
International Journal of Computer Applications (0975 – 8887)

Volume 171 – No. 6, August 2017

37

Design and Implement a Hidden Processes Detector

(HPD) based on Windows Prefetch Files

Zaid Abdulelah Mundher
Department of Computers Sciences

College of Computer Sciences and Mathematics
University of Mosul

Mosul, Iraq

ABSTRACT

Hidden processes threat, which is a technique that is used by

malicious code to hide their activities, is a serious threat to the

operating systems. Therefore, the security programs try to

defeat this threat using different approaches. This paper

presents a hidden processes detector (HPD) program to detect

hidden processes on Windows-based systems. The proposed

HPD program introduces a new approach based on the

Windows Prefetch files. The proposed HPD program has been

tested and the results have been mentioned in this paper.

Keywords

Hidden-process, Windows Prefetch files, Rootkit.

1. INTRODUCTION
To improve performance, for each program that runs on

Windows based systems (started from Windows XP), a

Prefetch file is created or updated in the Prefetch folder which

is found under C:\Windows directory [1][2]. Each file in the

Prefetch folder includes information about the program that

the file refers to. This information includes the name of the

application, the DLL and files that are used by the application,

the last run time of the application, and the total number of

times that the application has been launched [13]. The name

of the Prefetch files consists of the executable file name,

followed by a dash, and then an eight character hash of the

program’s start location, with a “.pf” extension [3]. For

example, the Prefetch file for notepad.exe program would be

NOTEPAD.EXE-D8414F97.pf, where D8414F97 is a hash of

the path of the notepad.exe file.

Prefetch directly is shown in Fig. 1.

Fig.1: Prefetch Directory

On the other side, hide processes is a technique which is used

by malicious software such as rootkits and backdoors, so they

can run in background while anti-viruses and security

programs are unware of [4]. There are different methods that

could be used to hide processes, and these methods may be

implemented either in user-mode or kernel-mode. Inline

function hooking and Import Address Table (IAT) redirection

are examples of user-mode hooking techniques. Moreover, to

implement a user-hooking technique, a code injection method

must be implemented. Windows message hooking and create

remote thread are examples of code injection technique. On

the other hade, a device driver must be implemented to use the

kernel-mode hooking type. Modifying the System Service

Descriptor Table (SSDT) is an example of kernel-mode

hooking technique.

The major contribution of this work is to address the hidden

processes detecting issue by introducing a new method that

uses the information that could be extracted from the Prefetch

files to detect hidden processes.

2. LITERATURE REVIEW
There are different ways to detect hidden processes.

Traditionally, most of these ways are based on hooking

techniques and kernel memory scanning [5][6][7]. There are

already some academic works that try to detect hidden

processes. In [8], the author describes some of these methods.

In [4], the author introduced a new vm-based approach to

detect hidden processes. The author of [9] introduced a new

technique that depends on monitoring the parts most often

modified by kernel-mode rootkit.

Each of these methods has its own advantages and

disadvantages, but, in general, all of these techniques are

complex and hard to implement. Moreover, by using one of

these methods, find the path of the hidden processes is

difficult [10]. The aim of this work is to introduce a simple

yet efficient method to detect hidden processes on Windows-

based systems. To the best of the researcher’s knowledge, the

proposed approach has never been introduced before.

3. PROPOSED METHODOLOGY
As was mentioned before, for each program that runs, there

will be an entry in the C:\Windows\Prefetch folder [11]. In

other words, by analyzing the Prefetch file data, the HPD

program could determine if a program is run or not. Since

that, the malicious software such as Rootkits and malwares,

are programs as well, so Prefetch files will be created for

them. The proposed HPD program finds names of the all

processes that listed in the Prefetch folder. To extract the

process’s name from the Prefetch file’s name, some string

manipulations are needed to be done. The list of discovered

processes is compared with a normal processes list that is

gotten using standard enumeration functions. If a process has

a Prefetch file, while it is not appearing using standard

enumeration functions, this process is probably a hidden

process. When the proposed HPD program detects a hidden

process, it will take two actions: First, it adds the detected

International Journal of Computer Applications (0975 – 8887)

Volume 171 – No. 6, August 2017

38

hidden process to the hidden-processes-list. Second, it

searches inside Layout.ini file to get the full path of the

detected hidden process. An overview of the proposed HPD

program is shown in Fig.2

Fig.2: An overview of the proposed system

4. IMPLEMENTATION AND RESULTS
C# language was used to develop the HPD program. The main

window of the HPD is shown in Fig 3.

International Journal of Computer Applications (0975 – 8887)

Volume 171 – No. 6, August 2017

39

Fig.3: The Proposed HPD’s window

To test the activity of the proposed HPD program, a hidden

process tool was used. The HideDriver exchange utility (Fig.

4), which is “a free, lightweight and portable process hiding

and file hiding software developed by Sergey Popenko, it

allows to hide any processes from almost any process

monitors/viewers including Windows task manager.”[12].

Fig. 4: The HideDriver Exchange Utility

The test is performed in three phases. First, the HideDriver

exchange utility is used to hide a selected process

(notepad.exe was chosen to achieve the test). Then, to ensure

that the tool works correctly, the Task Manager was run, and

the results have showed the process (notepad.exe) was not

appear in the processes tab of the Task Manager, which means

that the notepad.exe became a hidden process. Finally, the

HPD was executed, and the hidden process (notepad.exe) was

successfully detected as shown in Fig 5.

Fig.5: Detecting a Hidden Process

The results have shown that the number of files in the

Prefetch folder may be larger than the number of the process.

However, the experimental results indicate that the proposed

HPD program is able to detect any user/kernel hidden process

with a simple, convenient, and efficient method.

5. CONCLUSION
Malicious programs use one or more approaches to cover their

presence, and this behavior called hide processes. To detect

hidden processes, special security programs should be used.

This paper introduced a new way to detect hidden processes

based on Prefetch files. The results clearly demonstrated the

efficient of the proposed method.

The proposed HPD program uses only two useful pieces of

information (name and path) of Prefetch files, but Prefetch

files have more. For example, they contain the date that the

application was last launched, how many times that a program

has been launched, a list of DLL and files that are accessed by

the program, and more. All of these information could be used

to get more details about any hidden process.

6. REFERENCES
[1] Hale Ligh, M., Case, A. , Levy, J. , Walters, A. 2014, “

The Art of Memory Forensics”, John Wiley & Sons, Inc.

[2] Carvey, H., 2012, "Windows Forensic Analysis Toolkit",

Syngress.

[3] Blunden, B. , 2013, "The Rootkit Arsenal", 2nd Edition,

[4] Wen, Y., Zhao, J. , Wang, H. ,Implicit Detection of

Hidden Processes with a Local-Booted Virtual Machine,

International Journal of Security and Its Applications vol.

2. No. 4, 2008

[5] Rutkowski, J., 2003, Advanced Windows 2000 Rootkit

Detection.

[6] Oroszlany, M., 2008, Rootkits under Windows OS and

methods of their detection

[7] ARNOLD, T. , 2011, A COMPARATIVE ANALYSIS

OF ROOTKIT DETECTION TECHNIQUES.

[8] Bozagac, C., 2006,GHOSTWARE AND ROOTKIT

DETECTION TECHNIQUES FOR WINDOWS.

[9] Bravo, P. , García, D. , PROACTIVE DETECTION OF

KERNEL-MODE ROOTKITS

[10] Hoglund, G., Butler, J. , 2005, Rootkits: Subverting the

Windows Kernel.

[11] Messier, R., 2016, OPERATING SYSTEM

FORENSICS, Syngress.

[12] http://diggfreeware.com/incredible-free-and-open-

source-process-hider-and-file-hider/]

[13] Garcia, L., 2011, BULK EXTRACTOR WINDOWS

PREFETCH DECODER.

IJCATM : www.ijcaonline.org

