
International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.3, August 2017

11

Test Case Reduction based upon Path Coverage Criteria

Monika Grover
Research Scholar

DCSE, GJUS&T, Hisar

Pradeep Kumar Bhatia
Professor

DCSE, GJUS&T, Hisar

ABSTRACT

The cost of commercial software systems is usually over

budget and within limited time duration. Most critical and

time consuming phase of a software development process is

effort estimation and 50% of this phase is often devoted to

testing effort estimation. If we can find a way to reduce effort

estimation, then it will greatly deduct total cost and effort

needed to be spent in software development. Researchers

have been continuously trying to find new ways to reduce

effort estimation and improving methods which have been

devised already. This paper proposes to use path-oriented test

case generation and their reduction with reference to different

priorities such as complexity, impact, path coverage etc. We

are using different examples to reduce the test cases using

various factors i.e. Test case Complexity, its impact and the

path coverage.

Keywords

Test case reduction, complexity of test case, impact factor,

path coverage

1. INTRODUCTION
Redundancy of software largely depends upon how efficiently

and skilfully it was tested during its development process. It

can also be stated as the process of validating and verifying

that software meets the business and technical requirements

that guided its design and development, so that it works as

expected [1]. Many ways have been devised through which

we can reduce the number of test cases to be implemented that

can greatly reduce testing effort of a software developing

process [2, 14]. There are many artificial intelligent concepts,

such as neutral network, fuzzy logic, learning algorithms and

case based reasoning (CBR) [15, 16] to resolve issue of

testing effort.

Case-based reasoning (CBR) is an artificial intelligence

method that solves problems on the basis of previous similar

cases and past experiences [17].CBR has an uncontrollable

costs issue to test the system. The maintaining CBR is known

as CBM. David C. Wilson presented the overall concepts of

CBR and case based maintenance. It can be categorized into

two types: traditional-based and ontology-based. “CBM was

defined as the process of refining a CBR system’s case-base

to improve the system’s performance. It implements policies

for revising the organization or contents (representation,

domain content, accounting information, or implementation)

of the case-base in order to facilitate future reasoning for a

particular set of performance objectives.”

Aamodt and Plaza [18] provided scheme of the CBR working

cycle comprising of four phases: RETRIEVE, REUSE,

REVISE and RETAIN. All these four phases rely on the

knowledge available in the form of previous similar cases.

Both cases and knowledge are important factors and basis of a

CBR system. Any system lacking either of these two cannot

make use of full efficiency of CBR which will ultimately

result in unsatisfactory working performance [20, 21].

Applications of CBR are being used in different fields

including medical and non-medical [21-25].

1.1 Definitions
Before we proceed further, there are some terms which are

necessary to be introduced to understand working of CBR as

follows:

a) Test suite: A test suite can be defined as a group of test

cases and is used to test software for a specific property

or behaviour. It is mainly a part of software developing

process. A single test case can be added to a number of

test suites.

b) Case Base is a collection of cases in CBR, which can

be defined as the following:

Given a case - base C = {c1... cn}, for c ε C

where, C = CBR, c = case

c) Auxiliary Case is a case that does not have a direct

effect on the competence of a system when it is deleted.

Auxiliary cases do not affect competence at all. When

the test case is deleted, it can only reduce the efficiency

of the system. A case can be called as an auxiliary case

if the coverage it provides is subsumed by the coverage

of one of its reachable cases.

d) Pivotal Case is the case that directly affects

competence of a system when deleted.

A case is a pivotal case if its deletion directly reduces the

competence of a system (irrespective of the other cases in the

case-base). A case can be called as a pivotal case if it is

reachable by no other case but itself, there are different

studies has been done to reduce the test case using case base

reasoning.

e) Coverage Set : Given a case- base C = {c1,c2………cn}

Coverage (c) = {c’∈C (adaptable (c’, c))}

f) Reachability Set:

Given a case – base C = {c1, c2………cn}

Reachability(c) = {c`∈C (adaptable (c, c`)}

Whenever we need to create a test suite, we need to identify

the number of the states existed in the given program. Fig. 1

depicts control flow graph of a source code. The states

presents in the fig.1are s1, s2, s3, s4 and s5. We will need to find

all possible test suites that can cover all given states existed

and its notation is given below:

Fig 1: Control Flow Graph

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.3, August 2017

12

TCn= {s1, …, sn} (Eq 1)

where, TC is the test case and sn is the stage in the control

flow graph that will be tested.

To find all possible test suites, we depend on different stages

that involve in the source code.

Table 1. Set of Test Cases [Test Suit]

TC1 = {s1, s2}

TC2 = {s1, s3}

TC3 = {s1, s4}

TC4 = {s1, s2, s3}

TC5 = {s1, s2, s5}

TC6 = {s1, s3, s4}

TC7 = {s1, s3, s5}

TC8 = {s1, s4, s5}

TC9 = {s1, s2, s3, s4}

TC10 = {s1, s2, s3, s5}

TC11 = {s1, s3, s4, s5}

TC12 = {s1, s2, s3, s4, s5}

TC13= {s2, s3}

TC14= {s2, s5}

TC15= {s2, s3, s4}

TC16= {s2, s3, s5}

TC17= {s2, s3, s4, s5}

TC18= {s3, s4}

TC19= {s3, s5}

TC20= {s3, s4, s5}

TC21= {s4, s5}

The test suite provides us the set of all possible test cases.

Now, to determine, how many test cases are covered under

one test suite. We will further check the coverage value of

each test case. Lower the coverage value, less chance to find

software bugs or errors during testing process and vice-versa.

According to the above definition of coverage set, the

coverage set for each test cases is given below:

Table 2. Coverage Set

Coverage (1) {TC1, TC4, TC5, TC9, TC10, TC12}

Coverage (2) {TC2, TC6, TC7, TC11 }

Coverage (3) {TC3, TC8 }

Coverage (4)
{TC4, TC5, TC9, TC10, TC12, TC13, TC15,

TC16, TC17 }

Coverage (5) {TC1, TC4, TC5, TC10, TC12}

Coverage (6)
{TC2, TC6, TC9, TC11, TC12, TC15, TC17,

TC18, TC20}

Coverage (7) {TC2, TC7, TC10, TC11, TC16, TC19}

Coverage (8) {TC3, TC8, TC11, TC12, TC17, TC20TC21 }

Coverage (9)
{TC1, TC2, TC4, TC6, TC9, TC10, TC13,

TC15, TC17, TC18, TC20}

Coverage (10)
{TC1, TC4, TC7, TC9, TC10, TC12, TC13,

TC16, TC19}

Coverage (11)
{TC2, TC6, TC8, TC11, TC12, TC17, TC20,

TC21}

Coverage (12)
{TC1, TC4, TC5, TC9, TC10, TC12, TC13,

TC15, TC17, TC18, TC20, TC21 }

Coverage (13)
{TC4, TC9, TC10, TC12, TC13, TC15, TC16,

TC17}

Coverage (14) {TC5, TC14}

Coverage (15)
{TC4, TC6, TC9, TC10, TC11, TC12, TC13,

TC15, TC17, TC18, TC20}

Coverage (16) {TC4, TC7, TC9, TC10, TC17, TC21}

Coverage (17)
{TC4, TC5, TC6, TC9, TC11, TC12, TC13,

TC15, TC17, TC18, TC20, TC21}

Coverage (18)
{TC6, TC9, TC11, TC12, TC15, TC17,

TC18, TC20}

Coverage (19) {TC7, TC10, TC16, TC19 }

Coverage (20)
{TC6, TC9, TC11, TC12, TC15, TC17, TC20,

TC21 }

Coverage (21) {TC8, TC11, TC12, TC17, TC20, TC21}

Considering coverage values calculated above, a reachability
set is made for each test case.

Table 3. Reachability Set

Reachability (1) {1, 4, 5, 9, 10, 12}

Reachability (2) {2, 6, 7, 11}

Reachability (3) { 3, 8}

Reachability (4) {4, 5, 9, 10, 12, 13, 15, 16, 17}

Reachability (5) {1, 4, 5, 10, 12}

Reachability (6) {2, 6, 9, 11, 12, 15, 17, 18, 20}

Reachability (7) {1, 7, 10, 11, 17, 16, 19}

Reachability (8) {3, 8, 11, 12, 17, 20, 21}

Reachability(9)
{1, 2, 4, 6, 9, 10, 13, 15, 17, 18,

20}

Reachability (10) {2, 6, 8, 11, 12, 17, 20, 21}

Reachability (11)
{1, 4, 5, 9, 10, 12, 13, 15, 17, 18,

20, 21}

Reachability (12)
{1, 4, 5, 9, 10, 12, 13, 15, 17, 18,

20, 21}

Reachability (13) {4, 9, 10, 12, 13, 15, 16, 17}

Reachability (14) {5, 14}

Reachability (15)
{4, 6, 9, 10, 12, 13, 15, 17,

18,20}

Reachability (16) {4, 7, 9, 10, 17, 21}

Reachability (17)
{4, 5, 6, 9, 11, 12, 13, 15, 17, 18,

20}

Reachability (18) {6, 9, 11, 12, 13, 15, 17, 18, 20}

Reachability (19) {7, 10, 16, 19}

Reachability (20) {6, 9, 11, 12, 13, 15, 17, 20, 21}

Reachability (21) {8, 11, 12, 17, 20, 21}

Auxiliary set = { TC1, TC2, TC3, TC4, TC5, TC6, TC7 , TC8 ,

TC9, TC10, TC11, TC12, TC13, TC14, TC15, TC16, TC17, TC18,

TC19, TC20, TC21} (Eq 2)

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.3, August 2017

13

2. PROPOSED METRICS
Redundant test cases increase testing effort and further

increase the software cost. Our main goal is to reduce the

testing time by removing the duplicate test cases. We can also

prioritize the test cases considering the regression testing.

Prior techniques for test case prioritization are based on the

total number of coverage requirements [7]

In this section, we have proposed five metrics that helps to

reduce redundancy test cases on the basis of path coverage

criteria. Further, we will use five metrics to compare the

reduction of the test suite.

Metric I: Test Case Complexity Factor(TCCF)

A complexity of test case is the significant criteria; the

complexity of test case measures the number of states that

covers the test case.

Notation Comp(TC)

Where Comp: Complexity Factor

 TC: Test case

Comp(TC) = { High, Medium, Low}

High: When the number of states in test case are greater

than average number of states of all test cases.

i.e.

Medium : When the number of states in test case are

equal to average number of states of all test cases.

i.e.

Low: When the number of states in test case are less than

the average number of states of all test cases.

i.e.

The process to remove the test case with minimal complexity
is described below:

Step 1: Determine the coverage set

Step 2: Determine the reachability set.

Step 3: Define the auxiliary set.

Step 4: Compute the average complexity of the test cases
and as per the rule of the Comp(TC), categorise the test
cases into low, medium and high.

Step 5: Remove test cases with minimum complexity.

Metric II: Test Case Impact Factor(TCIF)

The impact recognizes the test case that finds the errors within

the states at numerous times.

Notation Imp(TC)

 Where Imp: Impact factor

 TC: Test case

Imp(TC) = {High, Medium, Low}

High: The test case has revealed at least one fault for

many times.

Medium: The test case has revealed faults for only

one time.

Low: when the test case has never revealed faults.

The steps to apply the test case impact factor are given below:

Step 1: Determine the coverage set

Step 2: Determine the reachability set.

Step 3: Define the auxiliary set.

Step 4: Compute the impact value for all test cases in

the auxiliary set as per the rule of Imp(TC).

Step 5: Remove all test cases that have minimum

Impact value.

Metric III: Path Coverage Factor(PCF)

The coverage value can specify how many nodes the test case
can cover. In other words, the coverage value is an indicator
to measure that each test case covers. It means that the higher
coverage value, the more nodes can be contained and covered
in the test case.

Notation

Cov(n) = value

Where, Cov is a coverage value, value is a number of test

cases in each coverage group and n is a coverage

relationship.

The procedure of this method is described below:

Step 1: Determine the coverage set

Step 2: Determine the coverage value

Step 3: Remove the test cases with minimum coverage
value.

Metric IV: Test Suite Minimization Effectiveness and

Its Impact

 mpact of est Case Minimi ation=

 umber of fault detected in reduced test suite

 umber of fault detected in original test suite

Metric V: Average percentage of Fault Detection

Where as T is the test suite under test.

 M is the number of faults in the program under test P.

 n is the total number of test cases.

 TFi is the position of the first test in T that reveals fault i.

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.3, August 2017

14

3. RESULTS AND DISCUSSION
In this section, we have applied the five metrics on two

different control flow graphs derived from two source codes

or programs.

In the metrics i.e. test case complexity factor, test case impact

factor and path coverage; three steps need to perform. That is

identifying the number of states; all possible test cases;

coverage set; the reachability set and auxiliary set. So, we will

implement these steps and then further apply metrics.

3.1 Example 1
We will consider fig 1 in order to apply five metrics.

Number of states, possible test cases, coverage set, and

reachability set corresponding to Figure 1 already described in

subsection 1.1 with equation (Eq 1), Table 1, Table 2, Table 3

(Eq 2) respectively.

a) Implementation of Metric I - Test case complexity

Factor on fig.1

As the total number of test cases are 21. So, the average

number of the stages is 3.

Ultimately, in the last step, we remove test cases having

minimum complexity values from auxiliary set.

Comp
(Complexity values)

Low
(8)

Medium
(8)

Large
(4)

TC1, TC2, TC3,

TC13, TC14, TC18,

TC19, TC21

TC4, TC5, TC6,

TC7, TC8, TC15,

TC16, TC20

TC9, TC10,

TC11, TC17

According to the definition of the Test Case Complexity, the

test cases with the minimum complexity value will be

eliminated. So, TC1, TC2, TC3, TC13, TC14, TC18, TC19,

TC21test cases will be removed from the auxiliary set.

It is difficult to define and measure the software quality. The

inadequate testing leads the software towards poor quality,

expensive and vast time-to-deliver. In conclusion, software

testing engineers require identifying the impact of each test

case in order to acknowledge and understand clearly the

impact of ignoring some test cases. In this paper, an impact

value is considered as the impact of test cases in term of the

ability to detect faults if those test cases are removed and not

be tested.

b) Implementation of Metric II: Test case impact Factor on

fig. 1

In the step 5 of the metric 2, the test case with the low impact

value will be removed from the auxiliary set.

Redundant test cases increase testing effort and further

increase the software cost. Our main goal is to reduce the

testing time by removing the duplicate test cases. We can also

prioritize the test cases considering the regression testing.

Prior techniques for test case prioritization are based on the

total number of coverage requirements [7]

Impact

(Impact values)

Low

(14)

Medium

(4)

Large

(2)

TC1, TC4, TC5, TC9, TC10,

TC13, TC14, TC15, TC16,

TC17, TC18, TC19, TC20,

TC21

TC2, TC6,

TC7, TC11

TC3, TC8

We remove test cases having minimum complexity values

from auxiliary set. So, TC1, TC4, TC5, TC9, TC10, TC13, TC14,

TC15, TC16, TC17, TC18, TC19, TC20 and TC21 are removed.

Implementation of Metric III: Test case coverage on fig.1

Cov(n)

Coverage value

Test Case Cov value Test Case Cov value

Cov (1) 6 Cov (12) 12

Cov (2) 4 Cov (13) 8

Cov (3) 2 Cov (14) 2

Cov (4) 9 Cov 15) 10

Cov (5) 5 Cov (16) 6

Cov (6) 9 Cov 17) 11

Cov (7) 7 Cov (18) 9

Cov (8) 7 Cov (19) 4

Cov (9) 11 Cov (20) 9

Cov (10) 8 Cov (21) 6

Cov (11) 12

The classification of the test cases in low, medium and high

Cov
(Coverage values)

Low
(4)

Medium
(8)

Large
(8)

TC2, TC3,
TC14,
TC19

TC1, TC5, TC7,
TC8, TC10,
TC13, TC16,

TC21

TC4, TC6, TC9, TC12,
TC15, TC17, TC18, TC20

Ultimately, in the last step, we remove test cases having
minimum complexity values from auxiliary set. So, TC2,
TC3, TC14, TC19 are removed.

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.3, August 2017

15

Test Cases Deleted For The Figure 1

Filtering

Method

Removed Test Cases

TCCF(8) TC1, TC2, TC3, TC13, TC14, TC18, TC19,

TC21

TCIF(14) TC1, TC4, TC5, TC9, TC10, TC13, TC14,

TC15, TC16, TC17, TC18, TC19, TC20, TC21

PCF(4) TC2, TC3, TC14, TC19

Implementation of Metric IV: Test Suite Minimization

 Effectiveness Impact

TCCF 40 80

TCIF 70 90

PCF 20 60

Fig. 2 - Test case reduction metric v/s Minimization

Implementation of Metric V: Average percentage of Fault

Detection (APFD)

3.2 Example 2
We will consider control flow graph derived from source code

depicted in fig 3.

Number of states, possible test cases, coverage set, and

reachability set corresponding to Figure 3 are shown in

equation (Eq. 3), Table 4, Table 5, Table 6, and (Eq. 4)

respectively.

Fig.3 Control Flow Graph

The total number of the states needs to be identified.

TCn= {s1, s2, …, sn} (Eq 3)

Where, TC is the test case and sn is the stage in the control

flow graph that will be tested.

The test suite will be defined that depends on the used to test

the entire case.

Table 4. Set of Test Cases

TC1 = {S1, S2}

TC2 = {S1, S4}

TC3 = {S1, S2, S3}

TC4 = {S1, S4, S6}

TC5 = {S1, S2, S3, S4}

TC6 = {S1, S2, S3, S5}

TC7 = {S1, S2, S3, S6}

TC8 = {S1, S4, S6, S7}

TC9 = {S1, S2, S3, S4, S6}

TC10 = {S1, S2, S3, S5, S6}

TC11 = {S1, S2, S3, S6, S7}

TC12= {S1, S2, S3, S4, S6, S7}

TC13= {S1, S2, S3, S5, S6, S7}

TC14 = {S2, S3}

TC15= {S2, S3, S4}

TC16 = {S2, S3, S5}

TC17 = {S2, S3, S6}

TC18 = {S2, S3, S4, S6}

TC19 = {S2, S3, S5, S6}

TC20 = {S2, S3, S6, S7}

TC21 = {S2, S3, S4, S6,

S7}

TC22 = {S2, S3, S5, S6,

S7}

TC23 = {S3, S4}

TC24 = {S3, S5}

TC25 = {S3, S6}

TC26 = {S3, S4, S6}

TC27 = {S3, S5, S6}

TC28 = {S3, S6, S7}

TC29 = {S3, S4, S6, S7}

TC30 = {S3, S5, S6, S7}

TC31 = {S4, S6}

TC32 = {S4, S6, S7}

TC33 = {S5, S6}

TC34 = {S5, S6, S7}

TC35 = {S6, S7}

To find the coverage set for the figure 2.

Table 5. Coverage Set

Coverage (1) {TC1, TC3, TC5, TC6, TC7, TC8,

TC9,TC10, TC11, TC12}

Coverage (2) {TC2, TC4, TC8}

Coverage (3) {TC1, TC3, TC5, TC6, TC7, TC9,

TC10, TC11, TC12}

Coverage (4) {TC2, TC4, TC8, TC31, TC32}

Coverage (5) {TC1, TC3, TC5, TC9, TC12, TC15,

TC18, TC21, TC23, TC26}

Coverage (6) {TC1, TC3, TC6, TC7, TC10, TC13, TC16,

TC19, TC22, TC24}

Coverage (7) {TC1, TC3, TC7, TC11, TC17, TC20,

TC25}

Coverage (8) {TC2, TC4, TC25, TC31, TC32}

Coverage(9) {TC1, TC3, TC5, TC9, TC12, TC14,

TC15,TC18, TC24, TC22, TC26, TC31}

0

10

20

30

40

50

60

70

80

90

TCCF TCIF PCF

Effectiveness

Impact

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.3, August 2017

16

Coverage (10) {TC1, TC3, TC6, TC10, TC13, TC14,

TC16, TC19, TC22, TC24, TC27, TC30,

TC33}

Coverage (11) {TC1, TC2, TC3, TC5, TC7, TC13, TC16,

TC17, TC20, TC25, TC28, TC30}

Coverage (12) {TC1, TC3, TC5, TC9, TC14, TC15, TC18,

TC21, TC23, TC26, TC29, TC31, TC35}

Coverage (13) {TC1, TC3, TC6, TC10, TC13, TC15,

TC16, TC19, TC22, TC24, TC27, TC30,

TC33, TC35}

Coverage (14) {TC14, TC15, TC16, TC17, TC18, TC19,

TC20, TC21, TC22}

Coverage (15) {TC5, TC9, TC12, TC14, TC15, TC18,

TC21, TC23}

Coverage (16) {TC6, TC10, TC13, TC16, TC19, TC22,

TC24}

Coverage (17) {TC7, TC11, TC17, TC20, TC25}

Coverage (18) {TC5, TC9, TC12, TC15, TC18, TC21,

TC23, TC26, TC31}

Coverage (19) {TC6 , TC10, TC13, TC14, TC16, TC19,

TC22, TC24, TC27, TC30}

Coverage (20) {TC7, TC11, TC14, TC17, TC25, TC28}

Coverage (21) {TC14, TC15, TC18, TC21, TC23, TC26 ,

TC31, TC32, TC35}

Coverage (22) {TC6, TC10, TC13, TC16, TC19, TC22,

TC24, TC27, TC30, TC33, TC35}

Coverage (23) {TC5, TC9, TC12, TC15, TC18, TC21,

TC23, TC26}

Coverage (24) { TC6, TC10, TC13, TC16, TC19, TC22,

TC24, TC27, TC30}

Coverage (25) {TC7, TC10, TC11, TC17, TC20, TC25,

TC28}

Coverage (26) {TC9, TC12, TC18, TC21, TC23, TC26,

TC29, TC31 }

Coverage (27) { TC10, TC13, TC19, TC22, TC24, TC27,

TC30, TC33}

Coverage (28) {TC7, TC17, TC20, TC26, TC35}

Coverage (29) {TC9, TC12, TC18, TC21, TC23, TC26,

TC29, TC32}

Coverage (30) {TC10, TC13, TC19, TC22, TC24, TC27,

TC30, TC33}

Coverage (31) {TC4, TC9, TC12, TC18, TC21, TC26,

TC29, TC31}

Coverage (32) {TC4, TC9, TC12, TC18, TC21, TC26,

TC29, TC31, TC35}

Coverage (33) {TC10, TC13, TC19, TC22, TC27, TC30,

TC33, TC34}

Coverage (34) {TC10, TC13, TC19, TC22, TC27, TC30,

TC33, TC34, TC35}

Coverage (35) {TC8, TC11, TC12, TC13, TC20, TC21,

TC22, TC28, TC29, TC30, TC32, TC34,

TC35)

Considering coverage values calculated above, a reachability
set is made for each test case.

Table 6. Reachability Set

Reachability (1) {1, 3, 5, 6, 7, 8, 9, 10, 11, 12}

Reachability (2) {2, 4, 8}

Reachability (3) {1, 3, 5, 6, 7, 9, 10, 11, 12}

Reachability (4) {2, 4, 8, 31, 32}

Reachability (5) {1, 2, 3, 5, 9, 12, 15, 18, 21, 23, 26}

Reachability (6) {1, 3, 6, 7, 10, 13, 16, 19, 22, 24}

Reachability (7) {1, 3, 7, 11, 17, 20, 25}

Reachability (8) {2, 4, 25, 31, 32}

Reachability (9) {1, 3, 5, 9, 12, 14, 15, 18, 22, 26, 31}

Reachability (10) {1, 3, 6, 10, 13, 14, 16, 19, 22, 24,

27, 30, 33}

Reachability (11) {1, 2, 3, 5, 7, 13, 16, 17, 20, 25, 28,

30}

Reachability (12) {1, 2, 5, 9, 14, 15, 18, 21, 23,

26, 29, 31, 35}

Reachability (13) {1, 3, 6, 10. 13, 15, 16, 19, 22,24,

27, 30, 33, 35}

Reachability (14) {14, 15, 16, 17, 18, 19, 20, 21, 22}

Reachability (15) {5, 9, 12, 14, 15, 18, 21, 23}

Reachability (16) {6, 10, 13, 16, 19, 22, 24}

Reachability (17) {7, 11, 17, 20, 25}

Reachability (18)

{5, 9, 12, 15, 18, 21, 23, 26, 31}

Reachability (19) {6, 10, 13, 14, 16, 19, 22, 24,

 27, 30}

Reachability (20) {7, 11, 14, 17, 25, 28}

Reachability (21) {14, 15, 18, 21, 23, 26, 31, 32, 35}

Reachability (22) {6, 10, 13, 14, 16, 19, 22, 24,

27, 30, 33, 35}

Reachability (23) {5, 9, 12, 15, 18, 21, 23, 26}

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.3, August 2017

17

Reachability (24) {6, 10, 13, 16, 19, 22, 24, 27, 30}

Reachability (25) {7, 10, 11, 17, 20, 25, 28}

Reachability (26) {9, 12, 18, 21, 23, 26, 29, 31}

Reachability (27) {10, 13, 19, 22, 24, 27, 30, 33}

Reachability (28) {7, 17, 20, 26, 35}

Reachability (29) {9, 12, 18, 21, 23, 26, 29, 32}

Reachability (30) {10, 13, 19, 22, 24, 27, 30, 33}

Reachability (31) {4, 9, 12, 18, 21, 26, 29, 31}

Reachability (32) {4, 9, 12, 18, 21, 26, 29, 31, 35}

Reachability (33) {10, 13, 19, 22, 27, 30, 33, 34}

Reachability (34) {10, 13, 19, 22, 27, 30, 33, 34, 35}

Reachability (35) {8, 11, 12, 13, 20, 21, 22, 28, 29, 30,

32, 34, 35}

Auxiliary set: it is a set which does not directly affect the error

finding ability of test cases.

Auxiliary set = { TC1, TC2, TC3, TC4, TC5, TC6, TC7 , TC8 ,

TC9, TC10, TC11, TC12, TC13, TC14, TC15, TC16, TC17, TC18,

TC19, TC20, TC21, TC22, TC23, TC24, TC25, TC26, TC27, TC28,

TC29, TC30, TC31, TC32, TC33, TC34, TC35} (Eq 4)

Cov(n)

Coverage value

Test Case Cov value Test Case Cov value

Cov(1) 10 Cov (19) 10

Cov (2) 3 Cov (20) 6

Cov (3) 9 Cov (21) 9

Cov (4) 5 Cov (22) 12

Cov (5) 11 Cov (23) 8

Cov (6) 10 Cov (24) 9

Cov (7) 7 Cov (25) 7

Cov (8) 5 Cov (26) 8

Cov (9) 11 Cov (27) 8

Cov (10) 13 Cov (28) 5

Cov (11) 12 Cov (29) 8

Cov (12) 13 Cov (30) 8

Cov (13) 14 Cov (31) 8

Cov (14) 9 Cov (32) 8

Cov (15) 8 Cov (33) 9

Cov (16) 7 Cov (34) 8

Cov (17) 5 Cov (35) 13

Cov (18) 9

Metric I: Test case complexity factor

Comp

Complexity values

Low

(19)

Medium

(9)

High

(7)

TC1, TC2, TC3, TC4,

TC14, TC15, TC16, TC17,

TC23, TC24, TC25, TC26,

TC27, TC28, TC31, TC32,

TC33, TC34, TC35

TC5, TC6,

TC7, TC8,

TC18, TC19,

TC20, TC29,

TC30

TC9, TC10,

TC11,

TC12, TC13,

TC21, TC22

Metric II: Test Case Impact factor

Impact values

Low
(28)

Medium
(4)

High
(3)

TC5, TC6, TC9, TC10, TC12, TC13,

TC14, TC15, TC16, TC17, TC18, TC19,

TC20, TC21, TC22, TC23, TC24, TC25,

TC26, TC27, TC28, TC29, TC30,TC31,

TC32, TC33, TC34, TC35

TC1, TC3 ,

TC7 , TC11

TC2,

TC4,

TC8

Metric III: Path Coverage factor

Cov

(Coverage values)

Low

(19)

Medium

(10)

Large

(6)

TC1, TC2, TC4, TC7,

TC8, TC15, TC16, TC17,

TC20, TC23, TC25,

TC26, TC27, TC28,

TC29, TC30, TC31,

TC32, TC34

TC3, TC5,

TC6, TC9,

TC14, TC18,

TC19, TC21,

TC24, TC33

TC10, TC11,

TC12, TC13,

TC22, TC35

Test Cases Deleted For The Figure 3

Filtering

Method

Removed Test Cases

TCCF(19) TC1, TC2, TC3, TC4, TC14, TC15, TC16,

TC17, TC23, TC24, TC25, TC26, TC27, TC28,

TC31, TC32, TC33, TC34, TC35

TCIF(28) TC5, TC6, TC9, TC10, TC12, TC13, TC14,

TC15, TC16, TC17, TC18, TC19, TC20, TC21,

TC22, TC23, TC24, TC25, TC26, TC27, TC28,

TC29, TC30, TC31, TC32, TC33, TC34, TC35

PCF(19) TC1, TC2, TC4, TC7, TC8, TC15, TC16,

TC17, TC20, TC23, TC25, TC26, TC27, TC28,

TC29, TC30, TC31, TC32, TC34

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.3, August 2017

18

Metric IV: Test Suite Minimization

 Effectiveness Impact

TCCF 54.29 80

TCIF 80 91.43

PCF 54.29 82.86

Fig 4 - Test case reduction metrics v/s Minimization

Metric V: Average percentage of Fault Detection

Table.7 summarizes the parameters Effectiveness, impact

and APED corresponding to Example 1, and Example 2.

Table 7. Comparison of parameters

 Example 1 Example 2

Effectiveness 70 90

Impact 80 91.43

APFD 12.91 18.13

Fig. 5 Comparison of Parameters in Example 1 and

Example 2

Excess test cases reduction from the test suite can produce a
inefficient and unreliable software. While working on the
project, that are still chances that can affect the testing process
which can only be experience in the live project. The silver
lining is that must define clearly to stop test case reduction.
We can further study the optimal solution to limit the number
of the test cases can be removed.

4. CONCLUSION
In this paper, we used different metrics to reduce the test suite
hence to reduce the testing effort. From both examples 1 and 2
we conclude that the impact factor deletes a quite number of
test cases as compare to the complexity factor and coverage
factor. The size of the problem does not effect on the result.
We have taken two problems; one as an example and other to
experiment. In both cases; the impact metric provide us
promising results.

We can see in our cases that the impact factor does remove
the largest number of the test cases. The average percentage of
complexity, impact and coverage is increasing with respect to
the size of the problem. But, we also need to keep in mind that
the quality of the software should not be downgraded along
the way.

5. REFERENCES
[1] Cem Kaner, 2006, Exploratory Testing, Florida Institute

of Technology, Quality Assurance Institute Worldwide

Annual Software Testing Conference, Orlando, FL.

[2] Gregg Rothermel, Roland H. Untch, Chengyun Chuand

Mary Jean Harrold, “Prioritizing Test Cases for

Regression Testing”, IEEE Transactions on Software

Engineering, 2001.

[3] Gregg Rothermel, R. H. Untch, C. Chu, and M. J.

Harrold, 1999. Test case prioritization: An empirical

study. In Proceedings of the IEEE International

Conference on Software Maintenance, pages 179-188,

Oxford, England, UK.

[4] Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrinand,

Christie Hong, 1998. An Empirical Study of the Effects

of Minimization on the Fault Detection Capabilities of

Test Suites. In Proceedings of IEEE International Test

Conference on Software Maintenance (ITCSM'98),

Washington D.C., pp. 34-43.

[5] Gregg Rothermel, Mary Jean Harrold, Jeffery von Ronne

and Christie Hong, “Empirical Studies of Test-Suite

Reduction”, Journal of Software Testing, Verification,

and Reliability, Vol. 12, No. 4, 2002.

[6] Gregg Rothermel and Mary Jean Harrold, “A Safe,

Efficient Regression Test Selection Technique”, ACM

Transactions on Software Eng. And Methodology, 6(2):

173-210, 1997.

[7] Gregg Rothermel and Mary Jean Harrold, “Analyzing

Regression Test Selection Techniques”, IEEE

Transactions on Software Engineering, 22(8):529-551,

1996.

[8] Sara Sprenkle, Sree devi Sampath and Amie Souter, “An

Empirical Comparison of Test Suite Reduction

Techniques for User-session-based Testing of Web

Applications”, Journal of Software. Testing, Verification,

and Reliability, 4(2), 2002.

[9] Scott McMaster and Atif Memon, 2005. Call Stack

Coverage for Test Suite Reduction. In proceedings of the

21st IEEE International Conference on Software

0

10

20

30

40

50

60

70

80

90

100

TCCF TCIF PCF

Effectiveness

Impact

0
50

100

FIG I

FIG II

Effectiveness

Impact

APFD

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.3, August 2017

19

Maintenance (CSM’ 5), pages 539-548, Budapest,

Hungary.

[10] Scott McMaster and Atif Memon, 2006. Call Stack

Coverage for GUI Test-Suite Reduction. In proceedings

of the 17th IEEE International Symposium on Software

Reliability Engineering (ISSRE 2006), NC, USA.

[11] Scott McMaster and Atif Memon, Fault Detection

Probability Analysis for Coverage-Based Test Suite

Reduction, IEEE, 2007.

[12] Siripong Roongruangsuwan and Jirapun Daengdej, Test

Case Reduction, Technical Report 25521. Assumption

University, Thailand, 2009.

[13] Xiaofang Zhang, BaowenXu, Changhai Nie and

LiangShi, “An Approach for Optimizing Test Suite

Based on Testing Requirement Reduction”, Journal of

Software (in Chinese), 18(4): 821-831, 2007.

[14] Xiao fang Zhang, Baowen Xu, Changhai Nie and Liang

Shi, “Test Suite Optimization Based on Testing

Requirements Reduction”, International Journal of

Electronics & Computer Science, 7(1): 9-15, 2005.

[15] Barry W. Boehm, A Spiral Model of Software

Development and Enhancement, TRW Defence Systems

Group, 1998.

[16] Jirapun Daengdej, Ph.D. Thesis, Adaptable Case Base

Reasoning Techniques for Dealing with Highly Noise

Cases, The University of New England, Australia, 1998.

[17] Scott McMaster and Atif Memon, Fault Detection

Probability Analysis for Coverage-Based Test Suite

Reduction, IEEE, 2007.

[18] Zeina Chedrawy, Syed Sibte, Raza Abidi, 2005. An

Intelligent Knowledge Sharing Strategy Featuring Item-

Based Collaborative Filtering and Case Based

Reasoning, 5th International Conference on Intelligent

Systems Design and Applications (ISDA'05), pp.67-72.

[19] A. Aamodt, E. Plaza, CBR: foundational issues,

methodological variations and system approaches, AI

Communications, vol. 7, no. 1, pp. 39-59, 1994.

[20] A. Cordier, B. Fuchs, J. Lieber, A. Mille, Acquisition

interactive des connaissances d‘adaptation intégrée aux

sessions de raisonnement à partir de cas - Principes,

architecture IAKA et prototype KAYAK, In: Actes du

15ème atelier de Raisonnement à Partir de Cas (RàPC

2007), pp. 71–84, 2007.

[21] F. Gavin, S. Zhaohao, 2003. R5 model for case-based

reasoning. Knowledge-Based Systems, vol. 16, no. 1, pp.

59–65.

[22] A. Bouhana, A. Fekih, et al., An integrated case-based

reasoning approach for personalized itinerary search in

multimodal transportation systems, Transportation

Research Part C, vol. 31, pp. 30–50, 2013.

[23] E. Armengol, A. Palaudàries, E. Plaza, Individual

Prognosis of Diabetes Long-term Risks: A CBR

Approach, Methods Inf Med, vol. 40, no. 1, pp. 46-51,

2001.

[24] I. Watson, Applying Case-Based Reasoning: Techniques

for Enterprise Systems. San Francisco, CA: Morgan

Kaufmann Inc. 1997.

[25] S. Nitsuwat, W. Paoin, Development of ICD-10-TM

Ontology for a Semi-automated Morbidity Coding

System in hailand,‖ Methods nf. Med, vol. 5 , no. 6,

pp. 519-528, 2012.

[26] S. Simon, P. Sankar, 2004. Foundations of Soft Case-

Based Reasoning, 1st ed. Wiley-Interscience.

[27] Roongruangsuwan, S., Daengdej, J., 2010. Test case

reduction methods by using CBR. International

Workshop on Design, Evaluation and Refinement of

Intelligent Systems (DERIS2010).

[28] Erum Ashraf, Tamim Ahmed Khan, Khurrum Mahmood

and Shaftab Ahmed, “Value based PSO Test Case

Prioritization Algorithm”. International Journal of

Advanced Computer Science and Applications, vol. 8,

No. 1, 2017.

[29] Sonal Gandhi, Deepali Gupta, “Test Case Reduction &

Prioritization”. International Journal for Scientific

Research & Development, vol. 2, issue 6, 2014.

IJCATM : www.ijcaonline.org

