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ABSTRACT 

Epilepsy is considered to be a neurological disorder caused by 

unoriented signal emissions from brain, leading to seizures. 

Prior identification of occurrence of seizures is made possible 

by measuring the signal emissions at certain parts of the brain, 

known as EEG. Fast detection of preictal signals can alert 

patients to prevent catastrophe. However, EEG signals are 

voluminous and have very high velocity rates, making the 

prediction process complex. This paper presents an effective 

seizure prediction model, that enhances predictions by 

identifying frequency based features and performs two level 

data reduction to enable faster processing. The processed data 

is then passed to GBT, a boosted ensemble model for 

prediction. Experiments were conducted with data obtained 

from American Epilepsy Society. Results indicate good 

performances in terms of ROC and PR. A comparison with an 

existing parallel bagging based seizure prediction model 

indicates improved accuracy levels in the proposed model. 
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1. INTRODUCTION 
Epilepsy is a neurological disorder, characterized by 

unexpected seizures. Epileptic seizure prediction from 

electroencephalogram (EEG) signals is an important 

application in patient monitoring systems. EEG signal has 

become the most convenient measure to analyze signals from 

different lobes of the brain. The acquisition of EEG signals is 

based on electrical activities in the brain, which are measured 

and recorded using non-invasive methods [1]. These signals 

returned from the brain follows certain defined patterns, that 

corresponds to the state of the human nervous system. Though 

the signals differ between brains, they remain harmonious. 

Any disruption in this harmony leads to seizures [2]. Although 

disruptions occur prior to seizures, the onset of seizure is not 

immediate. External indicators cannot be observed due to the 

disruptions, however, measuring them can clearly provide an 

alert with convenient time buffer levels for the patient to 

implement appropriate precautionary measures.  

Patients with epileptic disorder usually consume medications 

to control seizures. However, this does not always prevent 

epilepsy. According to WHO [3], 1.5% to 5% of the 

population might have seizure in their lifetime. A survey 

indicates that the main cause of death in seizures is due to 

drowning and accidents [4]. Avoiding such incidents is 

possible only by identifying seizures prior to the actual 

occurrence. This is possible by analyzing EEG signals from 

the brain. The major challenges faced in designing such a 

system is the hugeness and streaming nature of the data. EEG 

signals are usually measured from several lobes in the brain, 

hence it generates signals in several channels, leading to huge 

amounts of data being generated. The velocity levels of the 

data being generated are also very high. Hence a system 

satisfying all these real-time constrains and also delivers 

results on time is the major need for the current domain.  

2. RELATED WORK 
Seizure prediction is usually performed as a time series 

analysis model. A real-time seizure prediction model based on 

Bayesian classifier was proposed by Behnam et al. in [5]. This 

is an offline seizure prediction model, that extracts histogram 

based statistical features to create signal components. The 

optimal feature components are then identified and Multi-

Layer Perceptron (MLP) is used for the actual prediction 

process. Although this model exhibits good accuracy levels, 

the usage of MLP leads to high time requirements which does 

not fit to the real-time requirements of the seizure prediction 

domain. A mobile based framework for seizure prediction was 

proposed by Sareen et al. in [6]. EEG signals are captured 

through wireless technologies and analysis is performed in the 

cloud. This model utilizes k-means classifier for signal 

categorization. An EEG based low-complexity model for 

seizure prediction is proposed in [7]. This model utilizes 

Fourier transformation applied on six EEG bands for seizure 

prediction. This is an early warning system that operates on 

20 second signal batches. Other similar early warning systems 

include early warning system for critical transitions [8], a 

simulation based early warning system [9], a time series based 

early warning system [10] and dynamical warning system 

[11]. A poincare plane based feature extraction model for 

predicting epileptic seizures was proposed by Sharif et al. in 

[12]. This model utilizes SVM for the prediction process. A 

Fourier transformation and chaos theory based preictal 

prediction model was proposed by Fei et al. in [13]. This 

model is a modified form of Lyapunov exponent [14], to 

effectively operate on time series data. Other EEG based 

seizure prediction systems include a validation based model 

by Yang et al. [15], a closed loop warning system proposed by 

Ramgopal et al. [16] and a regularity based seizure prediction 

model by Chien et al. [17]. 

3. SEIZURE PREDICTION ON 

STREAMING EEG DATA 
Seizure prediction is the process of predicting preictal signals 

from interictal signals. Interictal state represents normal 

harmonious state of neural transmissions, while preictal states 

represents transmissions prior to seizures. Two other states; 

ictal and postictal are also represented in the signals, depicting 

seizure state and the state after the occurrence of seizure. 

Appropriate prediction of preictal state is of major 

importance, as this is the crucial stage, that when 
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appropriately detected can be used to alert for the onset of 

seizure. Real time prediction of preictal signals is important, 

as faster predictions can provide higher buffer time, which in-

turn will be a boon for the patients. As the statistics states that 

seizures themselves are not fatal, however, they are fatal only 

due to their sudden onset and inappropriate counter-measures 

adopted. Higher time buffers can provide better situations 

where the patients can perform counter-measures and even 

avoid the onset of seizure. 

The major disadvantage of the existing approaches is the 

tradeoff that had occurred between time and accuracy of 

predictions. In several approaches, time has been hugely 

compromised for the want of accuracy. This leads to late 

alerts, which tend to be potentially harmful. The proposed 

approach incorporates data aggregation strategies into the 

operational process such that the amount of data to be 

processed by the seizure prediction module is limited, hence 

exhibiting good accuracy levels within considerable time. 

3.1 Data Preparation with Multilevel 

Feature Reduction 
Data preparation is the first and one of the essential phases 

when dealing with EEG data. The major requirement of this 

module is the hugeness and generation rate of the data 

involved. EEG data is generated from 16 electrodes connected 

to the lobes of the human brain. The signals are divided into 

sequences, with each sequence containing 10 minutes of 

recorded signal information. Sampling rates are usually 

maintained at 400Hz. Hence 400 signals are generated by 

each channel per second, hence a total of 24000 signals are 

generated by each channel per minute. This aggregates to 

generation of 1.4 million signals per channel per hour. 

Generation of preictal signals from the lobes differ between 

individuals. Hence in-order to accurately identify the onset of 

seizures, it becomes mandatory to utilize data generated from 

all the 16 electrodes. 

Utilization of information from the electrodes alone is not 

sufficient for accurate predictions, as variations between the 

interictal and preictal signals are the major indicators of the 

onset of seizure. Hence frequency based features are to be 

extracted from the channel information. However, not all 

features correspond to variations between interictal and 

preictal signals. Hence a feature shortlisting phase is 

incorporated into the model to reduce the processing 

overhead. The major reason for deriving features and then 

trimming them down is that signal properties differ between 

individuals. Features corresponding to preictal variations in 

one individual might not correspond to preictal variations in 

another individual. A different set of features might represent 

the variations in the second individual. Hence it is necessary 

to incorporate the feature shortlisting module within the 

architecture. 

3.1.1. Data Aggregation 
Data is usually processed as epochs. A single epoch 

corresponds to signals generated for 1 minute. Hence for 

every epoch, each channel generates 24000 signals. However, 

these signals are mostly similar to each other with slight and 

acceptable variations. Hence, a variance based data 

aggregation can reduce the data volume. Epochs are analyzed 

and if the variations within a single epoch is low, signal 

aggregation is performed, resulting in a huge reduction of 

data. However, a single epoch can contain both interictal and 

preictal data, hence an individual record analysis based 

aggregation becomes mandatory. 

The data aggregator module processes epochs in a sequential 

manner, as they arrive. Epochs are collected for the required 

duration (1 minute) and single epoch batches are passed to the 

data aggregator. A variance matrix (Vmat) is created between 

two consecutive records for the entire epoch. The records in 

Vmat are analyzed for huge variations. Any huge variations are 

flagged for aggregation. Records between the previous and 

the current variations are aggregated into a single record. 

Algorithm for the data aggregation process is provided below. 

Algorithm 

1. Input epochs 

2. For each epoch e 

a. For each signal r in e 

i. Vmat [r]=Variance between e[r] and 

e[r+1] 

3. For each record i in Vmat 

a. If i>Threshvar 

i. Flag i 

4. For each flag f  

a. Aggregate records between e[f] to 

e[f+1] 

 

3.1.2. Feature Identification 
The feature identification module is triggered after generation 

of 10 minute sequences, i.e. after generating 10 epoch 

modules. Although the epochs are aggregated and the number 

of epoch records are reduced, they are still maintained as ten 

individual epochs. The epochs are combined to generate a 

single epoch record set and is used for feature generation. It 

has been observed from literature [] that, frequency based 

analysis of EEG data exhibits better seizure detection levels 

compared to direct analysis. Hence frequency parameters are 

analyzed and created for the 10-minute epoch signals. The 

generated frequency parameters are used for seizure 

prediction rather than the actual EEG signals. The frequency 

based functions used for generating the EEG data include Fast 

Fourier Transformation (FFT), Shannon Entropy, Spectral 

Edge Frequency, Cross Correlation, Hjorth Parameters, 

Skewness, Kurtosis, Shannon entropy dyad, cross-correlation 

dyad, Mean and Median. The significance of these parameters 

and their operational nature have been discussed in detail by 

Ramina et al. in [18]. The epochs are converted to features 

and each feature vector contains their corresponding values 

calculated from the epoch signals.  

3.1.3. Attribute Extraction 

The feature identification process results in a huge data 

explosion, as the size of every feature vector is equivalent to 

that of the epoch signals. Although several features were 

created, not all features effectively correspond to the interictal 

or preictal states. Hence extracting the significant features can 

further reduce the data size, leading to faster seizure 

prediction. Each of the feature vectors are passed to the 

attribute extraction module, using which the appropriate 

channels are retained, while others are filtered. This module 

uses L1-based feature selection model for attribute extraction.  

All the feature vectors are passed to the feature selection 

model and significant attributes are extracted from the 

vectors. All the feature vectors have same dimensions, 

however, after this phase, the feature vectors differ in their 

dimensions. Feature vectors with zero dimensions are 

eliminated from the list. The data preparation module results 

in a hugely reduced feature data, that can provide effective 
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predictions and also can effectively reduce the time of 

prediction. 

3.2 Seizure Prediction using Gradient 

Boosted Trees 
Data obtained from the data preparation phase is processed by 

the seizure prediction module for analysis. Its precise nature 

has the ability to provide better and faster predictions. This 

paper uses Gradient Boosted Trees (GBT) constructed with 

Decision Trees for seizure prediction. The feature vectors are 

passed to GBT and predictions are obtained. However, each 

feature vector generates its own prediction corresponding to 

its data. Hence voting is used to obtain the final prediction. 

Boosting is the process of learning and re-learning from the 

data by back-propagation. Let T be the learning model, d be 

the training data and y be the trained model. 

       

However, the trained model y is not free from errors. The 

error component e is calculated by finding the difference 

between the actual prediction and the prediction from the 

trained model. This is given by 

       

where y is the actual prediction. 

Boosting back-propagates the errors to iteratively build better 

models such that the error levels are reduced within defined 

threshold levels. The second training level of GBT is given by 

          

The process of training (eq. 1), error identification (eq. 2) and 

error incorporation (eq. 3) is iteratively performed to obtain 

the final model. 

The major advantage of using boosting based model for 

seizure prediction is that, the domain of seizure prediction is 

dynamic and exhibits considerable variations between 

patients. Hence an iterative model can help achieve reduced 

error levels depending on the input signal data. 

4.  RESULTS AND DISCUSSION 
Seizure data used in the proposed model was obtained from 

Kaggle provided by the American Epilepsy Society [19]. Data 

is in the form of .mat files, with 6 sequences for each 1 hour 

signal. Data preparation and seizure prediction phases are 

implemented in Python, due to the flexibility offered by 

Python in operating .mat files and learning algorithms.  

Training and testing is performed on the data and the 

confusion matrix [20] is created. ROC and PR Plots [21] are 

constructed from the data and the algorithm efficiency is 

analyzed. 

 

Fig 1: ROC Plot 

ROC plot representing the efficiency of the proposed 

prediction model is shown in figure 1. It could be observed 

that the proposed model exhibits high TPR levels at an 

average of 0.8 and low FPR levels at an average of 0.1. The 

plots can be observed to be grouped in the top left corner of 

the plot indicating effective predictions. 

 

Fig 2: PR Plot
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PR plots exhibiting the efficiency of the prediction of positive 

classes (seizure signals) is presented in figure 2. It could be 

observed that the precision levels range from 0.6 to 1, and the 

recall levels range between 0.58 to 1. This exhibits effective 

retrieval rates of the proposed model.  

 

 

Fig 3: Accuracy Comparison 

A comparison between the proposed approach and the parallel 

tree based approach proposed in [18] has been performed and 

is shown in figure 3. It could be observed that the proposed 

approach exhibits higher accuracy levels compared to the 

parallel tree based model, exhibiting the efficiency of the 

proposed approach. 

Table 1: Performance Metrics  

 

Performance 

Accuracy 0.75 

F-Measure 0.666666667 

TNR 0.833333333 

FNR 0.375 

FPR 0.166666667 

TPR 0.625 

 

Other performance metrics exhibited by the proposed model 

are shown in table 1. It could be observed that the proposed 

model exhibits an F-Measure level of 0.66 and an interictal 

prediction level of 0.833. The false positive levels were also 

found to be low at 0.16. However, it could be observed that 

the preictal prediction levels were moderate at 0.6325, which 

needs to be improved. 

5.  CONCLUSION 
This paper presents an effective seizure prediction model that 

incorporates a data processing phase and the seizure 

prediction phase. The data processing phase performs feature 

identification and attribute aggregation and elimination. The 

attribute aggregation phase combines similar signal records to 

reduce the number of attributes being processed. The feature 

identification phase identifies frequency based features for 

enhanced prediction, while the final attribute elimination 

phase eliminates channels that do not contribute to the final 

prediction. The processed data is passed to GBT for seizure 

prediction. GBT is constructed with Decision Trees. The 

iterative error reduction model of GBT produces effective 

results when compared to other existing approaches. The 

major advantage of this model is that it uses features rather 

than the actual data, leading to reduced workloads, hence 

faster and better predictions. Although the proposed model 

exhibits high performance in terms of accuracy, the seizure 

prediction level remains moderate. Future works will 

incorporate advanced strategies to improve the prediction 

levels. Future directions will concentrate on enhancing the 

Boosting process to incorporate multiple criterion to enhance 

the seizure prediction rates. 
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