
International Journal of Computer Applications (0975 – 8887)

Volume 171 – No.4, August 2017

13

A Survey on Software Cost and Risk

Assessment Models

Poojanjali Karari
Computer Science Department

SVITS
Indore, India

Pooja Jain
Assistant Professor

Computer Science Department
SVITS

Indore, India

ABSTRACT
Software development is a work of significant effort and team

work. A number of different phases are required to develop a

bug free and assured quality product. In this context, the

appropriate cost and effort estimation is a complex task where

the various factors are affecting the development such as

change management, expertise, development environment and

others. On the other hand, the risk in all phases are also

carried out for the technical and cost affecting scenarios. To

deal with these issues in software development life cycle an

effective solution is needed to be produce. In this context, this

paper focused on analysis of various cost and risk analysis

techniques that are traditionally available and frequently used

in software development industries to maximize the

production and reduction of development issues.

Keywords

Software development, SDLC, risk factors, cost affecting

factors, survey.

1. INTRODUCTION
Set of instructions, program and applications which is used for

controlling and managing various functions of a device such

as computer is termed as software. Hardware categorizes into

physical part and software as virtual in a device. Software

product's development specifies a structure called as software

development life cycle. Six phases depict software

development life cycle model:

1.1.1 Requirement gathering and analysis: gathering of

business requirements are done. Project managers and

stake holders deal with this phase, then validation of

requirement is done thereafter a requirement

specification document is prepared for the guideline of

next phase of model.

1.1.2 Design: requirement specification leads to system and

software design which helps to specify system

requirements, hardware and overall system

architecture also system design is input to next phase.

1.1.3 Implementation / Coding: here work is divided into

unit /modules, actual coding is done. Developer deals

with this phase, the longest in sdlc.

1.1.4 Testing: here testing of code is done with respect to

requirements in order to make sure that the product is

able to solve the need according to requirements. Here

both functional testing which includes unit testing,

integration testing, system testing, and acceptance

testing and non-functional testing is done.

1.1.5 Deployment: successful testing leads to delivery of

product to customers. Here the customers will do beta

testing. If bugs or change in requirement is found then

it is reported to engineering team and after changes

final deployment is done.

1.1.6 Maintenance: regular maintenance of the developed

product needs to be done from time to time.

2. BACKGROUND
This section provides the overview of the different

terminologies and their definition which is used in further

paper.

A. Cost estimation

Iterative process of developing an approximation of resources

needed to complete software project activities is termed as

software cost estimation.it should be done throughout the life

cycle, when cost estimation is done throughout the life cycle,

it helps in refinement of the estimate as more data is available

,also progress of the project and whether deadlines will be met

up .final assessment of the entire cost estimation will lead

company to refine estimation in future as well as the

developers will be able to review the development process.

B. Uses of risk analysis and cost estimation

a. Risk analysis is useful in following situations:

 To neutralize possible problems while planning

projects.

 Deciding to move forward in the next phase or not.

 Improving safety and managing potential risks.

 Changes in government policy or environment or

new competitors in the market.

b. Cost estimation is useful in following situations:

Continuous re estimation of cost helps to compare target

against actual milestone and to identify necessary corrections

to budget and schedule. Iteration as an important tool

improves estimation quality. necessary feedback is also given

to improve the estimation quality in future.

C. Cost estimation models

a. COCOMO Models

Constructive Cost Model (COCOMO) is one of the widely

used algorithmic software. The basic or simple form of

COCOMO model:

MAN-MONTHS = K1* (Delivered Source Instructions) K2

Where K1 and K2 are two parameters, both are dependent on

the application and development environment.

COCOMO model is a type of regression model which is based

on the analysis of 63 selected projects. Here KDSI act as

input. Major problems such as:

http://istqbexamcertification.com/what-is-a-software-testing/

International Journal of Computer Applications (0975 – 8887)

Volume 171 – No.4, August 2017

14

1. Size is estimated with great uncertainty value in the

early phase of system life-cycle. So, accurate cost

estimation cannot be done.

2. Since 63 selected project’s analyses is done for the

derivation of cost estimation equation.

Recalibration is necessary to avoid problems outside

its environment.

In order to overcome the difficulties of estimating cost of

software developed for new life cycle such as rapid-

development process model, reuse-driven approaches, object-

oriented approaches and software process maturity initiative,

newest version COCOMO 2.0 was developed. The major

capabilities of COCOMO 2.0 are a tailor-able family of

software size models, which includes object points, function

points and source lines of code; nonlinear models for software

reengineering; software diseconomies of scale can be

modelled with this approach; and several additions, deletions,

and updates to previous COCOMO effort-multiplier cost

drivers. It can act as a framework for an extensive current data

collection and analysis for the refinement and calibration of

model’s estimate capabilities.

b. Putnam model

Putnam model is a popular software cost estimation model.

The form of this model is:

Technical constant C= size * B1/3 * T4/3

Total Person Months B=1/T4 *(size/C)3

T= Required Development Time in years

Size is estimated in LOC

Where, C is a parameter dependent on the development

environment and it is determined on the basis of historical

data of the past projects.

Rating:

 C=2,000 (poor),

 C=8000 (good)

 C=12,000 (excellent).

The Putnam model has a high involvement of development

time: development time is inversely proportional to the

person-months needed for development. One significant

problem with the PUTNAM model is that it is based on

knowing, or being able to estimate accurately, the size (in

lines of code) of the software to be developed. Software size

can be uncertain resulting in the inaccuracy of cost

estimation. According to Kemerer's research, the error

percentage of SLIM, a Putnam model based method is

77.287%.

c. Function Point Analysis Based Methods

Estimators are required to estimate the number of SLOC in

order to get man-months and duration estimates in case of the

above two algorithmic models. In terms of the functions that

the systems deliver to the user Function Point Analysis is

another method of quantifying the size and complexity of a

software system. ESTIMACS and SPQR/20 are some of the

proprietary models for cost estimation which have adopted a

function point type of approach. Allan Albrecht at IBM

developed the function point measurement method which was

published in 1979. Function points have offered several

significant advantages over SLOC counts of size

measurement. Two steps of counting function points:

 Counting the user functions. Function counts

comprises of five basic software components:

external inputs, external outputs, external inquiries,

logic internal files, and external interfaces, there are

three complexity levels: simple, average or

complex. The summation of these numbers, in

accordance with the complexity level, is the number

of function counts (FC).

 Adjusting for environmental processing

complexity. The final function points is gained by

multiplying FC by an adjustment factor that is

determined by considering 14 aspects of processing

complexity. This adjustment factor allows

modification of FC by at most 35% or -35%.

Following are some of the advantages of function point

analysis based model are:

1. Function points can be estimated from requirements

specifications or design specifications, thus making

it possible to estimate development cost in the early

phases of development.

2. Function points are independent of the language,

tools, or methodologies used for implementation.

3. Non-technical users have a better understanding of

what function points are measuring since function

points are based on the system user's external view

of the system.

D. Risk assessment models

The process used to identify and assess factors that may risk

the success of a project or become a hurdle in achieving a goal

is termed as risk analysis. Another term for this process is

project impact analysis (PIA). In-depth cost-benefit analysis

needs to be conducted. It helps the organization management

to examine and assess a proposal before it becomes a live

project. The risk analysis process is organized and carries out

in the analysis phase of the SDLC. Here the interested parties

are charged with building their case and presenting the

proposal to the management review committee for approval

and initial funding. In [1] authors had depicted some of the

famous risk assessment models which are as follows:

a. Software Risk Assessment Model (SRAM)

SRAM makes use of comprehensive Questionnaire Test

whose results show that using the risk indicator; it is possible

to predict the possible outcome of software projects with good

accuracy. Considering the following nine critical risk

elements:

1. Complexity of software

2. Staff involved in the project

3. Targeted reliability

4. Product requirements

5. Method of estimation

6. Method of monitoring

7. Development process adopted

8. Usability of software and Tools used for

development

9. Finally, a set of questions is carefully chosen for

each of these elements with three choices of answers

each.

Following which the answers are arranged in increasing order

of risk. The method of prioritization is used as a single step of

risk assessment but do not specify how prioritization would be

done.

International Journal of Computer Applications (0975 – 8887)

Volume 171 – No.4, August 2017

15

b. Software Risk Assessment and Estimation Model

(SRAEM)

Risk exposure and software metrics are two parameters of risk

management based on Mission Critical Requirements Stability

Risk Metrics (MCRSRM) which is used in this model.in this

model not only evaluation but estimation of the risk is also

done. Initially the model estimates the sources of uncertainty

using different paradigms such as measurement error, model

error and assumption error. This model also uses the concept

of function points to explain these errors. This model is

different from other existing models because the other models

do not consider the issues related to requirement analysis.

c. Risk Identification, Mitigation and Avoidance Model for

Handling Software Risk (RIMAM)

The model RIMAM is used to provide prototype to handle

various risk factors which comes from nature requirement,

delivery deadline, and staff turnover experience. It identifies

and avoids the risk impact by minimizing the risk. This

model can be implemented easily with minimum cost. The

easy and less costly processing may ensure that there are less

chances of risk or further delay in case of already affected or

risky area. The best part of the model can be customized with

respect to the environment in which it is being used.

d. Software Risk Assessment and Evaluation Process using

Model Based Approach

A better technique of risk estimation and risk prioritization. In

SRAEP, software fault tree approach (SFTA) is used to

identify and analyze the risk. In SFTA, a high-level threat is

further decomposed into intermediate objectives which can be

further decomposed into individual attacker actions. Attacker

actions are connected by AND or OR relationship. Generally,

the exchange of an OR node with an AND node is expected to

increase the safety of software development project. After the

Identification of risk, several countermeasures come across

for risks. An appropriate countermeasure, a new technique

known as Risk Reduction Leverage (RRL) is introduced

which is a simple calculation that gives a numeric value to a

countermeasure enabling different countermeasures to be

compared. Mathematically it can be written as: RRL=

Reduction in Risk exposure / Cost of Countermeasure After

computation of risk and value of RRL and its prioritization the

next step is team review and action planning.

3. LITERATURE REVIEW

A. Previous research and implementation on cost

estimation models includes:

In [2] authors had proposed a new model based on COCOMO

II which has two input’s group from COCOMO II cost

drivers and other effective input parameters, Complexity,

Size, Experience and Mode, and one output, effort estimation.

It shows in Fig. 1 in below.

Fig 1. Model used [2]

Input group 1: COCOMO II cost drivers,

Input group 2: Effective parameters (Complexity, Size,

Experience, Mode),

Output: Effort estimation

The new fuzzy model that proposed in this paper has 21

inputs and one output. The inputs are the complexity to

modify the modules, the experience of developers in software

project, COCOMO II cost drivers, and the size of the

alteration. The output from the inference system is the effort

time estimated in days.

The MATLAB fuzzy inference system (FIS) was used in the

fuzzy calculations, in addition to the Max-Min composition

operator, the Mandani implication operator, and the

Maximum operator for aggregation. As the resulting values

were more appropriate when compared to the other evaluated

techniques (Centre of Area (COA) and First of Maximum

(FOM)), the defuzzification of the output "effort" used the

Mean of Maximum (COM) technique in this work. Once the

new fuzzy model was developed, and the pertinence function

and linguistic rules were included and adjusted, an artificial

dataset based on COCOMO II model ware selected. The

algorithm for fuzzy set learning in a Mamdani-type fuzzy

system is following this four-step procedure:

 Choose a training sample and propagate the input

vector across the network to get the output.

 Determine the error in output, and the error gradient

in all the other layers.

 Determine the parameter changes for the fuzzy

weights and update the fuzzy weights.

 Repeat until the fuzzy error is sufficiently small

after an epoch is complete.

This paper proposed a model for handling imprecision and

uncertainty by using the fuzzy logic systems. Software effort

estimation based on fuzzy logic is an attempt in the area of

software project estimation. This model aims to provide a

technique for software cost estimation that is better than other

techniques in terms of the accuracy of effort estimation. This

model has tried by applying fuzzy logic on the algorithmic

and non-algorithmic software effort estimation models

accurate estimation is achievable.

Another cost estimation model based on use case points, Use

Case Points (UCP) is very important method to estimate the

total effort in software development projects. While the

technique of Activity-based Costing (ABC) serves as the

calculation of costs in each of the activities, especially the

allocation of project resources. ABC technique consists of

five stages of estimates based on the allocation of its

resources, by having the total of UCP first. The result of this

research is a proposed model of integration between UCP and

ABC method or also called UCPabc [3].

There are six main phases to integrate two methods (UCP and

ABC) for counting software cost estimation (also called as an

integration model UCPabc). The explanations of each phase

are:

 Analyse the problem for constructing the proposed

models

 Gather Data from Several Software Development

Projects

 Count Effort (UCP’s Result)

 Analyse Resource, Activity, and Cost Rate (ABC’s

Result)

International Journal of Computer Applications (0975 – 8887)

Volume 171 – No.4, August 2017

16

 Distribute UCP Total Effort Estimation Based on

Product Relative Weight (PRW)

 Determine Cost Object

The proposed model to integrate the UCP method and ABC

techniques shown in Fig 2 The total effort estimation which is

an output of the UCP method was added to the three main

components in the ABC technique, such as: the identification

of resources and activities, cost rate for resource and activity,

and the product relative weight. In the end, UCPabc generates

cost object which can estimate cost of each software

development project.

Fig 2. The Integration Model of UCP and ABC for

Software Development Cost Estimation

Hybrid model:

Another proposed methodology [4] is based on algorithmic &

non-algorithmic methods such as a FP size estimate,

COCOMO II & ANN. The combinations of all these methods

help in estimating the cost of the software. Following is the

objective of the given method:

2.1.1 The first objective is to choose accurate method for

calculating the size as it plays a vital role in calculating cost

and effort.

2.1.2 To improve the performance of existing methods we

need to create a hybrid tool for software cost estimation that

helps in a software development organization.

Given system follows specific steps in which the flow is

Maintained.

Fig 3. Hybrid model

Input

1) SIZE: Calculate the TCF, FP and size using the following

equations:

 C .6 . (

)

FP= UFP*TCF

SIZE (inKLOC) = (FP*select language)/1000

2) Cost factors

3) Scale factors

 B. Classification using PCA and Artificial neural network

Output using COCOMO II

Effort=A* *

Where E=B+0.01*

 A=2.94, B=0.91

 = C*

Where F=D+0.2*0.01
 C=3.67, D=0.28

People=

COCOMO II uses function point size estimation method for

calculating the size of the software.it is composed of 17 effort

multipliers and five scale factors.

Cost = (Effort *)

In the Hybrid model, estimated effort is very close to the

actual effort. Thus, Hybrid model helps in improving the

accuracy of software cost estimation. Performance measure

depends on the following equation:

MRE=

B. Previous research and implementations of software risk

assessment model

The proposed risk assessment model takes the following nine

critical risk elements: complexity of software, staff involved

in the project, targeted reliability, product requirements,

method of estimation, method of monitoring, development

process adopted, usability of software and tools used for

development into considerations. Each element considers a set

of questions with three choices of answers each. The answers

are arranged such that risk is in increasing order [5]. For

example, Software Complexity is one of the risk elements of

software projects. The higher the complexity of the software,

the higher is the risk. The overall risk level R may then be

normalized as follows:

Normalized R = R’ = (R - Rmin/) (Rmax- Rmin)

The risk levels of individual risk element may be computed.

The model also allows levels of risk associated with Quality,

Schedule and Cost of a project to be calculated separately.

The model is tested using past projects of known outcome. It

is concluded that the model can assess the level of risk of a

software project and predict the possible outcome of the

project with reasonable accuracy. However, it is to be noted

that the success of a software product not only depends on the

development risk but also on the marketing risk. The SRAM

only addresses the development risk and does not assess the

marketing risk.

Risk Assessment Methodology

In this model [6], the authors had used methodology based on

UML and VModel development lifecycle. As we know, UML

International Journal of Computer Applications (0975 – 8887)

Volume 171 – No.4, August 2017

17

is the most widely used for software development, and it is

understandable by developers and designers. UML diagram

also helps to manage complexity of system and architectural

problems, and enhances comprehensibility. On other hand, V-

Model is widely accepted development lifecycle for software

development. It is best model for test driven software

development. Each phase of V –Model have two objectives.

One is Validation, and second is Verification as defamed by

IEEE. Validation refers to requirements analysis and

verification refers to evaluation of requirements at each phase

with respect to validation.

In this methodology, it is assumed validation as identification

of risks and verification as monitoring or evaluation of risks.

They have seven phases of risk assessment in this model as

Shown in Fig 4. Each phase of risk assessment, V -Model

shows identification and evaluation of risks at start and end

respectively. First phase is about requirements mapping as

risks are common in requirements phase. In S. Li and S. Duo

describe hazards caused by risks in software requirements in

models and process. Second phase is about detail process

analysis focuses to identify risks within processes that could

be severe in future.

Third phase is to identify the risk elements in list form based

on possibility in phase two. Risk Prioritization is one of

modem ways of risk assessment in software development. X.

Lin and D. Mingrong in focuses to indexing of risks to gain

more accuracy in risk assessment. In fourth phase, they

assume to prioritize risks. Solving risk items is also a critical

part of software development. Phase five focuses on difficulty

of risk solution by means of risk occurrence probability. We

can identify solution difficulty by applying weights. Phase six

focuses towards use of matrices to be applied to measure

risks. As described by X. Lin and D. Mingrong in, there are

different methods to measure risks but accuracy is not

possible from all of them. Therefore, matrices must be

selected basis on type of risk. The seven and last phase is to

calculate-risks and takes measures to solve them.

Fig 4. Phases of Risk Assessment V-Model

SRAEP:

In this paper, we have proposed a Software Risk Assessment

and Evaluation Process (SRAEP) using model based

approach. We have used model based approach because it

requires correct description of the target system, its context

and all security features. In SRAEP, we have used the

software fault tree (SFT) to identify the risk [7].

Identify Context

In this model, the first activity is to identify context. This

activity consists of identification of areas of concern,

identification and evaluation of assets, and identification of

security requirements. For instance, use case diagram with

accompanying use case descriptions specify requirements,

sequence diagram illustrate potential scenarios in the target of

evaluation. Finally, in this category we have the security

requirements identification.

Identify Risk using SFTA

In this paper, we have used the concept of software fault tree

approach (SFTA) to identify the risk and analyze the risk.

SFT A is the main component of the model based approach

once a high-level threat has been determined, a method to

decompose this threat into intermediate objectives is used.

Fig 5. Proposed model of SRAEF

Compute Risk Exposure

Risk Prioritization

Action Planning

4. PROPOSED WORK

Comparison of various cost and risk estimation models:

A. Cost estimation models:

1. Model: New high-performance model

Input: Two inputs

1. 17 cost drivers from COCOMO II

2. Effective i/p parameters.

3. Complexity, size, experience, mode

Output: Effort estimation

Advantages and limitations: Accuracy of effort estimation,

good performance, Determination of fuzzy rule set plays an

important role.

Technology: MATLAB fuzzy inference system (based on

fuzzy logic)

2. Model: Integration model UCPabc

Input: Effort, resource activity and cost rate

Output: Cost object

Advantage and limitation: Financing technique activity based

costing act as an advantage to this model since ucp alone has

some weakness.

Model limits to especially using resource sharing system, not

validated for enterprise scale system.

Technology: Based on use case points.

International Journal of Computer Applications (0975 – 8887)

Volume 171 – No.4, August 2017

18

3. Model: Hybrid model

Input: Size, cost factors, scale factors

Output: o/p using COCOMO II (effort duration)

Advantage and limitation: Proposed technology increases the

correctness of the estimate without worsening the variability

which improves the accuracy, turnaround time and

performance of system

Technology: Based on FP size estimate, COCOMO II and

ANN

B. Risk estimation models:

1. Model: SRAEF

Input: Use case diagram, sequence diagram, security

requirement

Output: Risk estimation and risk prioritization

Advantage and limitation: Support the issues related to

requirement and sources of estimate uncertainty.

Calculation of rrl.

Technology: Model based approach Concept of software fault

tree (SFTA).

2. Model: SRAM

Input: Nine critical risk elements.

Output: Output is based on the ranking of choices in the

questionnaire

Advantage and limitation: Addresses the development risk.

Does not assess the marketing risk.

Secondly, no technology is used fully paper based which is

not recommended in today’s internet revolution

Technology: Paper based questionnaire work

3. Model: Risk assessment v-model

Input: Use case diagram-model

Output: Identification of risk and calculate the measure.

Advantage and limitation: Facilitate its usability and

extendibility according to their own software assessment

criteria.

Technology: Methodology based on uml and v-model life

cycle.

Microsoft excel tool is used.

5. CONCLUSION
The paper provides the study of risk and cost estimation

models. Both the techniques are used to minimize the costing

of software development and to verify the feasibility of the

developed product. But both the techniques are utilized in

different manners to verify the upcoming issues and finding

the solutions before it occurred. In this context, recently some

models are developed that helps to investigate about the

proposes involved in the software development cost and risk

analysis. In near future, a case study of the software

development cost and risk modeling technique with a tool is

presented which used to estimate the cost of development and

the risk of development.

6. REFERENCES
[1] Yogini Bazaz, Shashank Gupta, Om PrakashRishi,

LalitSen Sharma, ”Comparative Study of Risk

Assessment Models Corresponding to Risk Elements”,

IEEE-International Conference on Advances in

Engineering, Science and Management (ICAESM -2012)

March 30, 31, 2012, pp. 61-66

[2] (Iman Attarzadeh, Siew Hock Ow, Proposing a New

High Performance Model for Software Cost Estimation,

2009 Second International Conference on Computer and

Electrical Engineering, pp 112-116)

[3] Renny Sari Dewi, Grandys Frieska Prassida, Sholiq,

Apol Pribadi Subriadi,” UCPabc as an Integration Model

for Software Cost Estimation”, 2 6 2nd International

Conference on Science in Information Technology

(ICSITech), pp 187-192

[4] Lalit V. Patil, Rina M. Waghmode, S. D. Joshi, V.

Khanna ,”GENERIC MODEL O SO WARE COS

ES IMA ION: A HYBRID APPROACH”, 2014 IEEE

International Advance Computing Conference (IACC),

pp 1379-1384

[5] Say-Wei Foo and Arumugam Muruganantham,

SOFTWARE RISK ASSESSMENT MODEL, IEEE

2000, pp 536-544

[6] Muhammad Rashid Naeem WeihuaZhu, Adeel Akbar

Memon Adeel Khalid “Using V-Model Methodology,

UML Process-Based Risk Assessment of Software and

Visualization”, 2 4 International Conference on Cloud

Computing and Internet of Things (CCTOT 2014),pp

197-202

[7] Mohd. Sadiql, Mohd. Wazih Ahmad2, Md. Khalid Imam

Rahmani, SherJung,” Software Risk Assessment and

Evaluation Process (SRAEP) using Model Based

Approach”, 2 O International Conference on

Networking and Information Technology, pp 171-177.

IJCATM : www.ijcaonline.org

