
International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.4, August 2017

40

Spotting Separator Points at Line Terminals in

Compressed Document Images for Text-line

Segmentation

Amarnath R.
Department of Studies in Computer Science,

University of Mysore, India.

P. Nagabhushan
Department of Studies in Computer Science,

University of Mysore, India.

ABSTRACT

Line separators are used to segregate text-lines from one

another in document image analysis. Finding the separator

points at every line terminal in a document image would

enable text-line segmentation. In particular, identifying the

separators in handwritten text could be a thrilling exercise.

Obviously it would be challenging to perform this in the

compressed version of a document image and that is the

proposed objective in this research. Such an effort would

prevent the computational burden of decompressing a

document for text-line segmentation. Since document images

are generally compressed using run length encoding (RLE)

technique as per the CCITT standards, the first column in the

RLE will be a white column. The value (depth) in the white

column is very low when a particular line is a text line and the

depth could be larger at the point of text line separation. A

longer consecutive sequence of such larger depth should

indicate the gap between the text lines, which provides the

separator region. In case of over separation and under

separation issues, corrective actions such as deletion and

insertion are suggested respectively. An extensive

experimentation is conducted on the compressed images of

the benchmark datasets of ICDAR13 and Alireza et al [17] to

demonstrate the efficacy.

General Terms

Line separator points at every line terminal in a compressed

handwritten document images enabling text line

segmentation.

Keywords

Line separators, Document image analysis, Handwritten text,

Compression and decompression, RLE, CCITT.

1. INTRODUCTION
Generally, a document image is represented in a compressed

format. The format is developed based on the guidelines of

CCITT Group 4 standards, which is a part of ITU

(International Telegraph Union) [1]. This compression

standard facilitates both efficient storage and transmission

[12] and therefore it is utilized in real-time applications

including fax machines, photocopy machines, digital libraries

and communication networks.

The compressed representation of a document could imply a

solution to the big data problems arising from the document

images, particularly with regard to storage and transmission.

However to perform digital document analysis (DDA) [20],

the image in the compressed format has to undergo the

decompression stage [13, 14. 15]. This pre-requisite warrants

additional buffer space and also extra time. If DDA could be

carried out directly in the compressed version, then the

document image compression could be viewed as an effective

solution to the big data problem arising from the document

images.

Few literature reported working directly on the compressed

version of the printed text. But the challenging job is to

perform DDA on the handwritten images because of

oscillatory variations, inclined orientations and frequent

touching of text lines while scribing the text lines. Therefore,

performing the segmentation in an uncompressed handwritten

text could be a difficult task. However, we foresee this

possibility in view of the literature presented by Javed et al

[13] which reports the research effort in the compressed

printed document. In this research paper, the proposal is to

spot the separator points at every line terminal in the

compressed handwritten images enabling text line

segmentation.

The CCITT Group-3 / Group-4 and JBIG protocols are

developed based on the run-length encoding (RLE) [15],

widely accepted for binary document compression. The RLE

of the document image is represented in a matrix format. The

first column of the matrix always starts with a white space.

This represents the left margin. The depth (length) of the

white space is larger at the separation points compared to the

depth of the white space when it encounters the text lines.

However, the last column of RLE does not infer the depth of

right margin of the document. So we create a virtual column

containing last non-zero value of every row of the RLE data.

In summary, we propose to make use of a single column in-

order to find the separator points at every line terminal.

If the depth of the white space in the first column is equal to

that of the document width, then it certainly infers a text-line

segmentation. But most of the time this situation may not

occur in case of handwritten texts. This is because of

oscillatory variations, inclined orientations and frequent

touching of consecutive lines, particularly while writing on

the white page (un-ruled paper). Further, every text-line in a

handwritten document does not necessarily start or end with

same left/right margin space. Such situation is more evident in

the first and the last text-lines in every paragraph.

The depth of the white space would be larger at the point of

separation than the depth elsewhere, but this depth may not be

pronounced even at the expected separator points when two

text lines are touching at the beginning of the line itself and

thus it causes under separation. So the correction is to insert a

separator points. Similarly a deeper margin for consecutive

text lines could also cause under separation, by showing the

entire stretch as one separation. On the other hand, a larger

concavity in the character, a higher indent space, and disjoint

composition of a character may result in a perceivably high

depth and hence a pseudo separation, causing over separation.

Therefore, the correction requires the deletion of such over

separation points.

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.4, August 2017

41

The organisation of the paper is as follows – Section 2

contains related research work. Section 3 includes an

understanding of the RLE structure. The algorithmic model of

the proposed method is explained in Section 4. Experimental

analysis conducted on benchmark datasets is presented in

Section 5. Summary and future possibilities are presented in
Section 6.

2. RELATED WORK
In spite of the extensive search, there is no contribution

reported in the field of DDA directly operating we could

identify some related works pertaining to the compressed

image processing. Most of the contributions are in the field of

skew detection / correction, document matching and archival.

The overview of this literature is covered in Table 1. All the

literature papers presented in this table refer to some DDA on

the compressed printed document images.

In summary, the motivation is the absence of the work on the

compressed version of handwritten document, and the hope

that can be traced particularly because of [8,13,14].

3. COMPRESSED IMAGE

REPRESENTATION AND

TERMINOLOGIES
The CCITT Group 3 [2] or Modified Huffman (MH) [15]

image format primarily uses line by line coding technique.

Basically the MH uses RLE as its basis encoding function.

RLE describes the length of the run that carries similar pixel

value which is either 0 or 1. The pixel carrying value 1 (on) is

interpreted as foreground whereas the pixel carrying the value

0 (off) is considered as background. An example of RLE

format is represented in the table 2.

The RLE consists of alternate columns of number of runs of 0

and 1 acknowledged as odd columns (1, 3, 5,…) and even

columns (2, 4, 6,…) respectively. The column always starts

with white runs. In absentia of a white run at the starting point

that is in the first column, it is essential to make an entry as 0

(note the line 7 and 8 in Table 2). Further this table shows

how the RLE compression technique is involved in shrinking

a binary image data of length say 14 bits to 5 columns. Each

value in the RLE represents the magnitude or depth of the

corresponding runs.

Table 1. Related research work

Research Area Authors Contribution

Skew detection / correction

in CCITT Group 4

Shulan Deng et al

[3]

Exploiting 2-dimensional correlation between scan lines by extracting

connected component. Employed occurrence frequency of word objects

Skew detection on Run data Y. Shima et al [5] Coordinate transformation based on projection profile method.

Skew detection Directly on

compressed CCITT Group

4

A.L. Spitz [6]
Used position locations of black and white structures to determine skew

angles.

Skew detection in JBIG J. Kanai et al [7] Used projection profile for predicting skews

Object Identification C. Maa [4]

Attempted in identifying a bar code directly in compressed CCITT Group 4

images. A particular pattern from relative position of pixels between scan
lines were used.

Layout Analysis
E. Regentova et al

[9]
Used the connected-component-detection and labelling techniques on JBIG-

encoded images for obtaining global layout

Document Retrieval J. J. Hull [10, 11]
Used passcode of CCITT Group 4 as feature vectors. He used Hausdorff

distance measure for document matching

Document Retrieval Yue Lu et al [12]

Have worked on connected component techniques of CCITT Group 4

standard images. Word objects are bounded by extracting changing elements.
These word objects are matched based on weighted Hausdorff distance

Segmentation
Mohammed Javed

et al [8, 13, 14]

Have performed Line, Word, and Character Segments directly from run-

length compressed data. They have used horizontal projection profiled and
local minima points to estimate the text lines.

Table 2. Binary image data [13]

Line Binary data 1 2 3 4 5

1 00000000000000 14 0 0 0 0

2 00110000111110 2 2 4 5 1

3 01111000111110 1 4 3 5 1

4 01111000111110 1 4 3 5 1

5 01111000111110 1 4 3 5 1

6 00110000000000 2 2 10 0 0

7 10000000000000 0 1 13 0 0

8 10000000000000 0 1 13 0 0

9 00100001111100 2 1 4 5 2

10 01110001111100 1 3 3 5 2

11 01111001111100 1 4 2 5 2

12 01111100000000 1 5 8 0 0

13 00000000000000 14 0 0 0 0

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.4, August 2017

42

For a better understanding, figure 1 (a) and (b) show a portion

of the sample document image and its compressed version.

Fig. 2 shows the RLE structure of this sample image.

 (a) Uncompressed document (b) Compressed document

Fig. 1: Length pattern observed from a compressed text

line

(Reference: A portion of ICDAR13 test image -214.tif)

Fig. 2: The RLE Structure

(Reference: A portion of ICDAR13 test image -214.tif)

3.1 Depth of the White Space
The values in the first column of RLE represent the depth of

the white space starting from the left border of the document

page. Fig 3 shows the depth projection for a portion of the

first column extracted from figure 2. It is observed that the

entries in the first column are non-zero and this indicates a

minimum white space as the left margin, even in the presence

of the text-line.

 a b

Fig. 3: The depth of the white space from left end of the

document

(a) The first column of the RLE, (b) Projection of values

The first column of the RLE implies the left margin of the

document, whereas in case of the right margin the depth of the

white space has to be traced in the RLE because it is not

available as a column. Here, the last non-zero entry of every

row of RLE is considered as the right margin of the document

and hence a virtual column is built.

An illustration is provided in fig 4 where the last non-zero

entries are taken from the odd column of every row. In some

cases, the last non-zero entry appears in an even column and

so a zero entry should be added for the virtual column of the

corresponding row. A last non-zero entry in the even column

indicates that the text-line touches the right border of the

document.

a b

Fig. 4: The depth of the white space from right end

(a) RLE format, (b) Virtual column

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.4, August 2017

43

3.2 Under Separation
One of the reasons for under separation is the touching or

overlapping of two text-lines at the starting point itself. Here,

the depth of the white-run is reasonably low. Fig 5 (a) shows

an example where the text-lines 3 and 4 are touching each

other at the beginning of the text line. The other reason is

when a large margin space is indented at the beginning of the

text line. This is shown in Fig 5 (b) where the second text-line

has more left margin white space compared to other text-lines.

a

b

Fig. 5: Under Separation

(Reference: A portion of ICDAR13 test images - 216.tif

and 220.tif)

(a) Touching of lines at the starting point,

(b) Text line with more space for left margin

3.3 Over Separation
The over separation occurs when a text line is identified as a

non-text (white space) region. Fig 6 shows the character ‘J’

causing a pseudo separation point. The over separation is due

to concavity of the character from the left end. The other

affecting factor could be the multiple disjoint fractions or

components which compose a character.

Fig. 6: Over Separation

(Reference: A portion of ICDAR13 test image - 273.tif)

4. IDENTIFICATION OF TEXT-LINE

SEPARATORS IN COMPRESSED

IMAGES
From the details presented in Section 3, there are three main

stages – (a) Finding the bands of consecutive rows with larger

white depths, (b) Finding the under separation (c) Finding the

over separation. A detailed explanation is provided for each

stage in the following sub sections.

4.1 Finding the bands of consecutive rows

with larger white depths
The goal of this method is to identify the separator (non-text)

and non-separator (text) regions. The first column of RLE and

a threshold are the inputs. The threshold value (t) is

heuristically chosen as 1/25 of the document width. This

threshold is considered after analysing the other thresholds

including 1/35 and 1/15 as well. Initially, we remove the

margin space from the left border of the document by

subtracting the values with a minimum value. After this

elimination process, if the value is greater than the threshold,

then the corresponding index position is labelled as separator

point (say ‘1’), otherwise it is presumed as a text region (say

‘0’). Fig 7 (a) shows a sample image marked with separator

bands (black patches) along the left border of the document.

Fig 7 (b) shows the periodicity of the separator bands.

a b

Fig. 7: Formation of Separator bands

(Reference: A ICDAR13 test image - 201.tif)

(a) Separator bands, (b) Periodicity of the separator band

The first column of RLE and the threshold are represented as

FC and t respectively in the algorithm. The final output, say

Separator Band (SB), represents the region of text line

separation.

Algorithm CreatingSeparatorBands

Input: –

 –

Output: –

The time complexity of finding the minimum value is ,
where m = size of the first column. The algorithm scans the

input array once again to find the separator points. Overall,

the worst case of the algorithm is .

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.4, August 2017

44

4.2 Finding the under separation
The two factors causing under separation have been detailed

in Section 3.2. In this section, we deal with the separator band

width which is relatively large. The under separator region

could be seen in Fig 8. Fig 5(b) in Section 3 shows the region

of interest (ROI). When a separator band width is two times

larger than that of an average band width, then it is presumed

as under separator region or ROI. To resolve this, the ROI

would be recursively iterated with the same algorithm

described in the previous section. The recursion terminates

when no ROI is detected.

On the other hand, the separator band width would be

extremely large, sometimes it may cover more than 1/10 of

the document height, which definitely affects the average

separator band width. This scenario is shown in Fig 9. So we

directly take this region as ROI and this would not be

considered for calculating the average. The threshold 1/10 is

chosen heuristically based on the average number of the text

lines in the dataset.

Fig. 8: Separation band and frequency

(Reference: ICDAR13 test image - 220.tif)

a b

Fig. 9: Separator bands

(Reference: A ICDAR13 test image - 201.tif)

(a) A larger separation band,

(b) Separation bands after Iteration

Algorithm FindingUnderSeparation

Input: –

Output: – –

The time complexity for finding the average separator band

width is .

The detection of the ROI is . The worst case scenario

for this algorithm is .

Next, the separator points are identified by taking the mid

position of each band with respect to its position. Suppose the

starting and the ending position of a separator band are

 respectively, then the mid-point is

computed as

 . Fig. 10 shows the line

separator example.

Fig. 10: Line Separators

(Reference: A portion of ICDAR13 test image - 201.tif)

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.4, August 2017

45

The other under separation problem is illustrated in Section

3.2 (Fig 5(a)) when two adjacent text lines are touching at the

beginning of the text-line. We analyze the frequency of the

separator points. If the gap between the two adjacent separator

points is more than twice its average gap, then it is considered

as an under separation region. The under separation region

could be seen in fig 11 with its corresponding separator

frequency.

Fig. 11: Under separation and frequency

(Reference: A portion of ICDAR13 test image - 214.tif)

To resolve this, first we compute the average separation gap

between the adjacent separators. Next, we re-compute the

average separation gap by ignoring the touching separator

points. This newly computed average is used in-order to insert

the separator exactly in the midpoint of the two touching text-

lines. The same algorithm to identify the under separation

region is employed. Instead of computing the average

separator band width, we take the average gap between the

separator points. Therefore, the time complexity is .

4.3 Finding the over separation
As described in Section 3.3, the reasons for over separation

are disjoint character composition and perceivably higher

concave character structure. The over separator points are

detected based on the frequent appearance of the separator

points than expected. This could be seen in Fig 11, where the

separator line 6 is closely located to the separator 7.

Fig. 12: Under separation and frequency

(Reference: A portion of ICDAR13 test image - 218.tif)

The over separation points are detected when the gap between

the adjacent is lesser than 1/3 of the average gap. In Fig 11,

the gap between the separator points 6 and 7 is identified as

over separation. In this scenario, the separator point 6 is to be

removed because this separator point is comparatively closer

to its adjacent point 5 than the gap between 7 and 8. The

mathematical model is given below.

The algorithm scans the separator points twice and so the

overall time complexity is .

4.4 Creation of a virtual column at the

right end
To work on the right margin of the document image, we

consider the last non-zero entry of every row of RLE data and

we build a virtual column. This is explained clearly in Section

3.1. The algorithmic skeleton is provided here under.

Algorithm VirtualColumn

Input: RLE

Output: VC – Virtual Column- consists of last non-zero

value of every row in RLE data

This algorithm takes

Algorithms in 4.1, 4.2 and 4.3 can be applied on this virtual

column to spot the separator points at right border of the

document. A sample result of separator points at left and right

border is shown in Fig 13.

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.4, August 2017

46

Fig. 13: Separator points at left and right borders

(Reference: A portion of ICDAR13 test image - 305.tif)

5. EXPERIMENTAL ANALYSIS
There is no standard compressed handwritten dataset available

in the literature. However, the benchmark datasets such as

ICDAR2013 [16], Alireza et al [17] of Kannada, Oriya,

Persian and Bangla documents are compressed using the RLE

technique. The compression standard is adopted as presented

in [14]. The system is evaluated by counting the number of

matches between the entities (separator points) detected by the

algorithm and the entities present in the ground truth,

proposed in the literature [16]. Let N be the count of ground-

truth elements and the number of one-to-one matches be o2o,

the detection rate (DR) is defined as follows:

The machine learning statistics such as True Negative (TN)

and False Positive (FP) in terms of under separation and over

separation respectively is shown below.

The total separator points at left/right border of a document is

the sum of the number of gaps between the text lines and the

two margins (top and bottom) of the document page.

While experimenting, we ignore the separator point at the top

margin of every document. The table 3 shows the DR on

evaluating the algorithms on the handwritten datasets. The

table shows one-to-one detection on both ends (left and right).

Different threshold values including 1/15 and 1/35 were

experimented. However, the threshold value 1/25 would give

relatively higher DR. In particular, the Persian handwritten

dataset holds lesser DR. This is because the Persian characters

or words are composed of disjoint components. For Persian

texts the performance at the right end is better than left

because it is written in left-to-right direction, causing a larger

indent margin at left end when compared to its right.

Table 3. Detection Rate tested with various compressed datasets

Datasets

(Handwritten)

Total

Lines

(N)

Detected Undetected (%)

o2o Rate (%) Left Right

Left Right Left Right TN FP TN FP

ICDAR13 [16] 2649 2578 2502 97.31 94.45 2.69 2.78 5.55 6.44

Kannada [17] 4298 4173 4082 97.09 94.97 2.91 3.01 5.03 5.23

Oriya [17] 3108 3012 2911 96.91 93.66 3.09 4.10 6.34 7

Bangla [17] 4850 4650 4598 95.87 94.80 4.13 4.45 5.20 6.01

Persia [17] 1787 1690 1723 94.57 96.41 5.43 7.99 3.59 4.2

6. CONCLUSION AND FUTURE WORK
In this paper, a novel idea of working directly in the

compressed representation of the document image is

presented. We spotted the sequence of separator points at

every line terminal in the RLE data. These separator points

would enable the text line segmentation. Certainly, these

points determine the text line segmentation in the printed

compressed document. Though the entire RLE data is

available, we used just the first column of the RLE to spot

separator points on the left end of the document. In case of the

right end, the last non-zero entry of every row in the RLE data

is chosen to form a virtual column. The algorithm has some

limitations in working with skews, large margins (indents),

consecutive touching lines and disjoint characters. These

limitations can be considered for the future work.

7. REFERENCES
[1] CCITT: 'Recommendation T.6 – Facsimile Coding

Schemes and Coding Control Function from Group 4,

International Telecommunication Union', (Extract from

the Blue Book), Geneva, 1988.

[2] CCITT: 'Recommendation T.4, Standardization of

group 3 facsimile apparatus for document transmission',

terminal equipments and protocols for telematic

services, vol. vii, fascicle, vii.3, geneva, tech. rep.,

1985.

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.4, August 2017

47

[3] Shulan Deng, Shahram Latifi, and Junichi Kanai:

“Manipulation of Text Documents in the Modified

Group 4 Domain', IEEE Second Workshop on

Multimedia Signal Processing, 1998.

[4] C. Maa:'Identifying the existence of bar codes in

compressed images', CVGIP: Graphical Models and

Image Processing, pp. 56:352-356, 1994.

[5] Y. Shima, S. Kashioka, and J. Higashino: 'A High-speed

Rotation Method for Binary Images Based on

Coordinate Operation of Run Data', Systems and

Computers in Japan, Vol. 20, No. 6, pp. 91-102, 1989.

[6] A.L. Spitz: 'Analysis of Compressed Document Images

for Dominant Skew, Multiple Skew, and Logotype

Detection', Computer Vision and Image Understanding,

Vol. 70, No. 3, June, pp. 321–334, 1998.

[7] J. Kanai and A. D. Bangdanov: 'Projection profile based

skew estimation algorithm for jbig compressed images',

International Journal on Document Analysis and

Recognition (IJDAR’98), vol. 1, pp. 43–51, 1998.

[8] Mohammed Javed, P. Nagabhushan, and B.B.

Chaudhuri: 'Extraction of Line Word Character

Segments Directly from Run Length Compressed

Printed Text Documents'.

[9] E. Regentova, S. Latifi, D. Chen, K. Taghva, and D.

Yao: 'Document analysis by processing jbig-encoded

images', IJDAR, vol. 7, pp. 260-272, 2005.

[10] J. J. Hull: 'Document matching on ccitt group 4

compressed images', SPIE Conference on Document

Recognition IV, pp. 8–14, Feb 1997.

[11] J. J. Hull: 'Document image similarity and equivalence

detection', International Journal on Document Analysis

and Recognition (IJDAR’98), vol. 1, pp. 37–42, 1998.

[12] Y. Lu and C. L. Tan: 'Document retrieval from

compressed images', Pattern Recognition, vol. 36, pp.

987–996, 2003.

[13] Mohammed Javed, P. Nagabhushan, and B.B.

Chaudhuri: 'Extraction of line-word-character segments

directly from run-length compressed printed text-

documents', 2013 Fourth National Conference on

Computer Vision, Pattern Recognition, Image

Processing and Graphics (NCVPRIPG).

[14] Mohammed Javed, P. Nagabhushan, and B.B.

Choudhuri: 'Direct Processing of Run-Length

Compressed Document Image for Segmentation and

Characterization of a Specified Block', International

Journal of Computer Applications (0975 - 8887)

Volume 83 - No.15, December 2013.

[15] Mohammed Javed, Krishnanand S.H, P. Nagabhushan,

and B. B. Chaudhuri: 'Visualizing CCITT Group 3 and

Group 4 TIFF Documents and Transforming to Run-

Length Compressed Format Enabling Direct Processing

in Compressed Domain', International Conference on

Computational Modelling and Security (CMS 2016).

[16] Nikolaos Stamatopoulos, Basilis Gatos, Georgios

Louloudis, Umapada Pal and Alireza Alaei:

'ICDAR2013 Handwritting Segmentation Contest', 2013

12th International Conference on Document Analysis

and Recognition.

[17] Alireza Alaei, Umapada Pal and P. Nagabhushan:

'Dataset and Ground Truth for Handwritten Text in Four

Different Scripts', Int. J. Patt. Recogn. Artif. Intell. 26,

1253001 (2012).

[18] Alireza Alaei, Umapada Pal and P. Nagabhushan:'A

New Scheme for Unconstrained Handwritten Text-line

Segmentation', Pattern Recognition 44 (2011), 917–928.

[19] D. Brodic: 'Methodology for the Evaluation of the

Algorithms for Text Line Segmentation Based on

Extended Binary Classification', Measurement Science

Review, Volume 11, No. 3, 2011.

[20] B. B. Chaudhuri and Chandranath Adaka:'An Approach

for Detecting and Cleaning of Struck-out Handwritten

Text', Pattern Recognition, 2016.

IJCA
TM

: www.ijcaonline.org

