
International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.10, August 2017

30

Makespan Optimization in Job Shop Scheduling

Problem using Differential Genetic Algorithm

Arshdeep Kaur

Department of Computer
Science & Engineering

BBSBEC
Fatehgarh Sahib, Punjab, India

Baljit Singh Khehra
Department of Computer
Science & Engineering

BBSBEC
Fatehgarh Sahib, Punjab, India

Ishpreet Singh Virk
Department of Computer
Science & Engineering

BBSBEC
Fatehgarh Sahib, Punjab, India

ABSTRACT

Job shop scheduling problem belongs to a class of NP-Hard

problems. Hence, finding an optimal solution for this problem

is a difficult task. In this study, a hybrid method consisting of

Genetic Algorithm (GA) and Differential Evolution (DE)

algorithm has been proposed for solving the Job Shop

Scheduling problem (JSSP). These algorithms are

evolutionary algorithms for solving optimization problems

which refine the candidate solutions iteratively. The results of

previous studies show that the application of genetic

algorithm and differential evolution algorithm individually for

this problem yield results close to the upper bounds. The

proposed algorithm implemented in MATLAB R2013a uses

minimization of makespan as the objective function. This

algorithm has been tested on 50 instances of Taillard series

(TA01-50) benchmark problem. The simulation results

obtained by the proposed algorithm are better than those

obtained by the IPSO-TSAB algorithm.

General Terms

Production scheduling, Evolutionary Algorithm.

Keywords

Combinatorial optimization; Job Shop Scheduling; Genetic

Algorithm (GA); Differential Evolution (DE); Makespan.

1. INTRODUCTION
Scheduling problems have gained significant attention in

recent years, due to their increasing demand in industrial

applications particularly manufacturing. Scheduling can be

considered as an optimization problem which defines the

manner in which various jobs are ordered in accordance with

the available resources. An optimization problem involves

maximizing or minimizing some function, relative to an

available data set, often representing a range of choices

available in a certain situation. These problems may be either

continuous or discrete, depending upon the type of variables.

The problems having continuous and discrete variables are

classified as constrained and combinatorial optimization

problems, respectively. In combinatorial optimization

problem, an optimal solution is obtained from a discrete set of

feasible solutions [1]. Shop scheduling is an interesting area

of research in the field of scheduling, and is considered to be

a combinatorial optimization problem.

In shop scheduling problems, there is a set of n jobs and each

job consists of a certain number of operations which are to be

scheduled on a given set of machines. There may be certain

dispatching rules for scheduling jobs, in order to achieve the

desired objective [2]. Depending upon certain conditions for

execution of jobs, there are three basic variants of shop

scheduling problems: flow shop, job shop and an open shop

problem [3]. In a flow shop problem, there is a strict order of

operations for all jobs [4]. In a job shop problem, there are

some precedence constraints for each job, according to which

the jobs are completed [5]. In an open shop problem, the

operations of all the jobs may be executed in any order [6].

This study is focused on Job Shop Scheduling Problem

(JSSP), under the category of NP-Hard problems, in which

the solution space increases exponentially as the number of

jobs increase, and thus, the number of operations also increase

[1]. Metaheuristic algorithms have proved to be beneficial in

solving such problems by exploring large solution spaces.

Many metaheuristic algorithms have been used for solving the

JSSP including Simulated Annealing [7], Tabu Search [8],

Genetic Algorithm [9], Particle Swarm Optimization [10],

Ant Colony Optimization [11], Bacteria Foraging

Optimization [12], and Differential Evolution [13]. Gao et al.

[14] employed a hybrid Particle Swarm Optimization

algorithm for JSSP followed by Tabu Search, to further refine

the solutions. Real-Integer encoding and decoding scheme

was used to exchange the solutions between these algorithms.

This IPSO-TSAB algorithm was tested on benchmarks of

Lawrence (LA36-40) and Taillard (TA01-50) series and it

resulted in optimal makespan as compared to Tabu Search,

Improved Tabu Search and Hybrid PSO algorithm.

Chang and co-workers [15] developed a hybrid Genetic

Algorithm (GA) and embedded the Taguchi method behind

mating to increase the effectiveness of GA. The experiment

on Brandimarte (MK01-MK10) benchmarks led to feasible

solutions as compared to Effective & Distributed PSO,

Effective GA, and hybrid of PSO & Tabu Search. Goncalves

et al. [16] presented a GA for JSSP which involved random

key representation, schedule construction using priority rules

and embedding local search to refine the solution. The

algorithm was tested on some Fisher & Thompson (1963) and

Lawrence (1984) instances. The near-to-optimal solutions

with average relative deviation of 0.39% from the best known

solution were obtained. Wang and Tang [17] applied an

improved adaptive Genetic Algorithm (IAGA) for solving

JSSP using adaptive crossover and mutation probability, and a

new operator was devised for crossover. The computational

results indicated that IAGA is robust and resulted in better

solutions than other algorithms. Qing-dao-er-ji and Wang [18]

designed a hybrid Genetic Algorithm (HGA) for JSSP,

consisting of a mixed selection operator based on fitness and

concentration value, new crossover operator based on

machine, mutation operator based on critical path, and used

local search at the end. HGA was tested on Fisher &

Thompson and Lawrence benchmark instances and yielded

better results as compared to other algorithms.

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.10, August 2017

31

Zhang et al. [19] proposed a Chaotic Differential Evolution

Algorithm (CDEA) for flexible JSSP and used logistic

mapping for initialization, machine based encoding, double

mutation scheme and an elitist strategy in selection operation.

It helped in minimizing the makespan by reducing relative

error. Ponsich and co-workers [20] hybridized Differential

Evolution (DE) with Tabu Search to solve JSSP. The

experiments on more than 100 instances proved that the

results obtained by the proposed hybrid algorithm are

comparable with those of other algorithms. Yuan et al. [21]

presented a DE algorithm for JSSP in which local search was

embedded to improve the exploration and exploitation ability.

Various computations showed that proposed algorithm

provided optimal results in comparison to standard GA and

DE. Vesterstrom and Thomson [22] evaluated the

applicability of Differential Evolution (DE), Particle Swarm

Optimization (PSO) and Evolutionary Algorithms (EAs) as

numerical optimization techniques. The experiment was

performed on 34 benchmark problems for set number of

evaluations & random seeds. It showed that DE outperformed

EA & PSO, except on two noisy functions, in which EA

outperformed DE & PSO.

Thus, it can be concluded from the above discussion that

Genetic Algorithm (GA) and Differential Evolution (DE)

algorithm can yield optimal results when used for JSSP. Both

GA and DE are metaheuristic algorithms. Genetic Algorithm

can efficiently find global minimum in minimization

problems [23]. Traditional GA has powerful exploration

ability, but gets trapped in the local optima. Hence, GA

suffers from premature convergence [17, 24]. On the other

hand, DE has certain parameters (e.g. scaling factor F and

crossover ratio Cr) to control the exploration-exploitation

balance. Also, DE can find global minimum for benchmark

problems with smaller function calls as compared to PSO and

it is more robust [23]. So, the combination of both these

algorithms may help in finding optimal makespan. The

proposed hybrid algorithm is tested on 50 benchmark problem

instances of Taillard series from 15×15 to 30×20 [25].

2. JOB SHOP SCHEDULING PROBLEM

 (JSSP)
A standard Job Shop Scheduling Problem (JSSP) may be

defined as: There are ‘n’ different jobs required to be

processed on ‘m’ machines, which execute one of the ‘m’

operations per job [14, 26]. The number of operations that

each job consists of, is equal to the number of machines. The

basic assumptions of JSSP include [24, 27]:

1. Each job consists of a sequence of operations.

2. All operations must go to each machine only once.

3. Each machine handles only one operation at a time.

4. An operation cannot be interrupted until it is complete i.e.

non-preemption.

5. There are precedence constraints among the operations of
same job, but not among different jobs.

6. There are no time delays.

The main aim of JSSP is to find a schedule having minimum

length [28]. A schedule may be defined as the mapping of

jobs to machines, and the processing times of operations to

minimize the makespan i.e. the completion time of the last

job. It can be denoted by Cmax (π) of the last job in an order π

= {j1, j2, . . . ,jn}. The makespan is said to be optimal if it is

close to the upper bound i.e. the upper limit of the makespan

or the minimum makespan [25].

Consider an example of a JSSP. Suppose there are 3 jobs and

each job consists of 3 operations, which are to be executed on

2 machines. A JSSP consists of the dimension n×m where n is

the number of jobs and m is the number of machines. Here,

the given problem is a 3×2 problem. The processing times of

operations and the order of execution of operations is given

below:

Table 1. Example of 3×2 JSSP

Jobs Processing Times Execution Sequence

Job 1 O11=3; O12=3; O13=3 O11-O12-O13

Job 2 O21=2; O22=4; O23=3 O21-O22-O23

Job 3 O31=2; O32=3; O33=1 O31-O32-O33

There are many schedules available for the above example.

One of the feasible schedules is shown in Figure 1 in the form

of a Gantt chart. The makespan in this case is 13. The various

tasks are denoted by the operation numbers. O11 implies the

first operation of job 1, O12 implies second operation of job 2

and so on.

Figure 1: Gantt chart for 3×2 JSSP

3. DIFFERENTIAL GENETIC

 ALGORITHM (DGA)

3.1 Genetic Algorithm (GA)
A Genetic Algorithm is a population based search mechanism
involving the phenomenon of natural genetics [24]. It follows
Darwin’s Theory of survival of the fittest which states that:
Only fittest individuals survive and reproduce. In this,
chromosomes are used for initialization of generations and
fitness function is evaluated. The fitness function is the
objective function which is to be maximized or minimized,
depending upon the problem.

Basic steps of Genetic Algorithm are as below:

i. Encoding: It is used to describe the chromosome. The
representation may be direct or indirect [1, 26]. In direct
representation, the chromosomes represent the schedules for
scheduling problem whereas in indirect representation, the
chromosome does not directly represent a schedule. Hence, a
decoding mechanism is used to convert the chromosomes into
the respective schedules [29].

ii. Selection: It selects the chromosomes for crossover on the
basis of fitness function. There are various schemes for
performing selection in GA i.e. Roulette wheel selection,
Rank based selection, Tournament selection, Boltzmann
selection, Stochastic Universal Sampling and so on [30, 31].

iii. Crossover: The two selected chromosomes exchange their
genes with one another on the basis of some random number
or crossover rate. New chromosomes contain features from
both the parents. Some variants of crossover operation are
PMX crossover, order crossover, cyclic crossover and so on
[32].

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.10, August 2017

32

iv. Mutation: After the new chromosomes have been
generated, mutation is induced to preserve the genetic
diversity of the population. Various mutation mechanisms
have been proposed i.e. random mutation, flipping, and swap
mutation etc. [33, 34].

3.2 Differential Evolution (DE)
Differential Evolution (DE) is a population based stochastic
optimization algorithm [35] which uses real values for
performing various operations. The operations in DE are same
as GA, but their order is reverse. The mutation is induced
followed by crossover, and the selection is performed at the
end. DE works with old and new generation individuals and
the fittest ones are taken to the next generation.

The Differential Evolution algorithm proceeds as follows:

i. Initialization: The parameters used i.e. mutation factor (F),
crossover factor (CR), population size, number of generations
etc. are initialized.

ii. Mutation: Each individual is set as the target vector, one by
one and mutation is performed using mutation factor (F) and
some other individuals. There are certain variants for
performing mutation [36]. The individual generated after
mutation is called the mutant vector or donor vector.

iii. Crossover: It is performed between the target vector and
the mutant or donor vector, to produce the trial vector.
Crossover rate (CR) is used to perform exponential or
binomial crossover operation [37].

iv. Selection: The target and trial vectors are compared
according to their fitness values and the individual having
better value of fitness function is placed in the next generation.

3.3 Proposed Hybrid Algorithm
The DE algorithm consists of various phases in the sequence:
mutation, crossover and selection whereas GA consists of
these phases in reverse sequence. In the proposed approach,
Differential Evolution (DE) algorithm is embedded in the
Genetic Algorithm (GA). The phases proceed as in GA, but
the operators used are the same as in DE. The parameters are
set to yield good results. GA suffers from premature
convergence but the scaling factor less than 0.6 results in
slower convergence, thus improving the results [38].
Similarly, the value of crossover factor (Cr) is set accordingly.

Pseudo code: Proposed-DGA:

Step 1: Begin

Step 2: Initialize the parameters: Mutation Factor, F= 0.5;

Crossover Factor, Cr=0.4; Population Size= 30;

Maximum Iterations= 100

Step 3: Randomly generate two initial populations of
chromosomes of size 30 lying b/w 0 & 1

Step 4: while (the termination criterion is not satisfied)

Step 5: do

Step 6: for (i=1 to Population Size)

 Use real-integer encoding approach to transform the

real solutions into integer solutions, to calculate
their fitness function i.e. makespan using Eq. 1.

Step 7: Perform Selection: The population with minimum
makespan is selected for crossover.

Step 8: Perform Crossover: Binomial crossover is applied
on initial population without encoding.

Step 9: Mutation: rand/1/bin approach as in Eq. 2 is used for
mutation.

Step 10: Perform Greedy selection to choose the best

schedule between the solutions, obtained after

mutation and crossover on the basis of makespan
(Cmax) value.

Step 11: Place the selected individual in the next
 generation.

Step 12: end for

Step 13: end do

Step 14: End

The various operators used in above algorithm are described
below:

i. Initial population: Two initial populations of size 30 with

values lying between 0 & 1 are generated randomly. For

example, population with size 4 and 6 genes can be

represented as:

 Individual 1: 0.68 0.89 0.04 0.94 0.52 0.17

 Individual 2: 0.92 0.22 0.33 0.61 0.58 0.06

 Individual 3: 0.22 0.14 0.40 0.02 0.04 0.07

 Individual 4: 0.12 0.09 0.05 0.91 0.57 0.32

ii. Encoding: The real-integer encoding approach [14] is used

to convert the real values into integers. It can be explained as:

Consider the first chromosome with genes 0.68, 0.89, 0.04,

0.94, 0.52 and 0.17. These are first sorted in ascending order

according to their position in the chromosome: C= (3, 6, 5, 1,

2, 4). Now, apply the formula: C1= ceil(C/no. of machines).

Suppose number of machines is 2. Then, C1= (2, 3, 3, 1, 1, 2).

The elements in C1 depict the serial numbers of the machines.

iii. Fitness Function: The fitness function used here is
makespan. It refers to total completion time of jobs, which is
to be minimized. It is represented by Cmax and the basic model
with makespan objective is described as follows [14]:

 (Eq. 1)

iv. Crossover: The crossover method used in the proposed
algorithm is Binomial crossover, same as in Differential
Evolution (DE) algorithm. In this, components are taken from
the two selected individuals. One is taken with probability Cr
and the other with probability 1-Cr. The value of Cr is taken to
be 0.4 in this case.

A random value less than 1 is generated. If random value<=
Cr, then that gene is added from second individual, otherwise
from first individual [37]. For example, suppose Cr= 0.4 and
random value is generated every time for each gene, then a
trial individual is obtained as:

Table 2. Generation of trial individual

Individual

1

Individual

2

Random

value

Trial

Individual

0.68 0.92 0.8 0.68

0.89 0.22 0.2 0.22

0.04 0.33 0.3 0.33

0.94 0.61 0.6 0.94

0.52 0.58 0.4 0.58

0.17 0.06 0.7 0.17

v. Mutation: The random mutations are done first. Then,
rand/1/bin approach of Differential Evolution (DE) is used. In
this approach, the weighted difference between two randomly
chosen individuals is added to a third randomly chosen
individual according to the equation [36]:

 (Eq. 2)

Here, F is the mutation factor which is taken to be 0.5 and xr1,
xr2 and xr3 are three randomly chosen individuals.

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.10, August 2017

33

For example, suppose there are 2 randomly chosen individuals
i.e. Individual 2 and 4. The difference between genes of
Individuals 2 and 4 is calculated. It is then converted into a
weighted difference by multiplying the difference with
mutation factor (F) as shown below:

Table 3. Calculation of weighted difference

Individual

2

Individual

4
Difference

Weighted

difference

0.92 0.12 0.8 0.4

0.22 0.09 0.13 0.07

0.33 0.05 0.28 0.14

0.61 0.91 Mod(-0.3) 0.28

0.58 0.57 0.01 0.05

0.06 0.32 Mod(-0.26) 0.13

This weighted difference obtained is added to a third

randomly chosen individual (i.e. Individual 3 in this case) to

form a mutant individual as follows:

Table 4. Generation of mutant individual

Weighted

difference

Individual

3

Mutant

Individual

0.4 0.22 0.62

0.07 0.14 0.21

0.14 0.40 0.54

0.28 0.02 0.3

0.05 0.04 0.09

0.13 0.07 0.2

At the end, the fitness value of trial individual is compared

with the fitness of mutant individual, and the individual with

minimum fitness value is placed in next generation.

vi. Termination criteria: The termination criterion is

maximum number of generations, which is 100 in this case.

The algorithm continues for the set number of iterations and

then terminates while returning the best schedule and its

makespan.

4. SIMULATION RESULTS &

COMPARISONS
The results obtained by the proposed algorithm i.e. DGA for

JSSP are close to the upper bounds of optimal makespan. The

DGA is compared with IPSO-TSAB [14] for 50 problem

instances of Taillard Series (TA01-TA50). It is observed that

the results obtained by DGA are comparable to those

obtained by IPSO-TSAB. The Best Known Solution (BKS)

and makespan values obtained by IPSO-TSAB and the

Proposed DGA are listed in Table 5. The makespan obtained

by DGA is very close to the optimal makespan for large

problems too, thus, proving its applicability for large sized

problems.

Table 5. Comparative results of algorithms for TA01-

TA50 instances

Problem Size BKS (or

upper

bound)

IPSO-

TSAB

Proposed-

DGA

TA01 1231 1231 1231

TA02 1244 1244 1244

TA03 1218 1218 1218

TA04 1175 1175 1175

TA05 15×15 1224 1224 1224

TA06 1238 1238 1238

TA07 1227 1228 1227

TA08 1217 1217 1217

TA09 1274 1274 1274

TA10 1241 1241 1241

TA11 1359 1362 1359

TA12 1367 1370 1367

TA13 1342 1347 1342

TA14 1345 1345 1345

TA15 20×15 1339 1342 1340

TA16 1360 1362 1360

TA17 1462 1468 1462

TA18 1396 1401 1396

TA19 1335 1335 1335

TA20 1348 1352 1349

TA21 1644 1647 1645

TA22 1600 1600 1600

TA23 1557 1557 1557

TA24 1646 1647 1646

TA25 20×20 1595 1597 1595

TA26 1645 1651 1646

TA27 1680 1686 1680

TA28 1603 1617 1604

TA29 1625 1625 1625

TA30 1584 1584 1584

TA31 1764 1764 1764

TA32 1795 1817 1798

TA33 1791 1795 1791

TA34 1829 1830 1829

TA35 30×15 2007 2007 2007

TA36 1819 1819 1819

TA37 1771 1791 1772

TA38 1673 1674 1673

TA39 1795 1795 1795

TA40 1674 1686 1676

TA41 2018 2032 2018

TA42 1949 1962 1949

TA43 1858 1880 1858

TA44 1983 2001 1983

TA45 30×20 2000 2000 2000

TA46 2015 2027 2016

TA47 1903 1921 1904

TA48 1949 1965 1950

TA49 1967 1981 1968

TA50 1926 1950 1930

The comparison of the performance of IPSO-TSAB and the

proposed DGA algorithm is given in Figures 2-6 below. It is

observed that the performance of the proposed algorithm is

similar to IPSO-TSAB for all instances of 15×15 problems.

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.10, August 2017

34

But the results start improving while going towards larger

problems till 30×20 dimensions.

Figure 2: Results of IPSO-TSAB & Proposed DGA for

15×15 JSSP

It is clear from Figure 2 that the value of makespan obtained

by IPSO-TSAB and Proposed-DGA are equal to the upper

bound, except for an instance TA07, for which the proposed

algorithm provides better result.

Figure 3: Results of IPSO-TSAB & Proposed DGA for

20×15 JSSP

It is clear from Figure 3 that the proposed algorithm provides

good results in almost all the instances for problems with

dimension 20×15.

Figure 4: Results of IPSO-TSAB & Proposed DGA for

20×20 JSSP

Figure 5: Results of IPSO-TSAB & Proposed DGA for

30×15 JSSP

Similarly, the results for many problem instances of

dimension 20×20 and 30×15 are obtained close to the upper

bounds of optimal makespan as shown in Figures 4 and 5.

Figure 6: Results of IPSO-TSAB & Proposed DGA for

30×20 JSSP

The difference between the makespan values obtained from

both the algorithms is clearly visible in Figure 6. The

proposed algorithm improved the makespan value for all the

problem instances, except for TA45 for which the IPSO-

TSAB also obtained the optimal makespan.

5. CONCLUSIONS & FUTURE SCOPE
In this study, the Job Shop Scheduling Problem (JSSP) has

been solved using two evolutionary algorithms, namely

Genetic Algorithm (GA) and Differential Evolution (DE).

Genetic Algorithm helped in finding global optimal solution

and Differential Evolution algorithm was useful in

overcoming the problem of premature convergence, by

adjusting the parameters in such a way that exploration and

exploitation abilities are balanced. The algorithm was run 10

times on Intel Core i3-2330M system for each of the 50

problem instances. It resulted in makespan values close to the

Best Known Solution (BKS) for all benchmark instances. The

computational results achieved demonstrate the effectiveness

of the evolutionary algorithms for solving such problems.

Further, the DGA can be tested on various other benchmark

instances like Lawrence, Fisher & Thompson, Applegate &

Cook and the remaining instances of Taillard series. It can

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.10, August 2017

35

also be used for other scheduling problems like Flow Shop

problem, Open Shop problem and Mixed shop scheduling

problems. The operators of Differential Evolution algorithm

can be varied and used on some other problems also. The

future research may be focused on developing more efficient

meta-heuristic algorithms to find more optimal solutions for

the Job Shop Scheduling Problem.

6. ACKNOWLEDGMENTS
The authors gratefully acknowledge Computer Science and

Engineering Department, Baba Banda Singh Bahadur

Engineering College, Fatehgarh Sahib, Punjab (India) for

providing support and computer lab facilities to carry out this

research work.

7. REFERENCES
[1] Milosevic, M., Lukic, D., Durdev, M., Antic, A., and

Borojevic, S., “An overview of Genetic Algorithms for

Job Shop Scheduling problems”, Journal of Production

Engineering, vol. 18, no. 2, pp. 11-15, 2015.

[2] Korytkowski, P., Rymaszewski, S., and Wisniewski,

T., “Ant Colony Optimization for Job Shop Scheduling

using multi-attribute dispatching rules”, International

Journal of Advanced Manufacturing Technology, vol.

67, 2013.

[3] Nguyen, V. and Bao, H. P., “An Efficient Solution to

the Mixed Shop Scheduling Problem Using a Modified

Genetic Algorithm”, In: Procedia Computer Science,

vol. 95, pp. 475-482, 2016.

[4] Yenisey, M. M. and Yagmahan, B., “Multi-objective

permutation flow shop scheduling problem: Literature

review, classification and current trends”, Omega, vol.

45, pp. 119-135, 2014.

[5] Huang, K. L. and Liao, C. J., “Ant colony optimization

combined with taboo search for the job Shop

scheduling problem”, Computers & operations

research, vol. 35, no. 4, pp. 1030-1046, 2008.

[6] Dorndorf, U., Pesch, E. and Phan-Huy, T., “Solving the

open shop scheduling problem”, Journal of Scheduling,

vol. 4, no. 3, pp. 157-174, 2001.

[7] Zhang, R. and Wu, C., “A hybrid immune simulated

annealing algorithm for the job shop scheduling

problem”, Applied Soft Computing, vol. 10, no. 1, pp.

79-89, 2010.

[8] Li, J. Q., Pan, Q. K., Suganthan, P. N. and Chua, T. J.,

“A hybrid tabu search algorithm with an efficient

neighborhood structure for the flexible job shop

scheduling problem”, The International Journal of

Advanced Manufacturing Technology, vol. 52, no. 5,

pp. 683-697, 2011.

[9] Watanabe, M., Ida, K. and Gen, M., “A genetic

algorithm with modified crossover operator and search

area adaptation for the job-shop scheduling problem”,

Computers & Industrial Engineering, vol. 48, no. 4, pp.

743-752, 2005.

[10] Lin, T. L., Horng, S. J., Kao, T. W., Chen, Y. H., Run,

R. S., Chen, R. J., Lai, J. L. and Kuo, I. H., “An

efficient job-shop scheduling algorithm based on

particle swarm optimization”, Expert Systems with

Applications, vol. 37, no. 3, pp. 2629-2636, 2010.

[11] Zhou, R., Nee, A. Y. C. and Lee, H. P., “Performance

of an ant colony optimisation algorithm in dynamic job

shop scheduling problems”, International Journal of

Production Research, vol. 47, no. 11, pp. 2903-2920,

2009.

[12] Wu, C., Zhang, N., Jiang, J., Yang, J. and Liang, Y.,

“Improved bacterial foraging algorithms and their

applications to job shop scheduling problems”, In:

International Conference on Adaptive and Natural

Computing Algorithms, Springer Berlin Heidelberg,

2007. pp. 562-569.

[13] Wisittipanich, W. and Kachitvichyanukul, V.,

“Differential evolution algorithm for job shop

scheduling problem”, Industrial Engineering and

Management Systems, vol. 10, no. 3, pp. 203-208,

2011.

[14] Gao, H., Kwong, S., Fan, B. and Wang, R., “A hybrid

particle-swarm tabu search algorithm for solving job

shop scheduling problems”, IEEE Transactions on

Industrial Informatics, vol. 10, no. 4, pp. 2044-2054,

2014.

[15] Chang, H. C., Chen, Y. P., Liu, T. K. and Chou, J. H.,

“Solving the flexible job shop scheduling problem with

makespan optimization by using a hybrid Taguchi-

genetic algorithm”, IEEE, vol. 3, pp. 1740-1754, 2015.

[16] Goncalves, J. F., de Magalhaes Mendes, J. J. and

Resende, M. G. C., “A hybrid genetic algorithm for the

job shop scheduling problem”, European journal of

operational research, vol. 167, no. 1, pp. 77-95, 2005.

[17] Wang, L. and Tang, D. B., “An improved adaptive

genetic algorithm based on hormone modulation

mechanism for job-shop scheduling problem”, Expert

Systems with Applications, 2011.

[18] Qing-dao-er-ji, R. and Wang, Y., “A new hybrid

genetic algorithm for job shop scheduling problem”,

Computers & Operations Research, vol. 39, no. 10, pp.

2291-2299, 2012.

[19] Zhang, H., Yan, Q., Zhang, G. and Jiang, Z., “A

Chaotic Differential Evolution Algorithm for Flexible

Job Shop Scheduling”, In: Asian Simulation

Conference, Springer, pp. 79-88, 2016.

[20] Ponsich, A. and Coello, C. A. C., “A hybrid differential

evolution—tabu search algorithm for the solution of

job-shop scheduling problems”, Applied Soft

Computing, vol. 13, no. 1, pp. 462-474, 2013.

[21] Yuan, Y. and Xu, H., “Flexible job shop scheduling

using hybrid differential evolution algorithms”,

Computers & Industrial Engineering, vol. 65, no. 2, pp.

246-260, 2013.

 [22] Vesterstrom, J. and Thomsen, R., “A comparative

study of differential evolution, particle swarm

optimization, and evolutionary algorithms on numerical

benchmark problems”, Evolutionary Computation,

CEC2004, IEEE, vol. 2, pp. 1980-1987, 2004.

[23] Kitayama, S., Arakawa, M. and Yamazaki, K.,

“Differential evolution as the global optimization

technique and its application to structural

optimization”, Applied Soft Computing, vol. 11, no. 4,

pp. 3792-3803, 2011.

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.10, August 2017

36

[24] Ying, W. and Bin, L., “Job-shop scheduling using

genetic algorithm”, In: Systems, Man, and Cybernetics,

IEEE International Conference, 1996. vol. 3, pp. 1994-

1999.

[25] Taillard, E., “Benchmarks for basic scheduling

problems”, European journal of operational research,

vol. 64, no. 2, pp. 278-285, 1993.

[26] Chen, J. C., Wu, C. C., Chen, C. W. and Chen, K. H.,

“Flexible job shop scheduling with parallel machines

using Genetic Algorithm and Grouping Genetic

Algorithm”, Expert Systems with Applications, vol. 39,

no. 11, pp. 10016-10021, 2012.

[27] Blazewicz, J., Domschke, W. and Pesch, E., “The job

shop scheduling problem: Conventional and new

solution techniques”, European journal of operational

research, vol. 93, no. 1, pp. 1-33, 1996.

[28] Cheng, R., Gen, M. and Tsujimura, Y., “A tutorial

survey of job-shop scheduling problems using genetic

algorithms—I. Representation”, Computers &

industrial engineering, vol. 30, no. 4, pp. 983-997,

1996.

[29] Mesghouni, K., Hammadi, S. and Borne, P.,

“Evolutionary algorithms for job-shop scheduling”,

International Journal of Applied Mathematics and

Computer Science, vol. 14, no. 1, pp. 91-104, 2004.

[30] Ranjini, A. and Zoraida, B. S. E., “Analysis of

selection schemes for solving job shop scheduling

problem using genetic algorithm”, International Journal

of Research in Engineering and Technology (IJRET),

vol. 2, no. 11, pp. 2319-1163, 2013.

 [31] Goldberg, D. E. and Deb, K., Foundations of Genetic

Algorithms, vol. 1, CA: Morgan Kaufmann Publishers,

1991, A comparative analysis of selection schemes

used in genetic algorithms, pp. 69-93.

[32] Aickelin, U. and Dowsland, K. A., “An indirect genetic

algorithm for a nurse-scheduling problem”, Computers

& Operations Research, vol. 31, no. 5, pp. 761-778,

2004.

[33] Yu, J. and Buyya, R., “Scheduling scientific workflow

applications with deadline and budget constraints using

genetic algorithms”, Scientific Programming, vol. 14,

no. 3-4, pp. 217-230, 2006.

[34] De Falco, I., Della Cioppa, A. and Tarantino, E.,

“Mutation-based genetic algorithm: performance

evaluation”, Applied Soft Computing, vol. 1, no. 4, pp.

285-299, 2002.

[35] Mohanty, B., Panda, S., and Hota, P. K., “Differential

evolution algorithm based automatic generation control

for interconnected power systems with non-linearity”,

Alexandria Engineering Journal, vol. 53, no. 3, pp.

537-552, 2014.

 [36] Storn, R., “On the usage of differential evolution for

function optimization”, Fuzzy Information Processing

Society, NAFIPS, 1996 Biennial Conference of the

North American, IEEE. pp. 519-523.

[37] Zaharie, D., “A comparative analysis of crossover

variants in differential evolution”, In Proceedings of

International Multiconference on Computer Science

and Information Technology (IMCSIT), 2007. pp. 171-

181.

[38] Gao, A., and Zhao, C., “Parameter Controlling and

Adjusting Strategy of Differential Evolution

Algorithm”, Technical Journal of the Faculty of

Engineering (TJFE), vol. 39, no. 5, pp. 351-357, 2016.

IJCATM : www.ijcaonline.org

IJCATM : www.ijcaonline.org

