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ABSTRACT 

Job shop scheduling problem belongs to a class of NP-Hard 

problems. Hence, finding an optimal solution for this problem 

is a difficult task. In this study, a hybrid method consisting of 

Genetic Algorithm (GA) and Differential Evolution (DE) 

algorithm has been proposed for solving the Job Shop 

Scheduling problem (JSSP). These algorithms are 

evolutionary algorithms for solving optimization problems 

which refine the candidate solutions iteratively. The results of 

previous studies show that the application of genetic 

algorithm and differential evolution algorithm individually for 

this problem yield results close to the upper bounds. The 

proposed algorithm implemented in MATLAB R2013a uses 

minimization of makespan as the objective function. This 

algorithm has been tested on 50 instances of Taillard series 

(TA01-50) benchmark problem. The simulation results 

obtained by the proposed algorithm are better than those 

obtained by the IPSO-TSAB algorithm.      
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1. INTRODUCTION 
Scheduling problems have gained significant attention in 

recent years, due to their increasing demand in industrial 

applications particularly manufacturing. Scheduling can be 

considered as an optimization problem which defines the 

manner in which various jobs are ordered in accordance with 

the available resources. An optimization problem involves 

maximizing or minimizing some function, relative to an 

available data set, often representing a range of choices 

available in a certain situation. These problems may be either 

continuous or discrete, depending upon the type of variables. 

The problems having continuous and discrete variables are 

classified as constrained and combinatorial optimization 

problems, respectively. In combinatorial optimization 

problem, an optimal solution is obtained from a discrete set of 

feasible solutions [1]. Shop scheduling is an interesting area 

of research in the field of scheduling, and is considered to be 

a combinatorial optimization problem.  

In shop scheduling problems, there is a set of n jobs and each 

job consists of a certain number of operations which are to be 

scheduled on a given set of machines. There may be certain 

dispatching rules for scheduling jobs, in order to achieve the 

desired objective [2]. Depending upon certain conditions for 

execution of jobs, there are three basic variants of shop 

scheduling problems: flow shop, job shop and an open shop 

problem [3]. In a flow shop problem, there is a strict order of 

operations for all jobs [4]. In a job shop problem, there are 

some precedence constraints for each job, according to which 

the jobs are completed [5]. In an open shop problem, the 

operations of all the jobs may be executed in any order [6]. 

This study is focused on Job Shop Scheduling Problem 

(JSSP), under the category of NP-Hard problems, in which 

the solution space increases exponentially as the number of 

jobs increase, and thus, the number of operations also increase 

[1]. Metaheuristic algorithms have proved to be beneficial in 

solving such problems by exploring large solution spaces.  

Many metaheuristic algorithms have been used for solving the 

JSSP including Simulated Annealing [7], Tabu Search [8], 

Genetic Algorithm [9], Particle Swarm Optimization [10], 

Ant Colony Optimization [11], Bacteria Foraging 

Optimization [12], and Differential Evolution [13]. Gao et al. 

[14] employed a hybrid Particle Swarm Optimization 

algorithm for JSSP followed by Tabu Search, to further refine 

the solutions. Real-Integer encoding and decoding scheme 

was used to exchange the solutions between these algorithms. 

This IPSO-TSAB algorithm was tested on benchmarks of 

Lawrence (LA36-40) and Taillard (TA01-50) series and it 

resulted in optimal makespan as compared to Tabu Search, 

Improved Tabu Search and Hybrid PSO algorithm.  

Chang and co-workers [15] developed a hybrid Genetic 

Algorithm (GA) and embedded the Taguchi method behind 

mating to increase the effectiveness of GA. The experiment 

on Brandimarte (MK01-MK10) benchmarks led to feasible 

solutions as compared to Effective & Distributed PSO, 

Effective GA, and hybrid of PSO & Tabu Search. Goncalves 

et al. [16] presented a GA for JSSP which involved random 

key representation, schedule construction using priority rules 

and embedding local search to refine the solution. The 

algorithm was tested on some Fisher & Thompson (1963) and 

Lawrence (1984) instances. The near-to-optimal solutions 

with average relative deviation of 0.39% from the best known 

solution were obtained. Wang and Tang [17] applied an 

improved adaptive Genetic Algorithm (IAGA) for solving 

JSSP using adaptive crossover and mutation probability, and a 

new operator was devised for crossover. The computational 

results indicated that IAGA is robust and resulted in better 

solutions than other algorithms. Qing-dao-er-ji and Wang [18] 

designed a hybrid Genetic Algorithm (HGA) for JSSP, 

consisting of a mixed selection operator based on fitness and 

concentration value, new crossover operator based on 

machine, mutation operator based on critical path, and used 

local search at the end. HGA was tested on Fisher & 

Thompson and Lawrence benchmark instances and yielded 

better results as compared to other algorithms.  
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Zhang et al. [19] proposed a Chaotic Differential Evolution 

Algorithm (CDEA) for flexible JSSP and used logistic 

mapping for initialization, machine based encoding, double 

mutation scheme and an elitist strategy in selection operation. 

It helped in minimizing the makespan by reducing relative 

error. Ponsich and co-workers [20] hybridized Differential 

Evolution (DE) with Tabu Search to solve JSSP. The 

experiments on more than 100 instances proved that the 

results obtained by the proposed hybrid algorithm are 

comparable with those of other algorithms. Yuan et al. [21] 

presented a DE algorithm for JSSP in which local search was 

embedded to improve the exploration and exploitation ability. 

Various computations showed that proposed algorithm 

provided optimal results in comparison to standard GA and 

DE. Vesterstrom and Thomson [22] evaluated the 

applicability of Differential Evolution (DE), Particle Swarm 

Optimization (PSO) and Evolutionary Algorithms (EAs) as 

numerical optimization techniques. The experiment was 

performed on 34 benchmark problems for set number of 

evaluations & random seeds. It showed that DE outperformed 

EA & PSO, except on two noisy functions, in which EA 

outperformed DE & PSO.  

Thus, it can be concluded from the above discussion that 

Genetic Algorithm (GA) and Differential Evolution (DE) 

algorithm can yield optimal results when used for JSSP. Both 

GA and DE are metaheuristic algorithms. Genetic Algorithm 

can efficiently find global minimum in minimization 

problems [23]. Traditional GA has powerful exploration 

ability, but gets trapped in the local optima. Hence, GA 

suffers from premature convergence [17, 24]. On the other 

hand, DE has certain parameters (e.g. scaling factor F and 

crossover ratio Cr) to control the exploration-exploitation 

balance. Also, DE can find global minimum for benchmark 

problems with smaller function calls as compared to PSO and 

it is more robust [23]. So, the combination of both these 

algorithms may help in finding optimal makespan. The 

proposed hybrid algorithm is tested on 50 benchmark problem 

instances of Taillard series from 15×15 to 30×20 [25]. 

2. JOB SHOP SCHEDULING PROBLEM  

     (JSSP) 
A standard Job Shop Scheduling Problem (JSSP) may be 

defined as: There are ‘n’ different jobs required to be 

processed on ‘m’ machines, which execute one of the ‘m’ 

operations per job [14, 26]. The number of operations that 

each job consists of, is equal to the number of machines. The 

basic assumptions of JSSP include [24, 27]: 

1.  Each job consists of a sequence of operations. 

2.  All operations must go to each machine only once. 

3. Each machine handles only one operation at a time. 

4.  An operation cannot be interrupted until it is complete i.e. 

non-preemption. 

5. There are precedence constraints among the operations of 
same job, but not among different jobs. 

6.  There are no time delays.  

The main aim of JSSP is to find a schedule having minimum 

length [28]. A schedule may be defined as the mapping of 

jobs to machines, and the processing times of operations to 

minimize the makespan i.e. the completion time of the last 

job. It can be denoted by Cmax (π) of the last job in an order π 

= {j1, j2, . . . ,jn}. The makespan is said to be optimal if it is 

close to the upper bound i.e. the upper limit of the makespan 

or the minimum makespan [25].  

Consider an example of a JSSP. Suppose there are 3 jobs and 

each job consists of 3 operations, which are to be executed on 

2 machines. A JSSP consists of the dimension n×m where n is 

the number of jobs and m is the number of machines. Here, 

the given problem is a 3×2 problem. The processing times of 

operations and the order of execution of operations is given 

below: 

Table 1. Example of 3×2 JSSP 

Jobs Processing Times Execution Sequence 

Job 1 O11=3;  O12=3;  O13=3 O11-O12-O13 

Job 2 O21=2;  O22=4;  O23=3 O21-O22-O23 

Job 3 O31=2;  O32=3;  O33=1 O31-O32-O33 

There are many schedules available for the above example. 

One of the feasible schedules is shown in Figure 1 in the form 

of a Gantt chart. The makespan in this case is 13. The various 

tasks are denoted by the operation numbers. O11 implies the 

first operation of job 1, O12 implies second operation of job 2 

and so on.  

 
Figure 1: Gantt chart for 3×2 JSSP 

3. DIFFERENTIAL GENETIC     

     ALGORITHM (DGA) 

3.1 Genetic Algorithm (GA) 
A Genetic Algorithm is a population based search mechanism 
involving the phenomenon of natural genetics [24]. It follows 
Darwin’s Theory of survival of the fittest which states that: 
Only fittest individuals survive and reproduce. In this, 
chromosomes are used for initialization of generations and 
fitness function is evaluated. The fitness function is the 
objective function which is to be maximized or minimized, 
depending upon the problem.  

Basic steps of Genetic Algorithm are as below:  

i. Encoding: It is used to describe the chromosome. The 
representation may be direct or indirect [1, 26]. In direct 
representation, the chromosomes represent the schedules for 
scheduling problem whereas in indirect representation, the 
chromosome does not directly represent a schedule. Hence, a 
decoding mechanism is used to convert the chromosomes into 
the respective schedules [29].   

ii. Selection: It selects the chromosomes for crossover on the 
basis of fitness function. There are various schemes for 
performing selection in GA i.e. Roulette wheel selection, 
Rank based selection, Tournament selection, Boltzmann 
selection, Stochastic Universal Sampling and so on [30, 31].   

iii. Crossover: The two selected chromosomes exchange their 
genes with one another on the basis of some random number 
or crossover rate. New chromosomes contain features from 
both the parents. Some variants of crossover operation are 
PMX crossover, order crossover, cyclic crossover and so on 
[32].  
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iv. Mutation: After the new chromosomes have been 
generated, mutation is induced to preserve the genetic 
diversity of the population. Various mutation mechanisms 
have been proposed i.e. random mutation, flipping, and swap 
mutation etc. [33, 34].  

3.2 Differential Evolution (DE) 
Differential Evolution (DE) is a population based stochastic 
optimization algorithm [35] which uses real values for 
performing various operations. The operations in DE are same 
as GA, but their order is reverse. The mutation is induced 
followed by crossover, and the selection is performed at the 
end. DE works with old and new generation individuals and 
the fittest ones are taken to the next generation.  

The Differential Evolution algorithm proceeds as follows: 

i. Initialization: The parameters used i.e. mutation factor (F), 
crossover factor (CR), population size, number of generations 
etc. are initialized. 

ii. Mutation: Each individual is set as the target vector, one by 
one and mutation is performed using mutation factor (F) and 
some other individuals. There are certain variants for 
performing mutation [36]. The individual generated after 
mutation is called the mutant vector or donor vector.     

iii.  Crossover: It is performed between the target vector and 
the mutant or donor vector, to produce the trial vector. 
Crossover rate (CR) is used to perform exponential or 
binomial crossover operation [37].  

iv.  Selection: The target and trial vectors are compared 
according to their fitness values and the individual having 
better value of fitness function is placed in the next generation. 

3.3 Proposed Hybrid Algorithm 
The DE algorithm consists of various phases in the sequence: 
mutation, crossover and selection whereas GA consists of 
these phases in reverse sequence. In the proposed approach, 
Differential Evolution (DE) algorithm is embedded in the 
Genetic Algorithm (GA). The phases proceed as in GA, but 
the operators used are the same as in DE. The parameters are 
set to yield good results. GA suffers from premature 
convergence but the scaling factor less than 0.6 results in 
slower convergence, thus improving the results [38]. 
Similarly, the value of crossover factor (Cr) is set accordingly.   

Pseudo code: Proposed-DGA:  

Step 1: Begin 

Step 2: Initialize the parameters: Mutation Factor, F= 0.5; 

Crossover Factor, Cr=0.4; Population Size= 30; 

Maximum Iterations= 100 

Step 3: Randomly generate two initial populations of 
chromosomes of size 30 lying b/w 0 & 1 

Step 4: while (the termination criterion is not satisfied) 

Step 5: do 

Step 6: for (i=1 to Population Size) 

 Use real-integer encoding approach to transform the 

real solutions into integer solutions, to calculate 
their fitness function i.e. makespan using Eq. 1. 

Step 7: Perform Selection: The population with minimum 
makespan is selected for crossover.  

Step 8: Perform Crossover: Binomial crossover is applied 
on initial population without encoding. 

Step 9: Mutation: rand/1/bin approach as in Eq. 2 is used for 
mutation. 

Step 10: Perform Greedy selection to choose the best 

schedule between the solutions, obtained after 

mutation and crossover on the basis of makespan 
(Cmax) value. 

Step 11: Place the selected individual in the next    
                generation.  

Step 12: end for 

Step 13: end do 

Step 14: End 

The various operators used in above algorithm are described 
below: 

i. Initial population: Two initial populations of size 30 with 

values lying between 0 & 1 are generated randomly. For 

example, population with size 4 and 6 genes can be 

represented as: 

 Individual 1: 0.68   0.89   0.04   0.94   0.52   0.17 

 Individual 2: 0.92   0.22   0.33   0.61   0.58   0.06 

 Individual 3: 0.22   0.14   0.40   0.02   0.04   0.07 

 Individual 4: 0.12   0.09   0.05   0.91   0.57   0.32 

ii. Encoding: The real-integer encoding approach [14] is used 

to convert the real values into integers. It can be explained as: 

Consider the first chromosome with genes 0.68, 0.89, 0.04, 

0.94, 0.52 and 0.17. These are first sorted in ascending order 

according to their position in the chromosome: C= (3, 6, 5, 1, 

2, 4). Now, apply the formula: C1= ceil(C/no. of machines). 

Suppose number of machines is 2. Then, C1= (2, 3, 3, 1, 1, 2). 

The elements in C1 depict the serial numbers of the machines.  

iii. Fitness Function: The fitness function used here is 
makespan. It refers to total completion time of jobs, which is 
to be minimized. It is represented by Cmax and the basic model 
with makespan objective is described as follows [14]: 

                                       (Eq. 1) 

iv. Crossover: The crossover method used in the proposed 
algorithm is Binomial crossover, same as in Differential 
Evolution (DE) algorithm. In this, components are taken from 
the two selected individuals. One is taken with probability Cr 
and the other with probability 1-Cr. The value of Cr is taken to 
be 0.4 in this case.  

A random value less than 1 is generated. If random value<= 
Cr, then that gene is added from second individual, otherwise 
from first individual [37]. For example, suppose Cr= 0.4 and 
random value is generated every time for each gene, then a 
trial individual is obtained as: 

Table 2. Generation of trial individual 

Individual 

1 

Individual 

2 

Random 

value 

Trial 

Individual 

0.68 0.92 0.8 0.68 

0.89 0.22 0.2 0.22 

0.04 0.33 0.3 0.33 

0.94 0.61 0.6 0.94 

0.52 0.58 0.4 0.58 

0.17 0.06 0.7 0.17 

   
v.  Mutation: The random mutations are done first. Then, 
rand/1/bin approach of Differential Evolution (DE) is used. In 
this approach, the weighted difference between two randomly 
chosen individuals is added to a third randomly chosen 
individual according to the equation [36]: 

                                       (Eq. 2)            

Here, F is the mutation factor which is taken to be 0.5 and xr1, 
xr2 and xr3 are three randomly chosen individuals. 
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For example, suppose there are 2 randomly chosen individuals 
i.e. Individual 2 and 4. The difference between genes of 
Individuals 2 and 4 is calculated. It is then converted into a 
weighted difference by multiplying the difference with 
mutation factor (F) as shown below: 

Table 3. Calculation of weighted difference 

Individual 

2 

Individual 

4 
Difference 

Weighted 

difference 

0.92 0.12 0.8 0.4 

0.22 0.09 0.13 0.07 

0.33 0.05 0.28 0.14 

0.61 0.91 Mod(-0.3) 0.28 

0.58 0.57 0.01 0.05 

0.06 0.32 Mod(-0.26) 0.13 

 

This weighted difference obtained is added to a third 

randomly chosen individual (i.e. Individual 3 in this case) to 

form a mutant individual as follows: 

Table 4. Generation of mutant individual 

Weighted 

difference 

Individual 

3 

Mutant 

Individual 

0.4 0.22 0.62 

0.07 0.14 0.21 

0.14 0.40 0.54 

0.28 0.02 0.3 

0.05 0.04 0.09 

0.13 0.07 0.2 

 

At the end, the fitness value of trial individual is compared 

with the fitness of mutant individual, and the individual with 

minimum fitness value is placed in next generation. 

vi. Termination criteria: The termination criterion is 

maximum number of generations, which is 100 in this case. 

The algorithm continues for the set number of iterations and 

then terminates while returning the best schedule and its 

makespan. 

4. SIMULATION RESULTS & 

COMPARISONS  
The results obtained by the proposed algorithm i.e. DGA for 

JSSP are close to the upper bounds of optimal makespan. The 

DGA is compared with IPSO-TSAB [14] for 50 problem 

instances of Taillard Series (TA01-TA50). It is observed that 

the results obtained by DGA are comparable to those 

obtained by IPSO-TSAB. The Best Known Solution (BKS) 

and makespan values obtained by IPSO-TSAB and the 

Proposed DGA are listed in Table 5. The makespan obtained 

by DGA is very close to the optimal makespan for large 

problems too, thus, proving its applicability for large sized 

problems. 

Table 5. Comparative results of algorithms for TA01-

TA50 instances 

Problem Size BKS (or 

upper 

bound) 

IPSO-

TSAB 

Proposed-

DGA 

TA01  1231 1231 1231 

TA02  1244 1244 1244 

TA03  1218 1218 1218 

TA04  1175 1175 1175 

TA05 15×15 1224 1224 1224 

TA06  1238 1238 1238 

TA07  1227 1228 1227 

TA08  1217 1217 1217 

TA09  1274 1274 1274 

TA10  1241 1241 1241 

TA11  1359 1362 1359 

TA12  1367 1370 1367 

TA13  1342 1347 1342 

TA14  1345 1345 1345 

TA15 20×15 1339 1342 1340 

TA16  1360 1362 1360 

TA17  1462 1468 1462 

TA18  1396 1401 1396 

TA19  1335 1335 1335 

TA20  1348 1352 1349 

TA21  1644 1647 1645 

TA22  1600 1600 1600 

TA23  1557 1557 1557 

TA24  1646 1647 1646 

TA25 20×20 1595 1597 1595 

TA26  1645 1651 1646 

TA27  1680 1686 1680 

TA28  1603 1617 1604 

TA29  1625 1625 1625 

TA30  1584 1584 1584 

TA31  1764 1764 1764 

TA32  1795 1817 1798 

TA33  1791 1795 1791 

TA34  1829 1830 1829 

TA35 30×15 2007 2007 2007 

TA36  1819 1819 1819 

TA37  1771 1791 1772 

TA38  1673 1674 1673 

TA39  1795 1795 1795 

TA40  1674 1686 1676 

TA41  2018 2032 2018 

TA42  1949 1962 1949 

TA43  1858 1880 1858 

TA44  1983 2001 1983 

TA45 30×20 2000 2000 2000 

TA46  2015 2027 2016 

TA47  1903 1921 1904 

TA48  1949 1965 1950 

TA49  1967 1981 1968 

TA50  1926 1950 1930 

 

The comparison of the performance of IPSO-TSAB and the 

proposed DGA algorithm is given in Figures 2-6 below. It is 

observed that the performance of the proposed algorithm is 

similar to IPSO-TSAB for all instances of 15×15 problems. 
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But the results start improving while going towards larger 

problems till 30×20 dimensions. 

 

Figure 2: Results of IPSO-TSAB & Proposed DGA for 

15×15 JSSP 

It is clear from Figure 2 that the value of makespan obtained 

by IPSO-TSAB and Proposed-DGA are equal to the upper 

bound, except for an instance TA07, for which the proposed 

algorithm provides better result. 

 

Figure 3: Results of IPSO-TSAB & Proposed DGA for 

20×15 JSSP 

It is clear from Figure 3 that the proposed algorithm provides 

good results in almost all the instances for problems with 

dimension 20×15. 

 

Figure 4: Results of IPSO-TSAB & Proposed DGA for 

20×20 JSSP 

 

Figure 5: Results of IPSO-TSAB & Proposed DGA for 

30×15 JSSP 

Similarly, the results for many problem instances of 

dimension 20×20 and 30×15 are obtained close to the upper 

bounds of optimal makespan as shown in Figures 4 and 5. 

 

Figure 6: Results of IPSO-TSAB & Proposed DGA for 

30×20 JSSP 

The difference between the makespan values obtained from 

both the algorithms is clearly visible in Figure 6. The 

proposed algorithm improved the makespan value for all the 

problem instances, except for TA45 for which the IPSO-

TSAB also obtained the optimal makespan. 

5. CONCLUSIONS & FUTURE SCOPE  
In this study, the Job Shop Scheduling Problem (JSSP) has 

been solved using two evolutionary algorithms, namely 

Genetic Algorithm (GA) and Differential Evolution (DE). 

Genetic Algorithm helped in finding global optimal solution 

and Differential Evolution algorithm was useful in 

overcoming the problem of premature convergence, by 

adjusting the parameters in such a way that exploration and 

exploitation abilities are balanced. The algorithm was run 10 

times on Intel Core i3-2330M system for each of the 50 

problem instances. It resulted in makespan values close to the 

Best Known Solution (BKS) for all benchmark instances. The 

computational results achieved demonstrate the effectiveness 

of the evolutionary algorithms for solving such problems.  

Further, the DGA can be tested on various other benchmark 

instances like Lawrence, Fisher & Thompson, Applegate & 

Cook and the remaining instances of Taillard series. It can 
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also be used for other scheduling problems like Flow Shop 

problem, Open Shop problem and Mixed shop scheduling 

problems. The operators of Differential Evolution algorithm 

can be varied and used on some other problems also. The 

future research may be focused on developing more efficient 

meta-heuristic algorithms to find more optimal solutions for 

the Job Shop Scheduling Problem. 
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