Abstract

The authors have pointed out certain discovered facts related to statistical analysis of near fault earthquakes. Directivity effect occurs when the harmonic mean of the velocity of the fault rupture propagation towards a site varies from that of the shear velocity of the rock near the source by a constant factor. The geometric mean of the combined finging effects bears a relation among the individual geometric mean of strike-slip and dip-slip faults, the individual and total number of observed time stamps of both the slip faults. Point estimation plays a pivotal role towards realizing the detrimental effect of near fault earthquake. If reduction of dynamic response is based upon single incidence of inelastic deformation and hypothesis of fairness is rejected, then for unit negative bias, the estimate of weight of the single parameter by either historical supervised or predictive means is represented as a complex variable.
1. Indian Patent File number- 201711005075, Date of filing – 13/02/2017; Publication Date - 30/06/2017, Title- Statistical and Artificial Intelligence based analysis of vibration control of near fault earthquake; Inventors–Dr.Prasun Chakrabarti, Mr Rohan Majumder

Index Terms

Computer Science
Information Sciences

Keywords

Near fault earthquake, directivity effect, fling effort, slip faults