox/Hardening

[60] Tammo and Dewald,Rieck,Andreas,Konrad and

Krueger,Cujo: efficient detection and prevention of

drive-by-download attacks,(2010)31–39.

[61] Chariton, Argyroudis, Patroklos and Karamitas,

Exploiting the jemalloc Memory Allocator: Owning

Firefox's Heap,Blackhat USA,2012

[62] Emery D,Novark, Gene and Berger, DieHarder: securing

the heap,(2010) 573—584

IJCATM : www.ijcaonline.org

http://www.owasp.org/index.php
https://bugzilla.mozilla.org/showbug.cgi?id=1226423
https://bugzilla.mozilla.org/showbug.cgi?id=1287266
https://bugzilla.mozilla.org/showbug.cgi?id=1270381
https://bugzilla.mozilla.org/showbug.cgi?id=1228950
https://bugzilla.mozilla.org/showbug.cgi?id=1206211
https://bugzilla.mozilla.org/showbug.cgi?id=1178058
https://wiki.mozilla.org/Electrolysis/Accessibility
https://wiki.mozilla.org/Electrolysis
https://wiki.mozilla.org/Electrolysis/Multiplecontentprocesses
https://wiki.mozilla.org/Electrolysis/Multiplecontentprocesses
https://wiki.mozilla.org/Security/Sandbox/Processmodel
https://wiki.mozilla.org/Security/Sandbox/Hardening

