
International Journal of Computer Applications (0975 - 8887)
Volume 172 - No.3, August 2017

BIG Data: Implementation a Scala Approach for Large
Scale Classification

Yassine Sabri
STIC Laboratory

Chouaib Doukkali University, B.P: 20
El Jadida MOROCCO

Najib El Kamoun
STIC Laboratory

Chouaib Doukkali University, B.P: 20
El Jadida MOROCCO

ABSTRACT
Many scientic investigations require data-intensive research where
big data are collected and analyzed. To get big insights from big
data, we need to rst develop our initial hypotheses from the data and
then test and validate our hypotheses about the data. We propose
FS-S , a flexible and modular Scala based implementation of the
Fixed Size Least Squares Support Vector Machine (FS-LSSVM)
for large data sets. The framework consists of a set of modules
for (gradient and gradient free) optimization, model representation,
kernel functions and evaluation of FS-LSSVM models. A kernel
based Fixed-Size Least Squares Support Vector Machine (FS-
LSSVM) model is implemented in the proposed framework, while
heavily leveraging the parallel computing capabilities of Apache
Spark. Global optimization routines like Coupled Simulated An-
nealing (CSA) and Grid Search are implemented and used to
tune the hyper-parameters of the FS-LSSVM model. Finally, we
carry out experiments on benchmark data sets like Magic Gamma,
Forest Cover, Susy and higgs etc. and evaluate the performance
of various kernel based FS-LSSVM models, all these combine to
reveal an effective and ecient way to perform closed-loop big data
analysis with visualization and scalable computing.

General Terms
Big Data, Data Analysing

Keywords
FS-LSSVM, Big Data, Large Scale Models, Non-linear SVMs

1. INTRODUCTION
A recent trend in many scientic investigations is to con-duct data-
intensive research by collecting a large amount of high-density
high-quality data. These data, such as text, video, audio, images,
RFID, and motion tracking, are usually multi-faceted, dynamic,
and extremely large in size, and likely to be substantially publi-
cally accessible for the purposes of continued and deeper data anal-
ysis. Indeed, data-driven discovery has already happened in var-
ious research elds, such as earth sciences, medi-cal sciences, bi-
ology and physics, to name a few. The 21st century stands out
in how mankind learned the value of storing and making predic-
tions/decisions from large volumes of data. A significant aspect of

large scale data analysis is distributed computation frameworks like
High Performance Computing, Message Passing Interface etc. Re-
cently large scale commodity hardware clusters have replaced the
two former frameworks as the most popular model for parallel data
analysis. With this crucial change in hardware came a change in
computational models as well. It is at this juncture that distributed
Map Reduce became the de-facto computational philosophy for
large scale data analysis and words such as Hadoop [1], [8], [7]
and Apache Spark [24], [3] have become synonymous with large
scale data analysis and machine learning.
Along with innovation in hardware design and distributed com-
puting models, there came a need for good programming libraries
and frameworks to work with various Machine Learning models
on large data sets. It was demonstrated in [10] that a gigantic lan-
guage corpus encapsulates almost all aspects of human language
and speech. So far the prevalent ‘motto’ in the Internet industry
has been “large data, simple models”. Often, this is misunderstood
as the Machine Learning translation of Occam’s Razor. The bias-
variance trade-off [22] is a far better mechanism to ensure the
model does not become overly complex, and this, rather than re-
stricting the user to simple models, is the real Occam’s razor in
training a model.
Therefore, in order to extract maximum value from large scale data,
it is important to have the flexibility to train and compare different
model families before arriving at the one that fits the requirement
of the user. Therefore one must be able to train general nonlinear
models and tweak them by changing the various components which
they employ to learn (i.e., a model may be linear or kernel based,
it can be optimized by various methods like Stochastic Gradient
Descent, Conjugate Gradient, etc.). This is not possible in a rigid,
monolithic programming framework. Modularity, extensibility and
ease of usage are of paramount importance while designing Ma-
chine Learning software for large scale data applications.
The current state of the art in distributed Machine Learning in Scala
is the MLLib module in Apache Spark [16]. It has implementa-
tions of Linear SVM and Logistic Regression for solving binary
classification problems. But a crucial component missing in ML-
Lib and all distributed Machine Learning libraries is the ability to
learn classification models with nonlinear decision boundaries. fs-s
aims to solve the problem of scalable non-linear classification mod-
els by implementing the Fixed-Size Least Squares Support Vector
Machine (FS-LSSVM) algorithm [9, 21] with model tuning capa-
bilities.

1



International Journal of Computer Applications (0975 - 8887)
Volume 172 - No.3, August 2017

In recent literature we find sparse reductions to FS-LSSVM meth-
ods [15, 14]. The authors in [15, 14] explored the sparsity vs er-
ror trade-off for FS-LSSVM models. Even though they run experi-
ments on large scale datasets like Forest Cover dataset, the scalabil-
ity of these methods are restricted to available memory on a single
machine. Moreover, they don’t exploit the possibility of parallelism
available in several components of the FS-LSSVM model. Another
work [12] converts the Big Data into a Big Network and then uses
a network based subset selection technique (Fast and Unique Rep-
resentative Subset selection (FURS) [13]) to obtain a representa-
tive subset of the original data. It then builds a FS-LSSVM model
using this subset. However, in this paper we showcase that we
can parallelize the subset selection technique which maximizes the
Quadratic Rènyi Entropy for Big datasets and use the generated
subset as the set of prototype vectors (PV) essential for building
the FS-LSSVM model.
This paper is organized as follows. Section 2 introduces the FS-
LSSVM algorithm [9]. Section 3 outlines the various modules that
comprise fs-s and their roles. An implementation of the FS-LSSVM
model is constructed using the framework and tested on various
data sets, with the findings outlined in 4. Finally, we conclude in
Section 5.

2. LEAST SQUARES SUPPORT VECTOR
MACHINES

2.1 Formulation
Least Squares Support Vector Machines (LSSVM) [19] [20] mod-
ifies the SVM formulation to include the squared error loss func-
tion and equality constraints with respect to the error variables ei,
as shown in (1).

min
w,b,e

J (w, e) =
1

2
wᵀw +

γ

2

N∑
i=1

e2i

s.t. yi[w
ᵀφ(xi) + b] = 1− ei, i = 1, . . . ,N.

(1)

Introducing the Lagrangian and applying the KKT conditions gives
us the solution of the problem in the dual (2). This solution im-
plies a loss of sparsity as compared to the classical SVM since each
point becomes a support vector. However, we gain linearity of the
solution (i.e. we do not have to solve the Quadratic Programming
problem as in the classical SVM). Solving the problem in the dual
is not advantageous for large scale analysis as the size of the solu-
tion matrix is equal to the size of the original data.[

0 yᵀ

y Ω + γ−1I

] [
b
α

]
=

[
0
1v

]
, (2)

where Ωkl = ykylK(xk, xl), α = [α1; ...;αN ] and K(xk, xl) =
φ(xk)ᵀφ(xl).

2.2 FS-LSSVM
In order to make the training of kernel based SVM models for large
scale data applications feasible, one needs to make approximations
to the computation of the kernel matrices. The Fixed-Size LSSVM
(FS-LSSVM) as proposed by De Brabanter, Suykens et. al [9, 21]
consists of solving the LSSVM problem in the primal as follows.

min
w,b

1

2
wᵀw +

γ

2

n∑
i=1

(
(yi − wᵀφ̂(xi)− b

)2
. (3)

The solution to equation 3 is given by:(
ŵ

b̂

)
=

(
Φ̂ᵀ
eΦ̂e +

Im+1

γ

)−1
Φ̂ᵀ
ey, (4)

where Φ̂e =

φ̂1(x1) · · · φ̂m(x1) 1
...

. . .
...

...
φ̂1(xn) · · · φ̂m(xn) 1

 .

In the above formulation, φ̂(xk) is an approximation to the true
feature map φ(xk) which is related to the kernel K(xi, xj) =
φ(xi)

ᵀφ(xj) (Mercer’s theorem). The approximate feature map
φ̂(xk) is calculated using the Nyström method as outlined in [9, 15]
and [14]. A low rank approximation to the kernel matrix is con-
structed by iteratively calculating a subset of the original data
which maximizes the Quadratic Rènyi Entropy. This procedure of
extracting φ̂(xk) from a data set, given a kernel function, is called
Automatic Feature Extraction (AFE).
Kernel based models are sensitive to hyper-parameters. In the case
of FS-LSSVM we have to tune the model with respect to γ the
regularization parameter and the parameters of the kernel chosen.
Models are generally compared with their cross-validation perfor-
mance in which case the objective cost function with respect to the
hyper-parameters is in general non-smooth and non-convex. Gra-
dient free methods like Grid Search, Nelder Mead [17] and Cou-
pled Simulated Annealing [23] are suitable to tackle the problem
of model selection for FS-LSSVM based kernel models. Algorithm
?? explains the steps involved in tuning the FS-LSSVM model with
the bold part representing our contributions in this paper, which
have been implemented in a MapReduce setting.

Algorithm 1: Tuning FS-LSSVM

1 Data: Data Set, Kernel, Global Optimization routine, grid
parameters

2 Result: Proposed Tuned FS-LSSVM model
3 Pre-process the data by mean scaling.;
4 Calculate the prototype set by maximizing the Quadratic

Rènyi Entropy in parallel using MapReduce.;
5 Initialize a grid for the hyper-parameters;
6 while termination of global optimization routine do
7 Initialize the kernel using the hyper-parameters. Do AFE on

the kernel matrix constructed from the prototypes, using the
Nystrom method;

8 evaluate the cross validation score for the particular
hyper-parameter values;

9 end

3. FS-LSSVM IMPLEMENTATION
Our Scala-based [18] software, called fs-s, tackles three major is-
sues w.r.t. the implementation of the FS-LSSVM:

—Tuning Kernel Models: Since the performance of kernel
based models is sensitive with respect to the choice of hyper-
parameters, one has to choose a mechanism of model selection
or hyper-parameter optimization. In fs-s, we implement the Grid
Search and Coupled Simulated Annealing global optimization
algorithms for model tuning.

2



International Journal of Computer Applications (0975 - 8887)
Volume 172 - No.3, August 2017

—Parallel Computation: Big Data analysis requires the distribu-
tion of computational work load, MapReduce is the dominant
paradigm employed for writing distributed data processing pro-
grams. In fs-s we leverage MapReduce to distribute the compu-
tation in the pre-processing, training and cross-validation tasks.

—Infrastructure Flexibility: The big data landscape has many
tools which enable the storage and analysis of large streams of
data, they consist of technologies such as, but not limited to
Apache Spark, Hadoop, Graph Databases like Titan [5], Ori-
entDB [4], Neo4j [2]. Creating a powerful framework for model
training and evaluation requires the decoupling of storage and
processing infrastructure from the actual logic that implements
the architecture of learning models.

The implementation of the FS-LSSVM in fs-s, outlined in Algo-
rithm ?? is as described in the original article of De Brabanter et
al. [9]. Kernel based models all implement the interface Globally-
Optimizable in the optimization module (see Figure 2). Since the
GlobalOptimizer and its subclasses (i.e. GridSearch and Coupled-
Simulated Annealing) all optimize models which implement the
GloballyOptimizable interface, it enables tuning of models with a
variety of global optimization algorithms convenient.

Architecture
Figure 1 shows the organization of modules in fs-s. It can be de-
composed into five principal modules:

—Model Classes: This is the core set of classes which form the
heart of the library, a number of abstract model categories are
defined each with its own set of defined behaviours.

—Optimization application programming interface (API): A mod-
ule which houses the implementation of common optimization
methods (i.e. Gradient and Gradient free). Currently fs-s has im-
plementations for Conjugate Gradient, Gradient Descent, Grid
Search and Coupled Simulated Annealing [23] (CSA).

—Kernels: fs-s is equipped with a powerful abstract API for repre-
senting kernel functions. The module has two abstract classes to
outline the behaviors of kernels used in SVM based applications
as well as density estimation. The library comes bundled with
an implementation for AFE as well as for common SVM kernels
i.e. Linear, Radial Basis Function (RBF), Polynomial, Laplace,
Exponential. New kernel functions can be easily added to the
library by extending the base classes in this module.

—Evaluation Metrics: We have implemented evaluation metrics for
Binary Classification and Regression problems. Further more,
the implementation of binary classification performance (area
under ROC) is carried out using MapReduce in a single pass
fashion through the evaluation data points, which can be seen
in algorithm ??. Calculating the area under the ROC curve in a
single pass fashion greatly increases the speed of the eventual
FS-LSSVM source code.

—Miscellaneous Utilities: This module contains code to carry out
auxiliary tasks for model learning and optimization. It contains
the implementation of entropy calculation, summary statistics,
prototype selection as well as a set of various functions which
can be required for implementing new model classes using the
library.

The fs-s software is available at [6].

Map Reduce
As discussed above, we use MapReduce wherever possible in order
to distribute the workload using Apache Spark. Due to the primal

fs-s

Model Classes

LSSVM
Spark Model

Kernel
Spark Model

Kernels

Mercer
Kernels

Density
Estimation

Kernels

Optimization

Gradient
Based

Conjugate
Gradient

Global
Optimization

Evaluation
Metrics

Classification

Regression

Miscellaneous
Utilities

Prototype
Selection

Summary
Statistics

Entropy
Computation

Fig. 1: Schematic structure of fs-s

Algorithm 2: Calculate feature matrices from data using MapRe-
duce: FeatureMat

1 Data: X = [xi], xi εRn, φ̂ : Rn −→ Rm, Y = [yi], yiεR

2 Result:
(

Φ̂ᵀ
eΦ̂e

)
, Φ̂ᵀ

eY

3 begin
4 MapFn(x, y):
5 M ←− φ̂(x)φ̂(x)T

6 v ←− φ̂(x) y
7 emit(M,v)

8 begin
9 RedFn((M,v), (M ′, v′)):

10 emit(M +M ′, v + v′)

11 begin
12 (F, v)←−MapReduce(X,MapFn,RedFn)
13 return (F, v)

formulation of the FS-LSSVM, the size of matrix A = Φ̂ᵀ
eΦ̂e +

Im+1

γ
, in the linear system in (4) is (m+1)× (m+1), wherem is

the number of prototypes selected to construct the kernel matrix in
kernel based FS-LSSVM. Procedure ?? outlines the procedure to
estimate the parameters ŵ, b̂ of the FS-LSSVM model discussed
in section 2.2, using the Conjugate Gradient algorithm.
Using MapReduce, we calculateA = Φ̂ᵀ

eΦ̂e+
Im+1

γ
and Φ̂ᵀ

eY . We
use these results to carry out iterations of the Conjugate Gradient
updates until the maximum number of iterations is reached.

3



International Journal of Computer Applications (0975 - 8887)
Volume 172 - No.3, August 2017

Algorithm 3: Conjugate Gradient: CG

1 Data: X = [xi], xi εRn, φ̂ : Rn −→ Rm, Y = [yi], yiεR, γ, ε

2 Result:
(
ŵ

b̂

)
=
(

Φ̂ᵀ
eΦ̂e +

Im+1

γ

)−1
Φ̂ᵀ
eY

3 begin
4 (F, v)←− FeatureMat(X,Y, φ̂, γ)

5 A←− F + 1
γ
Im×m

77 while not maxiterations and ∆(ŵ, b̂) >= ε do
8 (ŵ, b̂)←− CGUpdate(ŵ, b̂, A, v)

Algorithm 4: Evaluate performance for fold: evaluateFold

1 Data: Xf = [xi], xi ∈ Rn, φ̂ : Rn −→ Rm,
Yf = [yi], yi ∈ R, ŵ, b̂.

2 Result: score for given fold
3 begin
4 predictLabel(ŵ, b̂)(x, y):
5 emit(ŵ · x+ b̂, y)

6 begin
7 V ector.fill(length)(IndicatorFn):
8 vec←− (0, ..., 0)length map(IndicatorFn)
9 return(vec)

10 begin
11 MapScore(score, label):
12 if label = 1.0 then
13 Pos←− Pos+ 1
14 tpv ←− V ector.fill(l)(IndicatorFn(sign(score−

thresholds(i)) == 1.0))
15 fpv ←− V ector.fill(l)(IndicatorFn(false))
16 else
17 Neg ←− Neg + 1
18 tpv ←− V ector.fill(l)(IndicatorFn(false))
19 fpv ←− V ector.fill(l)(IndicatorFn(sign(score−

thresholds(i)) == 1.0))

20 emit(tpv, fpv)

21 begin
22 RedScore((u, v), (u′, v′)):
23 emit(u+ u′, v + v′)

24 begin
25 thresholds←− List(t1, t2, . . . tl)
26 Pos←− 0
27 Neg ←− 0

28 scoresLabels←− (Xf , Yf ) map predictLabel(ŵ, b̂)
29 (tp, fp)←−

scoresLabels map(MapScore) reduce(RedScore)

30 tp←− tp/Pos fp←− fp/Neg
roc←− thresholds zip(tp zip fp)

31 return 1− area(roc)

Optimization/Hyper-parameter tuning
Figure 2 depicts the class hierarchy structure of the Optimization
module of fs-s. The FS-LSSVM model class has an embedded op-
timization object which it inherits from the Optimizer interface.

Algorithm 5: Distributed v-Fold Cross-Validation

1 Data: X = [xi], xi εRn, φ̂ : Rn −→ Rm, Y = [yi], yiεR, γ,
folds

2 Result: Cross Validation Performance
3 begin
4 (A, v)←− FeatureMat(X,Y, φ̂, γ)
5 score←− 0

77 for i←− 1 to folds do
8 (Xi, Yi)←− fold i
9 (Ai, vi)←− FeatureMat(Xi, Yi, φ̂, γ)

10 (ŵ, b̂)←− CG(A−Ai + 1
γ
Im×m, v − vi)

11 score←− score+ evaluateFold(ŵ, b̂,Xi, Yi)

12 return score/folds

Implementations of Conjugate Gradient and Gradient Descent are
provided in the optimization module. New optimization algorithms
can be added by inheriting from the top level Optimizer interface or
the RegularizedOptimizer abstract class in case one is working with
parametric models which involve regularization. Another impor-
tant component of the optimization module is the GlobalOptimizer
interface which acts as a skeleton for implementing gradient free
global optimization algorithms. We have implemented simple Grid
Search and CSA, for tuning kernel based models. CSA as proposed
by De Souza et al. [23] creates a grid (simplex) of hyper-parameter
values and treats each point as a Simulated Annealing (SA) process.

<<interface>>

Optimizer

optimize(nPoints: Long, data: S, initial-
Params: P)

<<abstract>>

RegularizedOptimizer
regParam: Double
numIterations: Double
batchfraction: Double

GradientDescent ConjugateGradient

<<interface>>
GlobalOptimizer

system: GloballyOptimizable

optimize(initialConfig: Map[String, Dou-
ble], options: Map[String, String])

GridSearch
step: Double
gridsize: Double
logScale: Boolean

CoupledSimulatedAnnealing
numIterations: Double
acceptance(energy: Double, coupling: Dou-
ble, temperature: Double)
mutate(config: Map[String, Double], tem-
perature: Double)
acceptanceTemperature(t: Double)(k: Int)
mutationTemperature(t: Double)(k: Int)

Fig. 2: Class Hierarchy of Optimization API

4



International Journal of Computer Applications (0975 - 8887)
Volume 172 - No.3, August 2017

4. EXPERIMENTS
The experiments are performed on a 40 core 64GB RAM machine
at the Department of Electrical Engineering, KU Leuven. The ex-
periment parameters are summarized in table 1. We use the Magic
Gamma Telescope, and Adult data sets available from the UCI Ma-
chine Learning Repository [11].

—Magic Gamma: The data is generated by the registration of high
speed gamma particles measured by a ground based atmospheric
Cherenkov gamma telescope. Each entry consists of 10 numeri-
cal attributes and a binary class attribute.

—Adult: This is based on a a census study carried out in 1994,
the data consists of 6 numerical attributes and 8 categorical at-
tributes. The target attribute is binary class value, which indicates
if the given individual has an annual income more than 50000$.

The performance of binary FS-LSSVM classifiers on the MAGIC
Gamma Telescope Data Set obtained from the UCI Machine Learn-
ing Repository, are summarized in Table 2. FS-LSSVM mod-
els trained with polynomial kernels give better classification per-
formance than the RBF and Linear counterparts, on the MAGIC
Gamma data.
The performance of binary FS-LSSVM classifiers on the Adult
Data Set, are summarized in Table 3. FS-LSSVM models trained
with exponential kernels give better classification performance than
the RBF and Linear counterparts, on the Adult data. For both the
data sets one sees a pattern emerging that tuning kernel models
with CSA gives better results than naive Grid Search based hyper-
parameter optimization.

5. CONCLUSION
In this paper fs-s, a Scala-based implementation for training and
tuning kernel based FS-LSSVM models. As a use case, the ker-
nel based FS-LSSVM model is tested on benchmark data sets. We
observed that our implementation enables scalable training, tun-
ing and evaluation of models learning from Big Data, while still
providing flexibility to tweak various underlying data processing
infrastructure.

Acknowledgment
This work was supported by EU: ERC AdG A-DATADRIVE-
B (290923), Research Council KUL: GOA/10/-/09 MaNet , CoE
PFV/10/002 (OPTEC), BIL12/11T; PhD/Postdoc grants-Flemish
Government; FWO: projects: G.0377.12 (Structured systems),
G.088114N (Tensor based data similarity); PhD/Postdoc grants;
IWT: projects: SBO POM (100031); PhD/Postdoc grants; iMinds
Medical Information Technologies SBO 2014 and 2015-Belgian
Federal Science Policy Office: IUAP P7/19 (DYSCO, Dynamical
systems, control and optimization, 2012-2017).

6. REFERENCES
[1] Apache hadoop: Lightning-fast cluster computing, 2005 (ac-

cessed July 6, 2015).
[2] Neo4j: The worlds leading graph database, 2007 (accessed

July 6, 2015).
[3] Apache spark: Lightning-fast cluster computing, 2010 (ac-

cessed July 6, 2015).
[4] Orientdb, 2010 (accessed July 6, 2015).
[5] Titan: Distributed graph database, 2014 (accessed July 6,

2015).

[6] Fs-scala: Apache spark implementation of fixed size least
squares support vector machines, 2015 (accessed July 12,
2015).

[7] Dhruba Borthakur, Samuel Rash, Rodrigo Schmidt, Ami-
tanand Aiyer, Jonathan Gray, Joydeep Sen Sarma, Kan-
nan Muthukkaruppan, Nicolas Spiegelberg, Hairong Kuang,
Karthik Ranganathan, Dmytro Molkov, and Aravind Menon.
Apache hadoop goes realtime at Facebook. SIGMOD ’11 -
Proceedings of the 2011 international conference on Man-
agement of data, page 1071, 2011.

[8] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh,
Deborah A Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, and Robert E Gruber. Bigtable: A distributed storage
system for structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):1–26, 2008.

[9] K. De Brabanter, J. De Brabanter, J. A. K. Suykens, and B. De
Moor. Optimized fixed-size kernel models for large data sets.
Computational Statistics and Data Analysis, 54(6):1484–
1504, June 2010.

[10] Alon Halevy, Peter Norvig, and Fernando Pereira. The un-
reasonable effectiveness of data. IEEE Intelligent Systems,
24(2):8–12, 2009.

[11] M. Lichman. UCI machine learning repository, 2013.
[12] R. Mall, V. Jumutc, R. Langone, and J. A. K. Suykens. Rep-

resentative subsets for big data learning using k-NN graphs.
In Proc. of IEEE BigData, pages 37–42, 2014.

[13] R. Mall, R. Langone, and J. A. K. Suykens. FURS: Fast and
Unique Representative Subset selection retaining large scale
community structure. Social Network Analysis and Mining,
3(4):1075–1095, 2013.

[14] R. Mall and J. A. K. Suykens. Sparse Reductions for Fixed-
Size Least Squares Support Vector Machines on Large Scale
Data. In Proc. of 17th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD 2013), pages 161–173,
2013.

[15] R. Mall and J. A. K. Suykens. Very Sparse LSSVM Reduc-
tions for Large-Scale Data. IEEE Transactions on Neural Net-
works and Learning Systems, 26(5):1086–1097, 2015.

[16] Xiangrui Meng, Joseph K. Bradley, Burak Yavuz, Evan R.
Sparks, Shivaram Venkataraman, Davies Liu, Jeremy Free-
man, D. B. Tsai, Manish Amde, Sean Owen, Doris Xin,
Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Za-
haria, and Ameet Talwalkar. MLlib : Machine Learning in
Apache Spark. CoRR, abs/1505.06807, 2015.

[17] J. A. Nelder and R. Mead. A Simplex Method for Function
Minimization. The Computer Journal, 7(4):308–313, January
1965.

[18] Martin Odersky and al. An overview of the scala program-
ming language. Technical Report IC/2004/64, EPFL Lau-
sanne, Switzerland, 2004.

[19] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor,
and J. Vandewalle. Least Squares Support Vector Machines.
World Scientific, Singapore, 2002.

[20] J. A. K. Suykens and J Vandewalle. Least Squares Sup-
port Vector Machine Classifiers. Neural processing letters,
9(3):293–300, 1999.

[21] J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor,
and J. Vandewalle. Least Squares Support Vector Machines.
World Scientific, 2002.

5



International Journal of Computer Applications (0975 - 8887)
Volume 172 - No.3, August 2017

Table 1. : Experiment Parameters

Name Meaning
Kernel The type of kernel used i.e. RBF, Polynomial, etc

Prototypes Size of prototype set
Global Opt. Hyper-parameter optimization algorithm
Grid Size Number of points (per hyper-parameter) in the grid

Grid Resolution Distance between two adjacent points on each axis of the grid
Scale Determines if the grid is on the logarithmic scale or linear

F1 score avg. F1 score (measure of classification accuracy)
area under ROC avg. area under the ROC curve

Table 2. : Magic Gamma Test Results

Kernel Prototypes Global Opt Grid Size Grid R Scale max F Area ROC
RBF 50 gs 2 0.525 linear 0.67431(0.01283) 0.61592(0.0536)
RBF 50 gs 3 0.425 linear 0.67555(0.02012) 0.6182(0.0940)
RBF 50 csa 2 0.525 linear 0.69516(0.0463) 0.6726(0.1009)
RBF 50 csa 3 0.425 linear 0.70949(0.0362) 0.68452(0.1215)
Polynomial 50 gs 2 0.525 linear 0.71073(0.0674) 0.60584(0.1897)
Polynomial 50 gs 3 0.425 linear 0.71554(0.0626) 0.64792(0.1548)
Polynomial 50 csa 2 0.525 linear 0.7142(0.0128) 0.7103(0.0028)
Polynomial 50 csa 3 0.425 linear 0.71688(0.0191) 0.69069(0.0708)
Exponential 50 gs 2 0.525 linear 0.66805(0.0036) 0.47326(0.0538)
Exponential 50 gs 3 0.425 linear 0.71769(0.0079) 0.70283(0.03326)
Exponential 50 csa 2 0.525 linear 0.73585(0.0312) 0.74562(0.0304)
Exponential 50 csa 3 0.425 linear 0.72359(0.0249) 0.72973(0.0546)
Linear 50 gs 3 0.425 linear 0.6639(0) 0.4118(0)
Linear 50 csa 3 0.425 linear 0.6639(0) 0.4118(0)

Table 3. : Adult Data Set Test Results

Kernel Prototypes Global Opt GS Grid R Scale max F1 score Area ROC
RBF 50 gs 5 0.35 linear 0.69168(0.0187) 0.65261(0.0559)
RBF 50 csa 5 0.35 linear 0.709(0.0198) 0.71215(0.00149)
RBF 50 gs 4 0.35 linear 0.69291(0.02286) 0.64006(0.0928)
RBF 50 csa 4 0.35 linear 0.7253(0.0229) 0.7205(0.0714)
RBF 50 csa 3 0.35 linear 0.69449(0.0295) 0.68823(0.06209)
RBF 50 gs 3 0.35 linear 0.67212(0.0076) 0.54631(0.06288)
RBF 50 csa 3 0.35 linear 0.70296(0.0521) 0.703(0.0760)
Exponential 50 gs 4 0.35 linear 0.68338(0.0223) 0.66438(0.0465)
Exponential 50 csa 3 0.35 linear 0.73457(0.00621) 0.74955(0.0392)
Exponential 50 csa 4 0.35 linear 0.73579(0.0189) 0.75386(0.0229)
Linear 50 csa 3 0.35 linear 0.69770(0) 0.68936(0)
Linear 50 csa 4 0.35 linear 0.69770(0) 0.68936(0)

[22] Giorgio Valentini, D S I Dipartimento, and Thomas G Diet-
terich. Bias-Variance Analysis of Support Vector Machines
for the Development of SVM-Based Ensemble Methods.
Journal of Machine Learning Research, 5:725–775, 2004.

[23] Samuel Xavier-De-Souza, J. A. K. Suykens, J. Vandewalle,
and Désiré Bolle. Coupled simulated annealing. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B: Cybernet-
ics, 40(2):320–335, 2010.

[24] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin,
Scott Shenker, and Ion Stoica. Spark : Cluster Comput-
ing with Working Sets. HotCloud’10 Proceedings of the
2nd USENIX conference on Hot topics in cloud computing,

page 10, 2010.

6


	Introduction
	Least Squares Support Vector Machines
	Formulation
	FS-LSSVM

	FS-LSSVM Implementation
	Experiments
	Conclusion
	References

