
International Journal of Computer Applications (0975 – 8887)

Volume 171 – No.1, August 2017

22

Proposed UML Class Diagram for Object Functional

Language (SCALA)

Veena N. Jokhakar
Department of Information Communication and Technology

Veer Narmad South Gujarat University
Surat

ABSTRACT
UML, the Unified Modeling Language and entity relationship

diagrams develops a design model for almost any software

built using any of the object orientated programming

language. Still this lacks in coverage for functional object

orientated language like scala and others. This paper proposes

new idea of modeling the functional languages that cover

traits, mixins, linearization, singleton classes and Case Classes

specifically.

Keywords
UML diagrams, functional object oriented languages, traits,

linearizations, singleton classes.

1. INTRODUCTION
UML, the Unified Modeling Language, allows a design model

to be constructed, viewed, developed, and implemented in a

customary way at analysis and design phase. UML as

blueprint is about completeness. In forward engineering, the

idea is that blueprints are developed by a designer whose job

is to build a detailed design for a programmer to code up[1].

The key component of system modeling, which underlies the

principles of MDA—Unified Modeling Language (UML)—is

used to define several kinds of diagrams, their elements and

notation. In fact, UML diagrams should be considered as a

way of describing the system from various perspectives:

whereas a static diagram is used to represent the structure of

the system, dynamic diagrams describe its behavior[2]. The

class diagram, being the most common in modeling object-

oriented systems, is used to model the static design view of a

system. According to MDA, the automatic transition from

class diagram into platform-specific software components is

done by performing a model transformation, where model

elements and parameters are mapped to corresponding

elements and parameters in the software code.

One can model just about any type of application, running on

any type and combination of hardware, operating system,

programming language, and network, in UML. Its flexibility

lets you model distributed applications that use just about any

middleware on the market. Relationships clearly can be

represented in object-oriented languages—indeed patterns

have been established for the purpose[3]. Built upon

fundamental OO concepts including class and operation, it's a

natural fit for object-oriented languages and environments

such as C++, Java, and the recent C#, but you can use it to

model non-OO applications as well in, for example, Fortran,

VB, or COBOL. UML Profiles (that is, subsets of UML

tailored for specific purposes) help you model Transactional,

Real-time, and Fault-Tolerant systems in a natural way.

UML 2.0 defines thirteen types of diagrams, divided into

three categories: Six diagram types represent static application

structure; three represent general types of behavior; and four

represent different aspects of interactions:

Structure Diagrams include the Class Diagram, Object

Diagram, Component Diagram, Composite Structure

Diagram, Package Diagram, and Deployment Diagram.

Behavior Diagrams include the Use Case Diagram (used by

some methodologies during requirements gathering); Activity

Diagram, and State Machine Diagram.

Interaction Diagrams, all derived from the more general

Behavior Diagram, include the Sequence Diagram,

Communication Diagram, Timing Diagram, and Interaction

Overview Diagram.

Each of these diagrams are of used for representing the

system’s different design perspective for Object Oriented

System Modeling.

2. FUCNTIONAL OBJECT OREIENTED

KANGUAGE (SCALA)
Nowadays, the object-oriented approach to software

construction is considered the most successful methodology

for software design, mainly because it makes software reuse

extremely easy. On the other hand, functional programs are

reputedly easier to reason about, simpler to understand, and

friendlier to concurrency. Functional programming offers

some very elegant tools which when combined with an object-

oriented program development philosophy define a really

powerful programming methodology. Scala is a multi-

paradigm programming language combining features of

object-oriented and functional languages. It is a pure object-

oriented language in the sense that every value is an object. In

contrast to Java, all values in Scala are objects (including

numerical values and functions). Types and behavior of

objects are described by classes and traits. Classes are

extended by sub classing and a flexible mixin-based

composition mechanism as a clean replacement for multiple

inheritances.

Scala is also a functional language in the sense that every

function is a value. Scala is extensible, as the development of

domain-specific applications often requires domain-specific

language extensions. Scala provides a unique combination of

language mechanisms that make it easy to smoothly add new

language constructs in form of libraries. It interoperates with

Java and .NET.

However, no proper semantic concept or representation for

language specific features of languages like scala is present in

UML. Hence this paper proposes UML class diagram

representations for traits, mixins, linearization, single Tone

Classes, Case Classes, Parameterized class with variances and

relationship between class or trait and companion objects.

In the paper, we present a proposed UML Class diagram

model for Functional Object Oriented Programming

languages such as Scala. The paper has been organized as

International Journal of Computer Applications (0975 – 8887)

Volume 171 – No.1, August 2017

23

follows: Section 2 Related Work, Section 3 Shows the

proposed model and Section 4 concludes the paper.

3. RELATED WORK
Modeling languages like UML [6] and ER Diagrams [7]

provide associations and relationships as core abstractions.

Meike Massimow in his thesis [4] added stereotypes for trait

mixins and other scala specific elements.

 The addition made by him were for Attributes with access

specifier, var, lazy variables, Traits , mixins, Class and

Genericity. Generic types of polymorphic methods were

shown as additional parameter list in angle brackets

(operation).Traits are were treated same as abstract classes,

however, with a stereotype "Trait".Abstract attributes and

methods were presented in italics (attribute2, operation2). A

dependency arrow with the stereotype "requires" was

available (Trait3, attribute3). However for self-referenced

types, the stereotype "Self" is used (Trait4).

To represent one trait inherited another trait, use a dashed

inheritance arrow (Trait2). This type of arrow is also used

when a one-class traits mixed . Singleton objects are

represented as classes and the stereotype "singleton" is added.

Though the above stated model try to model languages, but

none of the above show precise representation of linearization

order, parameterized classes, singleton classes and companion

objects.

4. PROPOSED MODEL
We propose a model for traits, mixins, linearization, singleton

classes, Case Classes and Parameterized class with variances.

Traits differ from abstract classes as an object of trait can be

created, nor can they be said as similar to interfaces of java, as

Scala allows traits to be partially implemented; i.e. it is

possible to define default implementations for some methods.

In contrast to classes, traits may not have constructor

parameters, although they are used to define object types by

specifying the signature of the supported methods.

Here is an example:

trait Equality {

 def isEqual(x: Any): Boolean

 def isNotEqual(x: Any): Boolean = !isEqual(x)

}

 Classes and traits both can use with clause to inherit from

other traits.

This trait consists of two methods isEqual and isNotEqual.

While isEqual does not provide a concrete method

implementation, method isNotEqual defines a concrete

implementation. Consequently, classes that integrate this trait

only have to provide a concrete implementation for isEqual.

Figure 1 shows the trait representation.

Figure 1: trait representation

In order to allow reuse of compiled classes and to ensure well-

defined behavior, the linearization must satisfy the following

rules:

The linearization of any class must include unmodified the

linearization of any class (but not trait) it extends.

The linearization of any class must include all classes and

mixin traits in the linearization of any trait it extends, but the

mixin traits need not be in the same order as they appear in

the linearization of the traits being mixed in.

No class or trait may appear more than once in the

linearization.

 Figure 2: Linearization Order

Figure 2 shows the notation for linearization Order of

inheritance. In multiple inheritance, a class can have multiple

superclasses, all of which appear exactly once in the

inheritance graph. With traits/mixins, each class has exactly

one superclass (or supertrait), but that trait can appear in

multiple different places in the inheritance graph. Hence

figure two shows a way for representation of such type of

inheritance and linearization.

Scala supports the notion of case classes. Case classes are

regular classes which export their constructor parameters and

which provide a recursive decomposition mechanism

via pattern matching. Figure 3 shows the case classes.

Example below shows a class hierarchy which consists of an

abstract super class Term and three concrete case

classes Var, Fun, and App.

abstract class Term

case class Var(name: String) extends Term

case class Fun(arg: String, body: Term) extends Term

case class App(f: Term, v: Term) extends Term

Figure 3: Case Class

Case Var (name)

Case Fun1()

<<Case Class:Term>>

Function 1(a: Any)
Funciton 2() = !isEqual()

<<Trait>>
A

<<Trait>>
B

Function 1(a: Any)

Funciton 2() = !isEqual()

Any

Ref

<<Trait>>
C

Function 1(a: Any)
Funciton 2() = !isEqual()

Any

Ref

A,B

Function 1(a: Any)
Funciton 2() = !isEqual()

<<Trait>>
TraitName

http://www.scala-lang.org/old/node/120.html

International Journal of Computer Applications (0975 – 8887)

Volume 171 – No.1, August 2017

24

Scala has built-in support for classes parameterized with

types. Such generic classes are particularly useful for the

development of collection classes.

class Stack[T] {

 var elems: List[T] = Nil

 def push(x: T) { elems = x :: elems }

 def top: T = elems.head

 def pop() { elems = elems.tail }

}

Scala supports variance annotations of type parameters

of generic classes. In contrast to Java 5 variance annotations

may be added when a class abstraction is defined, whereas in

Java 5, variance annotations are given by clients when a class

abstraction is used.

Type defined by the class Stack[T] is subject to invariant

subtyping regarding the type parameter. This can restrict the

reuse of the class abstraction.

class Stack[+A] {

 def push[B >: A](elem: B): Stack[B] = new Stack[B] {

 override def top: B = elem

 override def pop: Stack[B] = Stack.this

 override def toString() = elem.toString() + " " +

 Stack.this.toString()

 }

}

The annotation +T declares type T to be used only in covariant

positions. Similarly, -T would declare T to be used only in

contravariant positions. For covariant type parameters we get

a covariant subtype relationship regarding this type parameter.

Figure 4 shows the parameterized Classes.

Figure 4: Parameterized Classes

Singleton Classes are such whose only one instance exists.

They are named same as their class name. Figure 5 shows the

singleton classes.

object HelloWorld {

def main(args: Array[String]) {

println("Hello, world!")

}

}

Figure 5: Singleton classes

5. CONCLUSION
Current modeling methods like UML and ER are explicitly

used for OO programming. This paper proposes a very

precise modeling of Scala traits/classes, linearization order ,

Singleton classes and companion objects, and case classes.

This work can be extended further for representation of

closures, Scala type members and class constructor parameter

bounds, presentation of linearization with generalizations and

aggregation.

6. REFERENCES
[1] Martin Flower,UML Distilled Thrid Edition, A brief

Guide to Stand Object Modeling Language.

[2] Oksana Nikiforova1, Janis Sejans2, Antons Cernickins3,

Role of UML Class Diagram in Object-Oriented

Software Development , Scientific Journal of Riga

Technical University Computer Science. Applied

Computer Systems , DOI: 10.2478/v10143-011-0023-4 ,

Vol 44

[3] Gavin Bierman, Alisdair Wren, First-class relationships in

an object-oriented language, Microsoft Research,

Cambridge, University of Cambridge Computer

Laboratory, FOOL 2005 15 January 2005, Long Beach,

California Copyrightc 2005 ACM

[4] Meike Massimow, Evaluierung des Einsatzes von Scala

bei der Entwicklung für die Android-Plattform, thesis,

University of Applied Sciences,Feb 2009

[5] Eric Allen, Comparison of Object-oriented and Functional

Programming for Code Generation, April 21st, 2010

[6] I. Jacobson, G. Booch, and J. Rumbaugh. The unified

software development process. Addison-Wesley, 1999

[7] P. P.-S. Chen. The entity-relationship model – toward a

unified view of data. ACM Transactions on Database

Systems, 1(1):9–36, 1976.

Hello World

<<insta

nce

Of>>

:Hello World

push(B)

Stack

[+A] A,B

IJCATM : www.ijcaonline.org

http://tribosmap.googlecode.com/files/MRachimowDiplA.pdf
http://tribosmap.googlecode.com/files/MRachimowDiplA.pdf

