An Effective Approach of Shadow Detection and Removal using Edge Detection and Bilateral Filtering

Laxmi Singh Chandel
Department of Computer Science & Engineering
Samrat Ashok Technological Institute
Vidisha, India

Ajay Kumar Goyal
Department of Computer Science & Engineering
Samrat Ashok Technological Institute
Vidisha, India

ABSTRACT
Here in this paper automatic Shadow detection with Shadow Removal technique is implemented. The planned procedure implemented is based on the concept of identifying the Shadow region for the recognition of Shadow and then applying Filtering over the region to eliminate the silhouette consequence from the image. The planned procedure implemented here works in Two Stages, in the first stage Hybrid technique of arbitrary Walker Segmentation with Canny Edge Detector and bilateral filtering is applied in next Stage. The planned method implemented here is applied over dataset and the scheme provide better Positive rate and High True Positive rate and low error rate.

Keywords
Shadow Detection, Shadow Removal, Canny Edge Detection, Bilateral Filtering, Random Walker Segmentation.

1. INTRODUCTION
A shadow which is recognized to be cause by the interaction of light with objects claims a fraction of the image surface. Shadows in images hold importance for a variety of reasons. On one hand, shadows may lead to the failure of image analysis processes and also cause deterioration in the quality of information which in turn leads to problems procedures in completion of articulate for prospect considerate, entity gratitude and numerous additional applications. On the additional offer, they aid in sequence as cues in construction uncovering, alleyway verdict etc. [1], because, darkness occasionally produce objectionable belongings on descriptions, shadow modernization is measured imperative, and recognition of darkness is the foremost tread towards the purpose. In addition, to belongings somewhere they be active as an minister to, darkness recognition in descriptions the stage a crucial responsibility. It is second-hand for terra firma monitoring, distant sensing, modify uncovering, representation segmentation, countenance gratitude etc.

1.1 Overview of Shadow
A. Shadow
A silhouette takes place when an entity incompletely or completely occurs straight brightness from a foundation of enlightenment. If the brightness liveliness is fallen a smaller amount, that neighborhood is represent as silhouette district while if the brightness power is emit additional this neighborhood is represent as non silhouette district.

B. Identity and Shed Shadow
Shade can be confidential into two categories: cast shadow and personality silhouette. Direct silhouette is provided by the protuberance of the brightness foundation in the course of the object. Self outline is unmoving a silhouette but represent the ingredient of the article that is not illuminated unswervingly by the brightness source. Another time throw silhouette can be confidential into two parts: umbra and partial shade. The division of a throw silhouette wherever through brightness is entirely infertile by its objective is called umbra, whereas the ingredient where unswerving brightness is incompletely infertile is called obscurity [2].

Fig.1 Diverse types of outline

1.2 Various Shadow Detection Methods
As described in [4], silhouette uncovering technique can be categorized as: model based and property based as proposed.

A. Replica Based Procedure
Replica based procedures have incomplete applicability and are functional to precise troubles (say mid-air images) and simple objects only. The reliant on proceeding in sequence about lighting circumstances and prospect geometry as glowing as the entity which also turns out to be a chief disadvantage [2]. These procedures rotate approximately the thought that the desired structures do have repetitive geometries. Hence, probabilistic models could be easily implemented for segmentation purpose. Also, various sets of geometric features are matched with three dimensional object models [4].

B. Property Based Techniques
Possessions based silhouette uncovering methods have smaller amount confines as compared to the mock-up based procedures. They are recognized to be a immense deal improved, because, in these not only geometrical facial appearance are used but they are also combined with the spectral properties of shadow like color or brightness etc. These tactics have been widely used in literature since these are straightforward and trouble-free to execute. As affirmed in [5], these can be generally confidential as: i) thresholding based; ii) shade transformation based; iii) district mounting based; and iv) classification-based. Reference [6] summarizes the categorization of silhouette uncovering procedures specified in [7] anywhere affecting direct silhouette uncovering method have been confidential as: (i) shade/gamut based procedure; (ii) surface based procedure, and (iii) geometry based procedures. According to [8] moving shadows can be detected based on: (i) intensity information, (ii) photometric changing in sequence and (iii) shade and arithmetical in sequence. Also, in [10] shadow removal methods have been categorized as: (i) chromaticity-based
methods; (ii) physical methods; (iii) geometrical-based methods and (iv) texture-based methods.

2. LITERATURE SURVEY
Song et al. [5], Luus et al. [9], Kuo et al. [10] proposed a new Threshold based scheme for the Shadow Detection. Predefined entrance height based on bimodal histogram used to conclude silhouette and non outline pixels. The technique implemented is simple and fast. Requires post dispensation as consequences strength be disjointed or indistinct and possibly will contain holes, sound etc.

Golchin et al. [11], Leone et al. [12], Leone et al. [13], Heikkila et al. [14] proposed another silhouette uncovering technique based on the concept of Texture based Shadow Detection. On this report the correspondence stuck between environment and darkness consistency as fighting fit as the divergence in forefront and surroundings textures. The Technique Accurate results under stable illumination conditions. Best for indoor scenes. Difficult to implement. Poor performance for outdoor scenes as texture cannot be captured.

Xu et al. [15]. Xu et al. [16] proposed a new scheme which is based on Region Growing based technique. kernel point are chosen. Those groups of pixels with elevated self-confidence of organism silhouette (say according to detachment) and silhouette neighborhood complete, enlargement forbidden by connectivity. It will appropriately disconnect silhouette and non silhouette regions. Edges are crisp.

Guo et al. [17], Liu et al.[18] also proposed a new scheme based on Classification methods. Classification procedures like SVM are used based on the concepts overcome by silhouette pixels. It will distinguish plausible gloominess limitations precisely. Straightforward and effortless to put into practice. There are chances of misclassification. Shadows of small objects are missed sometimes.

3. PROPOSED METHODOLOGY
Here for the Automatic silhouette uncovering and taking away from Images Hybrid Technique of applying Random Walker Segmentation with Canny Edge Detector and bilateral filtering is used.

3.1 Random Walker Segmentation
It is a method of segmentation on the foundation of selecting forefront ground and background as seed pixels by moving randomly to other pixels moving from background till any foreground pixel is obtained and the region is extracted as segmented region from the representation.

3.2 Canny Edge Detector
Crafty edge uncovering technique finds boundaries by looking for restricted maxima of the gradient of f(x, y). Here the incline charge is calculating by means of the plagiaristic of a Gaussian Filter. The move toward second-hand here will take two threshold to find brawny and feeble boundaries, and contain the weak edges in the output only if they are connected to strong edges. Therefore, this approach is additional likely to detect true weak edges.

1. Allocate region seeds si for each region R
2. Calculate u(x,y); the likelihood of original inward si for a haphazard rambler opening from (x,y)
3. Dispense (x,y) to marker k if uk(x,y) is the principal amongst u(x,y) for i= 1…N

Steps Involved in Canny Method
- The image is smoothed using Gaussian strain with a particular paradigm departure, σ, to diminish noise
- The confined incline indicate g(x, y) and periphery bearing are compute at each indicate.
- The boundary indicate unweaving give ascend to ridges in the pitch enormity image. This crumple pixels are then thresholds, T1& T2, with T1<T2.

3.3 Bilateral Filtering
A bilateral filter is a non-linear, edge-preserving, and noise-reducing smoothing filter for images. This heaviness can categorize on a Gaussian allocation.

The two-pronged pass through a filter is definite as

\[f_{\text{filtered}}(x) = \frac{1}{W_p} \sum_{x_i \in \Omega} I(x_i) f_r(||I(x_i) - I(x)||) g_s(||x_i - x||), \]

where the normalization term

\[W_p = \sum_{x_i \in \Omega} f_r(||I(x_i) - I(x)||) g_s(||x_i - x||) \]

ensures that the sieve preserves representation energy and

- \(I_{\text{filtered}} \) is the filtered image;
- \(I \) is the unusual participation likeness to be drinkable;
- \(\mathcal{X} \) are the coordinate of the present pixel to be clean;
- \(\Omega \) is the casement centered in \(\mathcal{X} \);
- \(f_r \) is the assortment kernel for filtered variation in intensities. This purpose can be a Gaussian purpose;
- \(g_s \) is the spatial essential part for smoothing variation in coordinates. This purpose can be a Gaussian meaning;

![Fig. 2 Flow Chart of Proposed Methodology](image-url)
4. RESULT ANALYSIS

The table shown below is the analysis and comparison of Existing and proposed schemes evaluated on the basis of their Root Mean Square Error of Shadow Detection. The planned method procedure here for various Datasets provides Less RMSE of Shadow Detection.

Table 1. Evaluation of the proposed Shadow Detection Scheme

<table>
<thead>
<tr>
<th>Methods</th>
<th>UCF Dataset</th>
<th>CMU Dataset</th>
<th>UIUC Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Work</td>
<td>90.65</td>
<td>88.79</td>
<td>93.16</td>
</tr>
<tr>
<td>Proposed Work</td>
<td>92.63</td>
<td>91.27</td>
<td>94.83</td>
</tr>
</tbody>
</table>

The Figure shown below is the analysis and comparison of Existing and proposed schemes evaluated on the foundation of their presentation of Shadow Detection. The planned method implemented here for various Datasets provides high Performance of Shadow Detection.

The table shown below is the analysis and comparison of Existing and proposed schemes evaluated on the basis of their Root Mean Square Error of Shadow Detection. The planned method procedure here for various Datasets provides Less RMSE of Shadow Detection.

Table 2. Quantitative Analysis of RMSE per Pixel

<table>
<thead>
<tr>
<th>Methods</th>
<th>Shadow Region</th>
<th>Literal Region</th>
<th>All Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Work</td>
<td>10.5</td>
<td>4.7</td>
<td>6.1</td>
</tr>
<tr>
<td>Proposed Work</td>
<td>8.64</td>
<td>3.2</td>
<td>5.23</td>
</tr>
</tbody>
</table>

The Figure shown below is the analysis and comparison of Existing and proposed schemes evaluated on the basis of their Root Mean Square Error of Shadow Detection. The planned tactic implemented here for various Datasets provides Less RMSE of Shadow Detection.

Fig. 3 Shadow Detection using Proposed Framework

Fig. 4 Comparison of Performance Evaluation

Fig. 5 Comparison of RMSE per pixel
5. CONCLUSION
Shadow Detection is the identification of Shadow from the images and applying some filtering technique over the shadows to filter the effect of Shadows from the images. Here a new and efficient technique for the uncovering of silhouette using Canny Edge Detection and two-pronged filtering is used for the Shadow uncovering and Removal. The Proposed Scheme is compared with the existing silhouette uncovering and elimination scheme and finds that the scheme implemented here provides High Positive rate and better Accuracy of silhouette uncovering and Low Error rate.

6. REFERENCES

