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ABSTRACT 

Line separators are used to segregate text-lines from one 

another in document image analysis. Finding the separator 

points at every line terminal in a document image would 

enable text-line segmentation. In particular, identifying the 

separators in handwritten text could be a thrilling exercise. 

Obviously it would be challenging to perform this in the 

compressed version of a document image and that is the 

proposed objective in this research. Such an effort would 

prevent the computational burden of decompressing a 

document for text-line segmentation. Since document images 

are generally compressed using run length encoding (RLE) 

technique as per the CCITT standards, the first column in the 

RLE will be a white column. The value (depth) in the white 

column is very low when a particular line is a text line and the 

depth could be larger at the point of text line separation. A 

longer consecutive sequence of such larger depth should 

indicate the gap between the text lines, which provides the 

separator region. In case of over separation and under 

separation issues, corrective actions such as deletion and 

insertion are suggested respectively. An extensive 

experimentation is conducted on the compressed images of 

the benchmark datasets of ICDAR13 and Alireza et al [17] to 

demonstrate the efficacy. 

General Terms 

Line separator points at every line terminal in a compressed 

handwritten document images enabling text line 

segmentation. 

Keywords 

Line separators, Document image analysis, Handwritten text, 

Compression and decompression, RLE, CCITT. 

1. INTRODUCTION 
Generally, a document image is represented in a compressed 

format. The format is developed based on the guidelines of 

CCITT Group 4 standards, which is a part of ITU 

(International Telegraph Union) [1]. This compression 

standard facilitates both efficient storage and transmission 

[12] and therefore it is utilized in real-time applications 

including fax machines, photocopy machines, digital libraries 

and communication networks.  

The compressed representation of a document could imply a 

solution to the big data problems arising from the document 

images, particularly with regard to storage and transmission. 

However to perform digital document analysis (DDA) [20], 

the image in the compressed format has to undergo the 

decompression stage [13, 14. 15]. This pre-requisite warrants 

additional buffer space and also extra time. If DDA could be 

carried out directly in the compressed version, then the 

document image compression could be viewed as an effective 

solution to the big data problem arising from the document 

images. 

Few literature reported working directly on the compressed 

version of the printed text. But the challenging job is to 

perform DDA on the handwritten images because of 

oscillatory variations, inclined orientations and frequent 

touching of text lines while scribing the text lines. Therefore, 

performing the segmentation in an uncompressed handwritten 

text could be a difficult task. However, we foresee this 

possibility in view of the literature presented by Javed et al 

[13] which reports the research effort in the compressed 

printed document. In this research paper, the proposal is to 

spot the separator points at every line terminal in the 

compressed handwritten images enabling text line 

segmentation. 

The CCITT Group-3 / Group-4 and JBIG protocols are 

developed based on the run-length encoding (RLE) [15], 

widely accepted for binary document compression. The RLE 

of the document image is represented in a matrix format. The 

first column of the matrix always starts with a white space. 

This represents the left margin. The depth (length) of the 

white space is larger at the separation points compared to the 

depth of the white space when it encounters the text lines. 

However, the last column of RLE does not infer the depth of 

right margin of the document. So we create a virtual column 

containing last non-zero value of every row of the RLE data. 

In summary, we propose to make use of a single column in-

order to find the separator points at every line terminal. 

If the depth of the white space in the first column is equal to 

that of the document width, then it certainly infers a text-line 

segmentation. But most of the time this situation may not 

occur in case of handwritten texts. This is because of 

oscillatory variations, inclined orientations and frequent 

touching of consecutive lines, particularly while writing on 

the white page (un-ruled paper). Further, every text-line in a 

handwritten document does not necessarily start or end with 

same left/right margin space. Such situation is more evident in 

the first and the last text-lines in every paragraph.  

The depth of the white space would be larger at the point of 

separation than the depth elsewhere, but this depth may not be 

pronounced even at the expected separator points when two 

text lines are touching at the beginning of the line itself and 

thus it causes under separation. So the correction is to insert a 

separator points. Similarly a deeper margin for consecutive 

text lines could also cause under separation, by showing the 

entire stretch as one separation. On the other hand, a larger 

concavity in the character, a higher indent space, and disjoint 

composition of a character may result in a perceivably high 

depth and hence a pseudo separation, causing over separation. 

Therefore, the correction requires the deletion of such over 

separation points. 
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The organisation of the paper is as follows – Section 2 

contains related research work. Section 3 includes an 

understanding of the RLE structure. The algorithmic model of 

the proposed method is explained in Section 4. Experimental 

analysis conducted on benchmark datasets is presented in 

Section 5. Summary and future possibilities are presented in 
Section 6. 

2. RELATED WORK 
In spite of the extensive search, there is no contribution 

reported in the field of DDA directly operating we could 

identify some related works pertaining to the compressed 

image processing. Most of the contributions are in the field of 

skew detection / correction, document matching and archival. 

The overview of this literature is covered in Table 1. All the 

literature papers presented in this table refer to some DDA on 

the compressed printed document images. 

In summary, the motivation is the absence of the work on the 

compressed version of handwritten document, and the hope 

that can be traced particularly because of [8,13,14]. 

3. COMPRESSED IMAGE 

REPRESENTATION AND 

TERMINOLOGIES 
The CCITT Group 3 [2] or Modified Huffman (MH) [15] 

image format primarily uses line by line coding technique. 

Basically the MH uses RLE as its basis encoding function. 

RLE describes the length of the run that carries similar pixel 

value which is either 0 or 1. The pixel carrying value 1 (on) is 

interpreted as foreground whereas the pixel carrying the value 

0 (off) is considered as background. An example of RLE 

format is represented in the table 2. 

The RLE consists of alternate columns of number of runs of 0 

and 1 acknowledged as odd columns (1, 3, 5,…) and even 

columns (2, 4, 6,…) respectively. The column always starts 

with white runs. In absentia of a white run at the starting point 

that is in the first column, it is essential to make an entry as 0 

(note the line 7 and 8 in Table 2). Further this table shows 

how the RLE compression technique is involved in shrinking 

a binary image data of length say 14 bits to 5 columns. Each 

value in the RLE represents the magnitude or depth of the 

corresponding runs. 

Table 1. Related research work 

Research Area Authors Contribution 

Skew detection / correction 

in CCITT Group 4 

Shulan Deng et al 

[3] 

Exploiting 2-dimensional correlation between scan lines by extracting 

connected component. Employed occurrence frequency of word objects 

Skew detection on Run data Y. Shima et al [5] Coordinate transformation based on projection profile method. 

Skew detection Directly on 

compressed CCITT Group 

4 

A.L. Spitz [6] 
Used position locations of black and white structures to determine skew 

angles. 

Skew detection in JBIG J. Kanai et al [7] Used projection profile for predicting skews 

Object Identification C. Maa [4] 

Attempted in identifying a bar code directly in compressed CCITT Group 4 

images. A particular pattern from relative position of pixels between scan 
lines were used. 

Layout Analysis 
E. Regentova et al 

[9] 
Used the connected-component-detection and labelling techniques on JBIG-

encoded images for obtaining global layout 

Document Retrieval J. J. Hull [10, 11] 
Used passcode of CCITT Group 4 as feature vectors. He used Hausdorff 

distance measure for document matching 

Document Retrieval Yue Lu et al [12] 

Have worked on connected component techniques of CCITT Group 4 

standard images. Word objects are bounded by extracting changing elements. 
These word objects are matched based on weighted Hausdorff distance 

Segmentation 
Mohammed Javed 

et al [8, 13, 14] 

Have performed Line, Word, and Character Segments directly from run-

length compressed data. They have used horizontal projection profiled and 
local minima points to estimate the text lines. 

 

Table 2. Binary image data [13] 

Line Binary data 1 2 3 4 5 

1 00000000000000 14 0 0 0 0 

2 00110000111110 2 2 4 5 1 

3 01111000111110 1 4 3 5 1 

4 01111000111110 1 4 3 5 1 

5 01111000111110 1 4 3 5 1 

6 00110000000000 2 2 10 0 0 

7 10000000000000 0 1 13 0 0 

8 10000000000000 0 1 13 0 0 

9 00100001111100 2 1 4 5 2 

10 01110001111100 1 3 3 5 2 

11 01111001111100 1 4 2 5 2 

12 01111100000000 1 5 8 0 0 

13 00000000000000 14 0 0 0 0 
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For a better understanding, figure 1 (a) and (b) show a portion 

of the sample document image and its compressed version. 

Fig. 2 shows the RLE structure of this sample image. 

                              
 (a) Uncompressed document    (b) Compressed document 

Fig. 1: Length pattern observed from a compressed text 

line 

(Reference: A portion of ICDAR13 test image -214.tif) 

 
Fig. 2: The RLE Structure 

(Reference: A portion of ICDAR13 test image -214.tif) 

3.1 Depth of the White Space 
The values in the first column of RLE represent the depth of 

the white space starting from the left border of the document 

page. Fig 3 shows the depth projection for a portion of the 

first column extracted from figure 2. It is observed that the 

entries in the first column are non-zero and this indicates a 

minimum white space as the left margin, even in the presence 

of the text-line. 

   
    a     b 

Fig. 3: The depth of the white space from left end of the 

document 

(a) The first column of the RLE, (b) Projection of values 

 
The first column of the RLE implies the left margin of the 

document, whereas in case of the right margin the depth of the 

white space has to be traced in the RLE because it is not 

available as a column. Here, the last non-zero entry of every 

row of RLE is considered as the right margin of the document 

and hence a virtual column is built.  

An illustration is provided in fig 4 where the last non-zero 

entries are taken from the odd column of every row. In some 

cases, the last non-zero entry appears in an even column and 

so a zero entry should be added for the virtual column of the 

corresponding row. A last non-zero entry in the even column 

indicates that the text-line touches the right border of the 

document. 

 

                   
a                                        b 

Fig. 4: The depth of the white space from right end 

(a) RLE format, (b) Virtual column 
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3.2 Under Separation 
One of the reasons for under separation is the touching or 

overlapping of two text-lines at the starting point itself. Here, 

the depth of the white-run is reasonably low. Fig 5 (a) shows 

an example where the text-lines 3 and 4 are touching each 

other at the beginning of the text line. The other reason is 

when a large margin space is indented at the beginning of the 

text line. This is shown in Fig 5 (b) where the second text-line 

has more left margin white space compared to other text-lines. 

 
a 

 
b 

Fig. 5: Under Separation 

(Reference: A portion of ICDAR13 test images - 216.tif 

and 220.tif) 

(a) Touching of lines at the starting point, 

(b) Text line with more space for left margin 

 

3.3 Over Separation 
The over separation occurs when a text line is identified as a 

non-text (white space) region. Fig 6 shows the character ‘J’ 

causing a pseudo separation point. The over separation is due 

to concavity of the character from the left end. The other 

affecting factor could be the multiple disjoint fractions or 

components which compose a character. 

 

 
 

Fig. 6:  Over Separation 

(Reference: A portion of ICDAR13 test image - 273.tif) 

 

4. IDENTIFICATION OF TEXT-LINE 

SEPARATORS IN COMPRESSED 

IMAGES 
From the details presented in Section 3, there are three main 

stages – (a) Finding the bands of consecutive rows with larger 

white depths, (b) Finding the under separation (c) Finding the 

over separation. A detailed explanation is provided for each 

stage in the following sub sections. 

4.1 Finding the bands of consecutive rows 

with larger white depths 
The goal of this method is to identify the separator (non-text) 

and non-separator (text) regions. The first column of RLE and 

a threshold are the inputs. The threshold value (t) is 

heuristically chosen as 1/25 of the document width. This 

threshold is considered after analysing the other thresholds 

including 1/35 and 1/15 as well. Initially, we remove the 

margin space from the left border of the document by 

subtracting the values with a minimum value. After this 

elimination process, if the value is greater than the threshold, 

then the corresponding index position is labelled as separator 

point (say ‘1’), otherwise it is presumed as a text region (say 

‘0’).  Fig 7 (a) shows a sample image marked with separator 

bands (black patches) along the left border of the document. 

Fig 7 (b) shows the periodicity of the separator bands. 

                   
a    b 

Fig. 7:  Formation of Separator bands 

(Reference: A ICDAR13 test image - 201.tif) 

(a) Separator bands, (b) Periodicity of the separator band 

The first column of RLE and the threshold are represented as 

FC and t respectively in the algorithm. The final output, say 

Separator Band (SB), represents the region of text line 

separation. 

Algorithm CreatingSeparatorBands 

Input:     –                           

  –                                      

Output:     –                  

                                  

                              

                          

          
               
                 

  

          

            

The time complexity of finding the minimum value is     , 
where m = size of the first column. The algorithm scans the 

input array once again to find the separator points. Overall, 

the worst case of the algorithm is      . 
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4.2 Finding the under separation 
The two factors causing under separation have been detailed 

in Section 3.2. In this section, we deal with the separator band 

width which is relatively large. The under separator region 

could be seen in Fig 8. Fig 5(b) in Section 3 shows the region 

of interest (ROI). When a separator band width is two times 

larger than that of an average band width, then it is presumed 

as under separator region or ROI. To resolve this, the ROI 

would be recursively iterated with the same algorithm 

described in the previous section. The recursion terminates 

when no ROI is detected. 

On the other hand, the separator band width would be 

extremely large, sometimes it may cover more than 1/10 of 

the document height, which definitely affects the average 

separator band width. This scenario is shown in Fig 9. So we 

directly take this region as ROI and this would not be 

considered for calculating the average. The threshold 1/10 is 

chosen heuristically based on the average number of the text 

lines in the dataset. 

        
Fig. 8: Separation band and frequency 

(Reference: ICDAR13 test image - 220.tif) 

          
a    b 

Fig. 9: Separator bands 

(Reference: A ICDAR13 test image - 201.tif) 

(a) A larger separation band, 

(b) Separation bands after Iteration 

Algorithm FindingUnderSeparation 

Input:        –                  

Output:      –                     –   

                              

                               

        

                              

              
 

  
 

    
                                                

      

                                        

            
                                      

       

        

                   

             

                                         
 

         

                              

                                  

   
                                               

       

             

The time complexity for finding the average separator band 

width is                                    . 

The detection of the ROI is     . The worst case scenario 

for this algorithm is      . 

Next, the separator points are identified by taking the mid 

position of each band with respect to its position. Suppose the 

starting and the ending position of a separator band are 

                respectively, then the mid-point is 

computed as      
           

 
 . Fig. 10 shows the line 

separator example. 

 

Fig. 10: Line Separators 

(Reference: A portion of ICDAR13 test image - 201.tif) 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 172 – No.4, August 2017 

45 

The other under separation problem is illustrated in Section 

3.2 (Fig 5(a)) when two adjacent text lines are touching at the 

beginning of the text-line. We analyze the frequency of the 

separator points. If the gap between the two adjacent separator 

points is more than twice its average gap, then it is considered 

as an under separation region. The under separation region 

could be seen in fig 11 with its corresponding separator 

frequency. 

  

Fig. 11:  Under separation and frequency 

(Reference: A portion of ICDAR13 test image - 214.tif) 

To resolve this, first we compute the average separation gap 

between the adjacent separators. Next, we re-compute the 

average separation gap by ignoring the touching separator 

points. This newly computed average is used in-order to insert 

the separator exactly in the midpoint of the two touching text-

lines.  The same algorithm to identify the under separation 

region is employed. Instead of computing the average 

separator band width, we take the average gap between the 

separator points. Therefore, the time complexity is      . 

4.3 Finding the over separation 
As described in Section 3.3, the reasons for over separation 

are disjoint character composition and perceivably higher 

concave character structure. The over separator points are 

detected based on the frequent appearance of the separator 

points than expected. This could be seen in Fig 11, where the 

separator line 6 is closely located to the separator 7. 

               

Fig. 12:  Under separation and frequency 

(Reference: A portion of ICDAR13 test image - 218.tif) 

The over separation points are detected when the gap between 

the adjacent is lesser than 1/3 of the average gap. In Fig 11, 

the gap between the separator points 6 and 7 is identified as 

over separation. In this scenario, the separator point 6 is to be 

removed because this separator point is comparatively closer 

to its adjacent point 5 than the gap between 7 and 8.  The 

mathematical model is given below. 

         

            
 

          
            

              

                                       

                                   

        

                       

       
          

 
 

                                

The algorithm scans the separator points twice and so the 

overall time complexity is      . 

4.4 Creation of a virtual column at the 

right end 
To work on the right margin of the document image, we 

consider the last non-zero entry of every row of RLE data and 

we build a virtual column. This is explained clearly in Section 

3.1. The algorithmic skeleton is provided here under. 

Algorithm VirtualColumn  

Input:  RLE 

Output:  VC – Virtual Column- consists of last non-zero 

value of every row in RLE data 

                                 

                        

              

               

      

      

         

        

            

This algorithm takes 

                                          

                   

Algorithms in 4.1, 4.2 and 4.3 can be applied on this virtual 

column to spot the separator points at right border of the 

document. A sample result of separator points at left and right 

border is shown in Fig 13. 
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Fig. 13: Separator points at left and right borders 

(Reference: A portion of ICDAR13 test image - 305.tif) 

5. EXPERIMENTAL ANALYSIS 
There is no standard compressed handwritten dataset available 

in the literature. However, the benchmark datasets such as 

ICDAR2013 [16], Alireza et al [17] of Kannada, Oriya, 

Persian and Bangla documents are compressed using the RLE 

technique. The compression standard is adopted as presented 

in [14].  The system is evaluated by counting the number of 

matches between the entities (separator points) detected by the 

algorithm and the entities present in the ground truth, 

proposed in the literature [16]. Let N be the count of ground-

truth elements and the number of one-to-one matches be o2o, 

the detection rate (DR) is defined as follows: 

   
   

 
  

The machine learning statistics such as True Negative (TN) 

and False Positive (FP) in terms of under separation and over 

separation respectively is shown below.  

    
                      

           
     

     
                     

           
     

The total separator points at left/right border of a document is 

the sum of the number of gaps between the text lines and the 

two margins (top and bottom) of the document page. 

                         
    

     
                     

                               

While experimenting, we ignore the separator point at the top 

margin of every document. The table 3 shows the DR on 

evaluating the algorithms on the handwritten datasets. The 

table shows one-to-one detection on both ends (left and right). 

Different threshold values including 1/15 and 1/35 were 

experimented. However, the threshold value 1/25 would give 

relatively higher DR. In particular, the Persian handwritten 

dataset holds lesser DR. This is because the Persian characters 

or words are composed of disjoint components. For Persian 

texts the performance at the right end is better than left 

because it is written in left-to-right direction, causing a larger 

indent margin at left end when compared to its right. 

Table 3. Detection Rate tested with various compressed datasets 

Datasets 

(Handwritten) 

 

Total 

Lines 

(N) 

Detected Undetected (%) 

o2o Rate (%) Left Right 

Left Right Left Right TN FP TN FP 

ICDAR13 [16] 2649 2578 2502 97.31 94.45 2.69 2.78 5.55 6.44 

Kannada [17] 4298 4173 4082 97.09 94.97 2.91 3.01 5.03 5.23 

Oriya [17] 3108 3012 2911 96.91 93.66 3.09 4.10 6.34 7 

Bangla [17] 4850 4650 4598 95.87 94.80 4.13 4.45 5.20 6.01 

Persia [17] 1787 1690 1723 94.57 96.41 5.43 7.99 3.59 4.2 

 

6. CONCLUSION AND FUTURE WORK 
In this paper, a novel idea of working directly in the 

compressed representation of the document image is 

presented. We spotted the sequence of separator points at 

every line terminal in the RLE data. These separator points 

would enable the text line segmentation. Certainly, these 

points determine the text line segmentation in the printed 

compressed document. Though the entire RLE data is 

available, we used just the first column of the RLE to spot 

separator points on the left end of the document. In case of the 

right end, the last non-zero entry of every row in the RLE data 

is chosen to form a virtual column. The algorithm has some 

limitations in working with skews, large margins (indents), 

consecutive touching lines and disjoint characters. These 

limitations can be considered for the future work. 
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